@article{LinzFaberSchmidetal.2022, author = {Linz, Christian and Faber, Julian and Schmid, Reiner and Kunz, Felix and B{\"o}hm, Hartmut and Hartmann, Stefan and Schweitzer, Tilmann}, title = {Using a 3D asymmetry index as a novel form for capturing complex three-dimensionality in positional plagiocephaly}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, doi = {10.1038/s41598-022-24555-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300427}, year = {2022}, abstract = {Positional plagiocephaly (PP) is the most common skull deformity in infants. Different classification systems exist for graduating the degree of PP, but all of these systems are based on two-dimensional (2D) parameters. This limitation leads to several problems stemming from the fact that 2D parameters are used to classify the three-dimensional (3D) shape of the head. We therefore evaluate existing measurement parameters and validate a newly developed 3D parameter for quantifying PP. Additionally, we present a new classification of PP based on a 3D parameter. 210 patients with PP and 50 patients without PP were included in this study. Existing parameters (2D and 3D) and newly developed volume parameters based on a 3D stereophotogrammetry scan were validated using ROC curves. Additionally, thresholds for the new 3D parameter of a 3D asymmetry index were assessed. The volume parameter 3D asymmetry index quantifies PP equally as well as the gold standard of 30° diagonal difference. Moreover, a 3D asymmetry index allows for a 3D-based classification of PP. The 3D asymmetry index can be used to define the degree of PP. It is easily applicable in stereophotogrammetric datasets and allows for comparability both intra- and inter-individually as well as for scientific analysis.}, language = {en} }