@article{SchulteBlum2022, author = {Schulte, Annemarie and Blum, Robert}, title = {Shaped by leaky ER: Homeostatic Ca\(^{2+}\) fluxes}, series = {Frontiers in Physiology}, volume = {13}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2022.972104}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287102}, year = {2022}, abstract = {At any moment in time, cells coordinate and balance their calcium ion (Ca\(^{2+}\)) fluxes. The term 'Ca\(^{2+}\) homeostasis' suggests that balancing resting Ca2+ levels is a rather static process. However, direct ER Ca\(^{2+}\) imaging shows that resting Ca\(^{2+}\) levels are maintained by surprisingly dynamic Ca\(^{2+}\) fluxes between the ER Ca\(^{2+}\) store, the cytosol, and the extracellular space. The data show that the ER Ca\(^{2+}\) leak, continuously fed by the high-energy consuming SERCA, is a fundamental driver of resting Ca\(^{2+}\) dynamics. Based on simplistic Ca\(^{2+}\) toolkit models, we discuss how the ER Ca\(^{2+}\) leak could contribute to evolutionarily conserved Ca\(^{2+}\) phenomena such as Ca\(^{2+}\) entry, ER Ca\(^{2+}\) release, and Ca\(^{2+}\) oscillations.}, language = {en} }