@phdthesis{Hopfgartner2015, author = {Hopfgartner, Andreas}, title = {Magnetresonanztomographie in der Zahnheilkunde - hochaufl{\"o}sende zahnmedizinische Anwendungen in der MRT mit einer Entwicklung zur Bewegungskorrektur}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122557}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {126}, year = {2015}, abstract = {Die zahnmedizinische Behandlung von Erkrankungen der Z{\"a}hne oder im Bereich der Mundh{\"o}hle erfolgt bei Weitem nicht immer aus optischen Gr{\"u}nden. Diese Erkrankungen werden auch mit ernsthaften Erkrankungen in Zusammenhang gebracht. Studien haben gezeigt, dass einige Erkrankungen im Mund- und Zahnbereich zu Herz- und Lungenkrankheiten oder Diabetes f{\"u}hren k{\"o}nnen. Oftmals erstreckt sich die Pathologie oder Symptomatik von Mund- und Zahnerkrankungen {\"u}ber einen weiten Bereich. In der zahnmedizinischen Klinik kommen daher viele verschiedene diagnostische Apparate zum Einsatz. Allerdings z{\"a}hlt die Magnetresonanztomographie, die sich in anderen Bereichen bereits zum wichtigsten bildgebenden Diagnosetool entwickelt hat, dort noch nicht zu den Standardverfahren. Dabei liegen ihre Vorteile auf der Hand: sie ist bekannt f{\"u}r sehr gute Bildkontraste vor allem zwischen verschiedenen Weichgewebsarten und kommt ohne gef{\"a}hrliche ionisierende Strahlung aus. Wahrscheinlich ist ersteres der Grund, warum die MRT in der Zahnmedizin noch nicht sonderlich vertreten ist, kommt es dort oft auf die kontrastreiche Darstellung von Hartgeweben an. Neueste Entwicklungen und Studien belegen jedoch die vielseitigen Vorteile der MRT auch in diesem Bereich. Ziel dieser Arbeit von der applikativen Seite betrachtet, war es, das enorme Potential der MRT in den vielseitigen Bereichen der Zahnmedizin weiterhin aufzuzeigen. Viele dieser Anwendungen stellen jedoch sehr hohe Anforderungen an die Systeme. Meist sind die darzustellenden Strukturen sehr klein und erfordern eine hohe Aufl{\"o}sung. W{\"a}hrend man beim R{\"o}ntgenverfahren beispielsweise die Energie des Strahles (Dosis) steigern kann, bedeutet dies in der MRT (ohne das Ger{\"a}t zu wechseln) eine Verl{\"a}ngerung der Messzeit. Gerade im Bereich des Kopfes kommt es oft zu ungewollten Bewegungen, die das Ergebnis und die Reproduzierbarkeit der gewonnenen diagnostischen Informationen verschlechtern oder g{\"a}nzlich unbrauchbar machen. Die gr{\"o}sste Herausforderung dabei ist die dreidimensionale Abformung von Zahnoberfl{\"a}chen in der Prothetik. Dieses Verfahren kann eine aufw{\"a}ndige und unangenehme manuelle Abformung der Z{\"a}hne und die Herstellung eines Zwischengipsmodells ersetzen und ein direktes dreidimensionales Modell der Zahnoberfl{\"a}chen produzieren. Durch die moderne CAD-/CAM-Technik kann daraus vom Zahntechniker direkt eine Zahnrestauration erstellt werden. Daher war ein wichtiger Bestandteil des Projekts dentale MRT die Entwicklung einer Methode zur Erkennung und gleichzeitiger Korrektur von Bewegungen. Verschiedenste Anforderungen waren an die Methode gestellt. Zum einen muss die Methode bereits Bewegungen im Bereich von ~100 µm erkennen, um die Anforderungen an die finale Bildaufl{\"o}sung zu unterschreiten. Bei der dentalen Abformung wird eine 1-Kanal-Empf{\"a}ngerspule verwendet und je nach Messung kann der Patient dabei auf dem Bauch oder R{\"u}cken liegen. Weiterhin muss die Bewegungserkennung ohne zus{\"a}tzliche externe Ger{\"a}te wie Kameras, deren Sicht z.B. durch den Patienten verdeckt ist, durchf{\"u}hrbar sein. Die vorliegende Arbeit deckt also zwei gr{\"o}ßere Themenbl{\"o}cke ab. Zum einen wurden in der Arbeit neue Applikationen entwickelt oder weiterentwickelt, um verschiedenen Bereichen der Zahnmedizin den Zugang zu MRTUntersuchungen zu er{\"o}ffnen. Kapitel 4 beschreibt die M{\"o}glichkeit, die Bewegung des Kiefergelenks dynamisch zu erfassen. Es stellte sich in der Arbeit heraus, dass sowohl die Bewegung von Weichgewebeanteilen darstellbar waren, als auch der intraartikul{\"a}re Abstand im Kiefergelenk unter Kaubelastung in Echtzeit vermessen werden konnte. Dabei wurde die Bildgebungssequenz und der zugeh{\"o}rige Rekonstruktionsalgorithmus so entwickelt, dass die Daten flexibel und ohne Vorwissen akquiriert und aufbereitet werden k{\"o}nnen. Hierbei konnten verschiedenen Pathologien anhand der dynamischen Bilder sichtbar gemacht werden und die dynamische MRT konnte Erkrankungen erkennen, die mit anderen Mitteln nicht sichtbar waren. Die vielen diagnostischen M{\"o}glichkeiten, die dadurch entstehen sind bisher noch nicht untersucht und sollten durch großangelegte Studien untersucht und belegt werden. Kapitel 5 beschreibt die Ergebnisse einer großangelegten Studie im Bereich der dentomaxill{\"a}ren Bildgebung . Die diagnostischen M{\"o}glichkeiten der MRT f{\"u}r die kieferorthop{\"a}dische Anwendung liegen klar auf der Hand. Die typischen Patienten in der Kieferorthop{\"a}die sind Kinder und Jugendliche. Die Abwesenheit von gewebssch{\"a}digender Strahlung ist hier ein besonderer Vorteil der MRT. Eine Messung dauert zudem nach diversen Weiterentwicklungen der Methode nur noch 2 (bzw. 4) Minuten. Die Aufl{\"o}sung in den gerenderten Bildern betr{\"a}gt 0.25x0.25x0.5 mm. Mit der Methode konnte unter anderem die Geminisierung einer Zahnwurzel und der Abstand des Zahnmarks zur Zahnoberfl{\"a}che (Zahnschmelz) dargestellt und vermessen werden. Kapitel 6 stellt Neuentwicklungen im Bereich der dentalen Abformung von Zahnoberfl{\"a}chen dar. Hier wurde eine neue Methode entwickelt um den Patientenkomfort bei der Messung zu steigern und so Bewegungen im Vorhinein zu unterbinden. Bei der alten Methode liegt der Patient auf dem Bauch und ein großer Teil der Mundh{\"o}hle ist mit Kontrastmittel bef{\"u}llt. Durch die Verwendung einer pr{\"a}parierten Tiefziehschiene kann das Kontrastmittel nun lokal appliziert werden und eine Messung in R{\"u}ckenlage das Patienten ist somit problemlos m{\"o}glich. Die damit verbundene Reproduzierbarkeit der Abformungsergebnisse w{\"a}re durch eine großangelegte Studie zu zeigen. Die Hauptaufgabe der vorliegenden Dissertation war es, eine Methode zur Bewegungskorrektur zu entwickeln, die es ohne eine große Anzahl an Zusatzger{\"a}ten erm{\"o}glicht, die Bewegung eines Subjekts w{\"a}hrend der Messung zu erfassen und dementsprechend zu korrigieren. Diese neue Methode, gest{\"u}tzt auf einer Messung eines MRT-aktiven Markers der am Subjekt angebracht wird, beruht außer der Verwendung des Markers nur auf MRT-Hardware. Die Methode wird in Kapitel 8 vorgestellt. Da es sich bei der Methode um eine Neuentwicklung handelt, war es in erster Linie wichtig, die Einfl{\"u}sse der verschiedenen Parameter, die sich auf die Positionierungsgenauigkeit auswirken, abzusch{\"a}tzen und letzten Endes festzulegen. Dies wurde in mehreren Vorstudien, Experimenten und Computersimulationen abgehandelt. In der Arbeit konnte durch Validierungsexperimente gezeigt werden dass sich mit dem bildbasierten Navigator Bewegungen im Genauigkeitsbereich von ~50 µm (Translation) und ~0.13◦(Rotation) detektieren lassen. Mit den Positionsinformationen lassen sich MRT-Daten retrospektiv korrigieren oder idealerweise das Bildgebungsvolumen in Echtzeit anpassen um Inkonsistenzen in den Daten im Vorhinein vorzubeugen. Durch Bewegung beeintr{\"a}chtigte in-vivo Daten konnten so mit der Methode korrigiert werden und anhand eines geeigneten Phantoms konnte die Verbesserung der Erkennung von Kanten, wie sie beispielsweise bei der dentalen Abformung angewandt wird, gezeigt werden. Die kontinuierlichen Entwicklungen in den Bereichen Hard-, Software und Algorithmik erm{\"o}glichen weitere hochaufl{\"o}sende Anwendungen. In Kapitel 9 sind die Ergebnisse einer Studie gezeigt, die sich mit der Analyse der Handbewegungen w{\"a}hrend einer Messung besch{\"a}ftigt. F{\"u}r eine hochaufl{\"o}senden Darstellung der Handanatomie bei 7 T ist eine Unterbindung der Handbewegung sehr wichtig. Um ein geeignetes Design f{\"u}r eine Empf{\"a}ngerspule zu entwerfen, die Bewegungen der Hand unterbindet, wurde eine qualitative Bewegungsanalyse der Hand in mehreren verschiedenen Positionen durchgef{\"u}hrt. Durch Vergleich der Ergebnisse konnte so auf geeignete Designs zur{\"u}ckgeschlossen werden.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Weick2015, author = {Weick, Stefan}, title = {Retrospektive Bewegungskorrektur zur hochaufgel{\"o}sten Darstellung der menschlichen Lunge mittels Magnetresonanztomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124084}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Ziel dieser Arbeit war es, das gesamte Lungenvolumen in hoher dreidimensionaler Aufl{\"o}sung mittels der MRT darzustellen. Um trotz der niedrigen Protonendichte der Lunge und der geforderten hohen Aufl{\"o}sung ausreichend Signal f{\"u}r eine verl{\"a}ssliche Diagnostik zu erhalten, sind Aufnahmezeiten von einigen Minuten n{\"o}tig. Um die Untersuchung f{\"u}r den Patienten angenehmer zu gestalten oder auf Grund der eingeschr{\"a}nkten F{\"a}higkeit eines Atemstopps {\"u}berhaupt erst zu erm{\"o}glichen, war eine Anforderung, die Aufnahmen in freier Atmung durchzuf{\"u}hren. Dadurch entstehen allerdings Bewegungsartefakte, die die Diagnostik stark beeintr{\"a}chtigen und daher m{\"o}glichst vermieden werden m{\"u}ssen. F{\"u}r eine Bewegungskompensation der Daten muss die auftretende Atembewegung detektiert werden. Die Bewegungsdetektion kann durch externe Messger{\"a}te (Atemgurt oder Spirometer) oder durch eine zus{\"a}tzliche Anregungen erfolgen (konventionelle Navigatoren) erfolgen. Nachteile dieser Methoden bestehen darin, dass die Bewegung w{\"a}hrend der Atmung nicht direkt verfolgt wird, dass elektronische Messger{\"a}te in die N{\"a}he des Tomographen gebracht werden und das die Patienten zus{\"a}tzlich vorbereitet und eingeschr{\"a}nkt werden. Des Weiteren erfordert eine zus{\"a}tzliche Anregung extra Messzeit und kann unter Umst{\"a}nden die Magnetisierung auf unterw{\"u}nschte Weise beeinflussen. Um die angesprochenen Schwierigkeiten der Bewegungsdetektion zu umgehen, wurden in dieser Arbeit innerhalb einer Anregung einer 3d FLASH-Sequenz sowohl Bilddaten- als auch Navigatordaten aufgenommen. Als Navigator diente dabei das nach der Rephasierung aller bildgebenden Gradienten entstehende Signal (DC Signal). Das DC Signal entspricht dabei der Summe aller Signale, die mit einem bestimmten Spulenelement detektiert werden k{\"o}nnen. Bewegt sich beispielsweise die Leber bedingt durch die Atmung in den Sensitivit{\"a}tsbereich eines Spulenelementes, wird ein st{\"a}rkeres DC Signal detektiert werden. Je nach Positionierung auf dem K{\"o}rper kann so die Atembewegung mit einzelnen r{\"a}umlich lokalisierten Spulenelementen nachverfolgt werden. Am DC Signalverlauf des f{\"u}r die Bewegungskorrektur ausgew{\"a}hlten Spulenelementes sind dann periodische Signalschwankungen zu erkennen. Zus{\"a}tzlich k{\"o}nnen aus dem Verlauf Expirations- von Inspirationszust{\"a}nden unterschieden werden, da sich Endexpirationszust{\"a}nde im Regelfall durch eine l{\"a}ngere Verweildauer auszeichnen. Grunds{\"a}tzlich kann das DC Signal vor oder nach der eigentlichen Datenaufnahme innerhalb einer Anregung aufgenommen werden. Auf Grund der kurzen Relaxationszeit T∗2 des Lungengewebes f{\"a}llt das Signal nach der RF Anregung sehr schnell ab. Um m{\"o}glichst viel Signal zu erhalten sollten, wie in dieser Arbeit gezeigt wurde, innerhalb einer Anregung zuerst die Bilddaten und danach die Navigatordaten aufgenommen werden. Dieser Ansatz f{\"u}hrt zu einer Verk{\"u}rzung der Echozeit TE um 0.3 ms und damit zu einem SNR Gewinn von etwa 20 \%. Gleichzeitig ist das verbleibende Signal nach der Datenakquisition und Rephasierung der bildgebenden Gradienten noch ausreichend um die Atembewegung zu erfassen und somit eine Bewegungskorrektur der Daten (Navigation) zu erm{\"o}glichen. Um eine retrospektive Bewegungskorrektur durchf{\"u}hren zu k{\"o}nnen, m{\"u}ssen Akzeptanzbedingungen (Schwellenwerte) f{\"u}r die Datenauswahl festgelegt werden. Bei der Wahl des Schwellenwertes ist darauf zu achten, dass weder zu wenige noch zu viele Daten akzeptiert werden. Akzeptiert man sehr wenige Daten, zeichnen sich die Rekonstruktionen durch einen scharfen {\"U}bergang zwischen Lunge und Diaphragma aus, da man sehr wenig Bewegung in den Rekonstruktionen erlaubt. Gleichzeitig erh{\"o}ht sich allerdings das Risiko, dass nach der Navigation Linien fehlen. Dies f{\"u}hrt zu Einfaltungsartefakten, die in Form von gest{\"o}rten Bildintensit{\"a}ten in den Rekonstruktionen zu sehen sind und die diagnostische Aussagekraft einschr{\"a}nken. Um Einfaltungsartefakte zu vermeiden sollte der Schwellenwert so gew{\"a}hlt werden, dass nach der Datenauswahl keine Linien fehlen. Aus dieser Anforderung l{\"a}sst sich ein maximaler Schwellenwert ableiten. Akzeptiert man dagegen sehr viele Daten, zeichnen sich die Rekonstruktionen durch erh{\"o}htes Signal und das vermehrte Auftreten von Bewegungsartefakten aus. In diesem Fall m{\"u}sste der Arzt entscheiden, ob Bewegungsartefakte die Diagnostik zu stark beeinflussen. W{\"a}hlt man den Schwellenwert so, dass weder Linien fehlen noch zu viel Bewegung erlaubt wird, erh{\"a}lt man Rekonstruktionen die sich durch einen scharfen Diaphragma{\"u}bergang auszeichnen und in denen noch kleinste Gef{\"a}ße auch in der N{\"a}he des Diaphragmas deutlich zu erkennen sind. Hierf{\"u}r haben sich Schwellenwerte, die zu einer Datenakzeptanz von ca. 40 \% f{\"u}hren als g{\"u}nstig erwiesen. Um Einfaltungsartefakte auf Grund der retrospektiven Datenauswahl zu verhindern, muss das Bildgebungsvolumen mehrfach abgetastet werden. Dadurch wird gew{\"a}hrleistet, dass f{\"u}r die letztendliche Rekonstruktion ausreichend Daten zur Verf{\"u}gung stehen, wobei mehrfach akzeptierte Daten gemittelt werden. Dies spielt auf Grund der niedrigen Protonendichte der Lunge eine wesentliche Rolle in der Rekonstruktion hochaufgel{\"o}ster Lungendatens{\"a}tze. Weiterhin f{\"u}hrt das Mitteln von mehrfach akzeptierten Daten zu einer Unterdr{\"u}ckung der sogenannten Ghost Artefakte, was am Beispiel der Herzbewegung in der Arbeit gezeigt wird. Da die Messungen unter freier Atmung durchgef{\"u}hrt werden und keine zus{\"a}tzlichen externen Messger{\"a}te angeschlossen werden m{\"u}ssen, stellte die Untersuchung f{\"u}r die Patienten in dieser Arbeit kein Problem dar. Im ersten Teil dieser wurde Arbeit gezeigt, dass sich mit Hilfe des DC Signales als Navigator und einer retrospektiven Datenauswahl das gesamte Lungenvolumen in hoher dreidimensionaler Aufl{\"o}sung von beispielsweise 1.6 x 1.6 x 4 mm3 innerhalb von 13 min. darstellen l{\"a}sst. Die Anwendbarkeit der vorgestellten Methode zur Bewegungskorrektur wurde neben Probanden auch an Patienten demonstriert. Da wie bereits beschrieben das Bildgebungsvolumen mehrfach abgetastet werden muss, wiederholt sich auch die Abfolge der f{\"u}r die Bildgebung verantwortlichen Gradienten periodisch. Da sich der Atemzyklus aber auch periodisch wiederholt, kann es zu Korrelationen zwischen der Atmung und den wiederholten Messungen kommen. Dies f{\"u}hrt dazu, dass auch nach vielen wiederholten Messungen immer noch gr{\"o}ßere Bereiche fehlender Linien im k-Raum bleiben, was zu Artefakten in den Rekonstruktionen f{\"u}hrt. Dies konnte im Falle der konventionellen Bewegungskorrektur in den Gatingmasken, die die Verteilung und H{\"a}ufigkeit der einzelnen akzeptierten Phasenkodierschritte im k-Raum zeigen, beobachtet werden. Da eine vors{\"a}tzliche Unterbrechung der Atemperiodizit{\"a}t (der Patient wird dazu angehalten, seine Atemfrequenz w{\"a}hrend der Messung absichtlich zu variieren) zur Vermeidung der angesprochenen Korrelationen nicht in Frage kommt, musste die Periodizit{\"a}t in der Datenaufnahme unterbrochen werden. In dieser Arbeit wurde dies durch eine quasizuf{\"a}llige Auswahl von Phasen- und Partitionskodiergradienten erreicht, da Quasizufallszahlen so generiert werden, dass sie unabh{\"a}ngig von ihrer Anzahl einen Raum m{\"o}glichst gleichf{\"o}rmig ausf{\"u}llen. Die quasizuf{\"a}llige Datenaufnahme f{\"u}hrt deshalb dazu, das sowohl akzeptierte als auch fehlende Linien nach der Bewegungskorrektur homogen im k-Raum verteilt auftreten. Vergleicht man das auftreten von Ghosting zeichnen sich die quasizuf{\"a}lligen Rekonstruktionen im Vergleich zur konventionellen Datenaufnahme durch eine verbesserte Reduktion von Ghost Artefakten aus. Dies ist auf die homogene Verteilung mehrfach akzeptierter Linien im k-Raum zur{\"u}ckzuf{\"u}hren. Die homogenere Verteilung von fehlenden Linien im k-Raum f{\"u}hrt weiterhin zu einer wesentlich stabileren Rekonstruktion fehlender Linien mit parallelen MRT-Verfahren (z.B. iterativem Grappa). Dies wird umso deutlicher je h{\"o}her der Anteil fehlender Linien im k-Raum wird. Im Falle der konventionellen Datenaufnahme werden die zusammenh{\"a}ngenden Bereiche fehlender Linien immer gr{\"o}ßer, was eine erfolgreiche Rekonstruktion mit iterativem Grappa unm{\"o}glich macht. Im Falle der quasizuf{\"a}lligen Datenaufnahme dagegen k{\"o}nnen auch Datens{\"a}tze in denen 40\% der Linien fehlen einfaltungsartefaktfrei rekonstruiert werden. Im weiteren Verlauf der Arbeit wurde gezeigt, wie die Stabilit{\"a}t der iterativen Grappa Rekonstruktion im Falle der quasizuf{\"a}lligen Datenaufnahme f{\"u}r eine erhebliche Reduktion der gesamten Messzeit genutzt werden kann. So ist in einer Messzeit von nur 74s die Rekonstruktion eines artefaktfreien und bewegungskorrigierten dreidimensionalen Datensatzes der menschlichen Lunge mit einer Aufl{\"o}sung von 2 x 2 x 5 mm3 m{\"o}glich. Des Weiteren erlaubt die quasizuf{\"a}llige Datenaufnahme in Kombination mit iterativem Grappa die Rekonstruktion von Datens{\"a}tzen unterschiedlicher Atemphasen von Inspiration bis Expiration (4D Bildgebung). Nach einer Messzeit von 15min. wurden 19 unterschiedliche Atemzust{\"a}nde rekonstruiert, wobei sich der Anteil der fehlenden Linien zwischen 0 und 20 \% lag. Im Falle der konventionellen Datenaufnahme w{\"a}re eine wesentlich l{\"a}ngere Messzeit n{\"o}tig gewesen, um {\"a}hnliche Ergebnisse zu erhalten. Zum Schluss soll noch ein Ausblick {\"u}ber m{\"o}gliche Weiterentwicklungen und Anwendungsm{\"o}glichkeiten, die sich aus den Erkenntnissen dieser Arbeit ergeben haben, gegeben werden. So k{\"o}nnte das quasizuf{\"a}llige Aufnahmeschema um eine Dichtegewichtung erweitert werden. Hierbei w{\"u}rde der zentrale k-Raum Bereich etwas h{\"a}ufiger als die peripheren Bereiche akquiriert werden. Dadurch sollte die iterative Grappa Rekonstruktion noch stabiler funktionieren und Ghost Artefakte besser reduziert werden. Die Verteilung der Linien sollte allerdings nicht zu inhomogen werden, um gr{\"o}ßere L{\"u}cken im k-Raum zu vermeiden. Dar{\"u}ber hinaus k{\"o}nnte die vorgestellte Methode der Bewegungskompensation auch f{\"u}r die Untersuchung anderer Organe oder K{\"o}rperteile verwendet werden. Voraussetzung w{\"a}re lediglich das Vorhandensein dezidierter Spulenanordnungen, mit denen die Bewegung nachverfolgt werden kann. So ist beispielsweise eine dynamische Bildgebung des frei und aktiv bewegten Knies m{\"o}glich, wobei zwischen Beugung und Streckung durch die erste Ableitung des zentralen k-Raum Signales unterschieden werden kann. Dies kann zus{\"a}tzliche Diagnoseinformationen liefern oder f{\"u}r Verlaufskontrollen nach Operationen benutzt werden [15]. Eine Weiterentwicklung mit hohem klinischen Potential k{\"o}nnte die Kombination der in dieser Arbeit vorgestellten retrospektiven Bewegungskorrektur mit einer Multi- Gradienten-Echo Sequenz darstellen. Hierzu musste die bestehende Sequenz lediglich um eine mehrfache Abfolge von Auslesegradienten innerhalb einer Anregung erweitert werden. Dies erm{\"o}glicht eine bewegungskorrigierte voxelweise Bestimmung der transversalen Relaxationszeit T∗2 in hoher r{\"a}umlicher Aufl{\"o}sung. Unter zus{\"a}tzlicher Sauerstoffgabe kann es zu einer Ver{\"a}nderung von T∗2 kommen, die auf den sogenannten BOLD Effekt (Blood Oxygen Level Dependent) zur{\"u}ckzuf{\"u}hren ist. Aus dieser {\"A}nderung k{\"o}nnten R{\"u}ckschl{\"u}sse auf hypoxische Tumorareale gezogen werden. Da diese eine erh{\"o}hte Strahlenresistenz aufweisen, k{\"o}nnte auf diese Bereiche innerhalb des Tumors eine erh{\"o}hte Strahlendosis appliziert und so m{\"o}glicherweise Behandlungsmisserfolge reduziert werden. Gleichzeitig kann durch die 4D Bildgebung eine m{\"o}gliche Tumorbewegung durch die Atmung erfasst und diese Information ebenfalls in der Bestrahlungsplanung benutzt werden. Die Lungen MRT k{\"o}nnte somit um eine hochaufgel{\"o}ste dreidimensionale funktionelle Bildgebung erweitert werden.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Kartaeusch2015, author = {Kart{\"a}usch, Ralf}, title = {Spektroskopische Flussmessung an Pflanzen mittels mobilem Magnetresonanztomographen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125820}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The main objective of this dissertation was the development of a flow sensor which is specialized on flow measurements of plants. Hence, an accessible mobile magnet and the receiver/transfer hardware have been developed. Additionally, software to control the MR-console has been written. The AC-method was advanced to acquire slow flow profiles. This enables acquiring flow in plants. Additionally, in cooperation with the working group "Lipid Motobolism" of the IPK-Gatersleben studies have been carried out to measure the influence of the ear of wheat on the water transport mechanism. Furthermore, a new technique based on the Bloch-Siegert-effect has been developed which reduces the influence of eddy currents. This simplifies flow measurements that suffer heavily from eddy currents. Hardware development An accessible mobile magnet with a field strength of 0.42 T has been build. The field homogeneity is 0.5 ppm in 1 cm³. In comparison to the existing closed magnet system at the chair EP5 this is an improvement of a factor 40. Those enhancements have been achieved by an adjusted design of the magnet which has been optimized by computer simulations. The implementation of ferrite pole shoes reduced the eddy currents by a factor 7 in comparison to the usually used iron pole shoes. Therefore, phase sensitive flow measurements using fast switching magnet field gradients could be carried out. A foldable coil has been refined to achieve an accessible receiver system. This coil has been used as a transmit/receiver unit. Furthermore, the SNR of measurements in thin plant stalks was enhanced by a constructed system that could be directly wrapped around the stalk. Additionally, two systems to reduce noise in plant measurements have been developed. Those systems can reduce the noise by a factor 92. This was necessary because the longish plant stems guides electric noise from outside of the case into the receiver coil. Both noise reduction systems, the electromagnetic shielding and the common mode rejection, removed the noise to the same level. Flow measurement In the present work a refinement of the AC-method [36] enabled for the first time acquiring quantitative flow profiles. Hence, it was possible to measure slow velocity in the range of 200 µm/s. The precondition was the replacement of the sinusoidal gradient profile by a trapezoid gradient shape. Those allowed increasing the slew rate of the gradients and therefore shorten the total duration of the ramp which finally allows higher encoding strengths. Additionally, due to intervals without applied gradients, more efficient RF-pulses can be used and more data points can be acquired in an echo. The measured flow profiles correlated to the simulation results. The accurate flow profiles have been achieved by a new evaluation technique and a phase correction mechanism. The newly developed extension to imaging enabled spatially encoded spectral flow measurements. Therefore, the location of xylem and phloem can be spatially separated. In the measurement of the black alder this becomes apparent. Here the shape of dicotyledonous plants, which is described in chapter 5.1, is visible. Additionally, due to the spatial separation of the flow directions (up/down) qualitative flow measurements are possible. In pixels where opposite flow directions can spatially be resolved the difference between the left and the right side of the flow spectra yields the total flow without static water. Due to the phase corrections technique in combination with the automatically frequency calibration, long term flow measurements were possible. Therefore, the response of plants on influences like changes in the illumination have been observed in measurements over a duration of nine days. Here flow changes below 200 µm/s can be detected. Bloch-Siegert phase encoding In this work a new spatial phase encoding technique (BS-SET) using a B1-gradient in combination with far off-resonant radio frequency pulses has been demonstrated. Based on the Bloch-Siegert Shift an eddy current free B1-gradient was used to encode images and apply flow encoding. The BS-gradient induces a phase shift which depends on B1² using a constant gradient. Therefore, adapted reconstructions have been developed that provide undistorted images using this nonlinear encoding. Alternatively, a B1-gradient has been developed where the profile of the B1-field follows a square root shape. This supplies a linear phase encoding removing the need for an adapted reconstruction and enables using this technique for flow encoding.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Triphan2015, author = {Triphan, Simon}, title = {T1 und T2*-Quantifizierung in der menschlichen Lunge}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139621}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In dieser Arbeit werden f{\"u}r die Anwendung in der menschlichen Lunge optimierte Methoden zur Bestimmung von T1- und T2*-Karten diskutiert: Dc-Gating erm{\"o}glicht die Quantifizierung in freier Atmung, wobei f{\"u}r die T1-Quantifizierung mittels Inversion Recovery eine Korrektur des dc-Signals entwickelt wurde. Dies hat den Vorteil, dass Parameterkarten aus mehreren Messungen anhand ihrer dc-Signale passend {\"u}berlagert werden k{\"o}nnen. Da T1 und T2* auf unterschiedliche Art und Weise von der Sauerstoffkonzentration abh{\"a}ngen, verbessert dies die M{\"o}glichkeit, ΔT1- und ΔT2*- Differenzkarten aus Messungen mit unterschiedlichen O2-Konzentrationen im Atemgas zu erstellen. Die Parameterquantifizierung ist in erster Linie f{\"u}r die Beobachtung von Krankheitsverl{\"a}ufen interessant, da T1 und T2* absolute, vergleichbare Zahlen sind. Da T2* deutlich vom Atemzustand abh{\"a}ngt, ist es auch hierf{\"u}r sinnvoll, durch Gating identische Atemzust{\"a}nde abzubilden. Um die unterschiedlichen Einfl{\"u}sse des Sauerstoffs auf T1 und T2* besser vergleichbar zu machen, wurde in dieser Arbeit weiterhin eine kombinierte Messung f{\"u}r beide Parameter implementiert: Da auch diese in freier Atmung stattfindet, profitieren nicht nur die Differenzkarten von der {\"U}berlagerung der Bilder, sondern auch der Vergleich der ΔT1- und ΔT2*-Karten untereinander. Messungen mit einer konventionellen kartesischen Methode an COPD-Patienten unter Raumluft- und 100\% Sauerstoffatmung ergaben bei Verwendung identischer Atemmasken ein deutlich geringeres ΔT1 als in gesunden Probanden. Dass T1 in der Lunge nicht nur von der Sauerstoffkonzentration sondern auch von der Gewebezusammensetzung und insbesondere auch dem Blutvolumenanteil abh{\"a}ngt, zeigte sich hierbei aber auch an den bei COPD im Mittel sehr viel k{\"u}rzeren T1-Zeiten bei Raumluft. Die aufgrund emphysematischer Ver{\"a}nderung noch zus{\"a}tzlich reduzierte Protonendichte im Parenchym kranker Lungen macht diese Messungen allerdings besonders schwierig. Die oben erw{\"a}hnten Optimierungen der T1-Quantifizierung zielen daher auch darauf ab, das Signal aus der Lunge zu maximieren, um Patientenmessungen einfacher zu machen: Messungen in freier Atmung sind f{\"u}r Patienten nicht nur einfacher, sondern erlauben effektiv auch l{\"a}ngere Messzeiten. Insbesondere wurde aber durch die Entwicklung einer radialen Methode die Echozeit zur Messung reduziert, um die kurze T2*-Zeit in der Lunge auszugleichen. Schließlich wurde durch Implementation einer 2D UTE Sequenz die Messung bei der k{\"u}rzesten vom Scanner erlaubten Echozeit erm{\"o}glicht. Die Messungen bei ultrakurzen Echozeiten in Probanden zeigten allerdings deutlich k{\"u}rzere T1-Zeiten als die zuvor gefundenen oder in der Literatur dokumentierten. In weiteren Experimenten wurde das sichtbare T1 zu mehreren Echozeiten mit Hilfe der zur kombinierten Quantifizierung entwickelten Methode bestimmt. Dabei ergab sich eine Zunahme des gemessenen T1 mit der Echozeit. Aus diesem Verhalten sowie den gefundenen k{\"u}rzesten und l{\"a}ngsten T1 l{\"a}sst sich schließen, dass das intra- und extravaskul{\"a}re Lungenwasser, also Blut bzw. das umgebende Gewebe, mit unterschiedlichen T1- und T2*-Zeiten zum Signal und damit auch dem effektiven T1 beitragen. Dass das TE der Messung die Gewichtung dieser Kompartimente bestimmt, hat dabei mehrere Auswirkungen: Einerseits bedeutet dies, dass beim Vergleich von T1-Messungen in der Lunge stets auch das TE mitbetrachtet werden muss, bei dem diese durchgef{\"u}hrt wurden. Andererseits l{\"a}sst sich die M{\"o}glichkeit, die Messung auf die unterschiedlichen Kompartimente abzustimmen, potentiell ausnutzen, um zus{\"a}tzliche diagnostische Informationen zu gewinnen: Da T1 vom Blutvolumenanteil und der Gewebezusammensetzung abh{\"a}ngt, k{\"o}nnte dieser Effekt helfen, diese beiden Einfl{\"u}sse zu differenzieren. W{\"a}hrend die in dieser Arbeit beschriebenen Experimente die TE-Abh{\"a}ngigkeit des sichtbaren T1 in Probanden aufzeigen, liefern sie allerdings noch keine genaue Erkl{\"a}rung f{\"u}r die m{\"o}glichen Urspr{\"u}nge dieses Effekts. Um diese weiter zu untersuchen, k{\"o}nnten allerdings gezielte Phantom- und in vivo-Experimente Aufschluss geben: Ein Aufbau, der die Feldverzerrung durch luftgef{\"u}llte Alveolen in L{\"o}sungen mit entsprechenden verschiedenen Suszeptibilit{\"a}ten nachbildet, reduziert den Unterschied zwischen den Kompartimenten auf T1 und χ. Eine in vivo-Messung mit m{\"o}glichst großer Differenz zwischen Ex- und Inspiration hingegen k{\"o}nnte den Einfluss der Abst{\"a}nde der Kompartimente vom Gasraum aufzeigen, da die Alveolarw{\"a}nde in tiefer Inspiration am weitesten gedehnt und daher am d{\"u}nnsten sind.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Bachschmidt2015, author = {Bachschmidt, Theresa}, title = {Magnetic Resonance Imaging in Proximity to Metal Implants at 3 Tesla}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135690}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Magnetic resonance imaging is derogated by the presence of metal implants and image quality is impaired. Artifacts are categorized according to their sources, the differences in susceptibility between metal and tissue and the modulation of the magnetic radiofrequency (RF) transmit field. Generally, these artifacts are intensified at higher field strength. The purpose of this work is to analyze the efficiency of current methods used for metal artifact reduction at 3T and to investigate improvements. The impact of high-bandwidth RF pulses on susceptibility-induced artifacts is tested. In addition, the benefit of a two-channel transmit system with respect to shading close to total hip replacements and other elongated metal structures in parallel to the magnetic field is analyzed. Local transmit/receive coils feature a higher peak B1 amplitude than conventional body coils and thus enable high-bandwidth RF pulses. Susceptibility-induced through-plane distortion relates reciprocally to the RF bandwidth, which is evaluated in vitro for a total knee arthroplasty. Clinically relevant sequences (TSE and SEMAC) with conventional and high RF pulse bandwidths and different contrasts are tested on eight patients with different types of knee implants. Distortion is rated by two radiologists. An additional analysis assesses the capability of a local spine transmit coil. Furthermore, B1 effects close to elongated metal structures are described by an analytical model comprising a water cylinder and a metal rod, which is verified numerically and experimentally. The dependence of the optimal polarization of the transmit B1 field, creating minimum shading, on the position of the metal is analyzed. In addition, the optimal polarization is determined for two patients; its benefit compared to circular polarization is assessed. Phantom experiments confirm the relation of the RF bandwidth and the through-plane distortion, which can be reduced by up to 79\% by exploitation of a commercial local transmit/receive knee coil at 3T. On average, artifacts are rated "hardly visible" for patients with joint arthroplasties, when high-bandwidth RF pulses and SEMAC are used, and for patients with titanium fixtures, when high-bandwidth RF pulses are used in combination with TSE. The benefits of the local spine transmit coil are less compared to the knee coil, but enable a bandwidth 3.9 times as high as the body coil. The modulation of B1 due to metal is approximated well by the model presented and the position of the metal has strong influence on this effect. The optimal polarization can mitigate shading substantially. In conclusion, through-plane distortion and related artifacts can be reduced significantly by the application of high-bandwidth RF pulses by local transmit coils at 3T. Parallel transmission offers an option to substantially reduce shading close to long metal structures aligned with the magnetic field. Effective techniques dedicated for metal implant imaging at 3T are introduced in this work.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Ott2015, author = {Ott, Martin}, title = {Lautst{\"a}rkereduzierte Magnetresonanztomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133921}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Messungen mit Magnetresonanztomographen sind seit jeher mit hohen Lautst{\"a}rken verbunden. Deshalb wird das Ger{\"a}t im Volksmund auch als „laute R{\"o}hre" bezeichnet. Bisher wurde das Problem mit Kopfh{\"o}rern, Ohrenst{\"o}pseln und akustischer D{\"a}mmung des MRT-Scanners angegangen. Auch in der Fachliteratur wird das Problem als gegeben angesehen und es werden kaum wissenschaftliche L{\"o}sungsans{\"a}tze zur Lautst{\"a}rkereduktion beschrieben. Das Ziel der vorliegenden Arbeit war es, Bildgebungs-Sequenzen f{\"u}r schwer‑optimierbare Bildkontraste und sogenannte Standard-Kontraste aus dem klinischen Umfeld hinsichtlich der Lautst{\"a}rke zu optimieren. Viele dieser Kontraste k{\"o}nnen bereits mit einfachen Algorithmen wie dem Gradientengl{\"a}ttungsalgorithmus erfolgreich in Hinblick auf die Lautst{\"a}rke optimiert werden. Allerdings existieren auch Sequenzen beziehungsweise Kontraste, die aufgrund ihrer Eigenschaften nicht von einem solchen Algorithmus profitieren k{\"o}nnen. Die Optimierungen und {\"A}nderungen sollten software-seitig erfolgen, das heißt durch {\"A}nderung der Gradientenformen und Datenakquisition. In der Arbeit wurden die grundlegenden Zusammenh{\"a}nge zwischen den verwendeten Ger{\"a}teparametern und der Lautst{\"a}rke untersucht und zudem die physikalischen Ursachen der Lautst{\"a}rkeentwicklung hergeleitet. Diese konnten anhand der Lorentz-Kr{\"a}fte quantitativ beschrieben werden. Somit konnten die Hauptursachen der Lautst{\"a}rkeentwicklung identifiziert werden. Diese sind abh{\"a}ngig von der Gradienten-Steig-Rate, aber auch von der Amplitude der Gradienten. Es konnte gezeigt werden, dass eine Minimierung dieser Gradientenparameter zu einer geringeren Lautst{\"a}rkeentwicklung f{\"u}hrt. Allerdings f{\"u}hrt diese Minimierung in den meisten F{\"a}llen auch zu einer systematischen Verlangsamung des Sequenzablaufs, was das Erreichen bestimmter Echozeiten und Bildkontraste unm{\"o}glich macht. Zu den problematischen Kontrasten bez{\"u}glich der Lautst{\"a}rkereduktion z{\"a}hlten der T1- und PD‑Kontrast einer Turbo-Spin-Echo-Sequenz. Durch die Kombination von mehreren Maßnahmen, wie der Adaption der k-Raum-Akquisition, der HF-Pulse-Parameter und den Gradientenformen, war es m{\"o}glich, die Lautst{\"a}rke in Beispielmessungen um bis zu 16,8 dB(A) zu reduzieren. Wie bei der k{\"u}rzlich ver{\"o}ffentlichten Methode zur Reduktion f{\"u}r die T2‑gewichteten Kontraste, wurde dies zulasten einer Messzeitverl{\"a}ngerung von bis zu 50\% erreicht. Die Endlautst{\"a}rke betrug dabei circa 81 dB(A). Mit der Lautst{\"a}rkeoptimierung der klinisch bedeutsamen T1- und PD‑Kontraste wurde die Palette an leisen, mit der Turbo-Spin-Echo‑Sequenz erzielbaren, Standard-Kontrasten (T1, T2 und PD) nun vervollst{\"a}ndigt. In einem anderen Ansatz wurde die Anwendbarkeit des CAT-Konzepts auf die Lautst{\"a}rkereduktion untersucht. Beim CAT-Konzept wird die Messung in Einzelmessungen mit verschiedenen Parametern unterteilt. Bisher wurde dieser Ansatz zur SAR-Reduktion verwendet. Das Zentrum des k-Raums wird mit einer SAR-intensiven, kontrastgebenden Messung aufgenommen. Der verbleibende Teil des k-Raums wird mit einer SAR-reduzierten, bildstrukturrelevanten Messung aufgenommen. In dieser Arbeit wurde die {\"U}bertragung des CAT-Konzepts auf die Lautst{\"a}rkereduktion untersucht. Anstelle von SAR-intensiven und SAR‑reduzierten Messungen, wurde hier die Unterteilung in „laute" und „leise" Messungen untersucht. Dabei wurden {\"U}berlegungen angestellt, die es f{\"u}r eine Vielzahl an Messungen erm{\"o}glichen, einen großen Teil der Messung leise zu gestalten ohne die Bildqualit{\"a}t oder den Bildkontrast zu ver{\"a}ndern. In einem weiteren Schritt wurden {\"U}berlegungen f{\"u}r die Lautst{\"a}rkereduktion der lauten Messungen vorgestellt. Anschließend wurden f{\"u}r eine GRE- und TSE-Sequenz Optimierungsschritte evaluiert und die Lautst{\"a}rke gemessen. Der hinsichtlich der Lautst{\"a}rkeoptimierung herausforderndste Bildkontrast ist die diffusionsgewichtete Bildgebung. Diese besitzt eine Diffusions-Pr{\"a}paration zur Sichtbarmachung der Diffusivit{\"a}t, bei der die maximal m{\"o}gliche Gradienten-Amplitude verwendet wird. Ebenso werden nach der Pr{\"a}paration die Daten mit einem EPI‑Akquisitionsmodul mit Blip-Gradienten akquiriert, das mit einem charakteristischem „Pfeifton" einhergeht. Zum einen wurden die Gradientenformen konsequent angepasst. Zum anderen wurde eine Segmentierung der k-Raum-Akquisition in Auslese-Richtung verwendet, um die Gradienten‑Steig-Raten zu reduzieren. Auch hier konnte eine deutliche Lautst{\"a}rkereduktion von bis zu 20,0 dB(A) erzielt werden. Dies wurde zulasten einer Messzeitverl{\"a}ngerung von 27\% ‑ 34\% im Vergleich zur Standard-Sequenz erreicht. Durch eine weitere Messzeitverl{\"a}ngerung um bis zu 23\% kann die Lautst{\"a}rke um weitere 0,9 dB(A) reduziert werden. Dabei h{\"a}ngt die genaue Messzeitverl{\"a}ngerung vom verwendeten GRAPPA-Faktor und der Anzahl der Auslese-Segmente ab. Die entstandene Sequenz wurde in mehreren Kliniken erfolgreich erprobt. Bisher mussten bei MRT-Messungen stets Kompromisse zwischen „hoher Aufl{\"o}sung", „hohem SNR" und „geringer Messzeit" getroffen werden. Als Anschauung daf{\"u}r wurde das „Bermuda‑Dreieck der MRT" eingef{\"u}hrt. Da alle drei Gr{\"o}ßen sich gegenseitig ausschließen, muss stets ein Mittelweg gefunden werden. Einige der in dieser Arbeit erzielten Erfolge bei der Lautst{\"a}rkereduktion wurden auf Kosten einer verl{\"a}ngerten Messzeit erreicht. Daher ist es naheliegend, das „Bermuda-Dreieck der MRT" um die Dimension der „geringen Lautst{\"a}rke" zu einer „Bermuda-Pyramide der MRT" zu erweitern. Damit muss die Lautst{\"a}rkeentwicklung in die Mittelweg‑Findung miteinbezogen werden. Die in dieser Arbeit erzielten Lautst{\"a}rken liegen in der Gr{\"o}ßenordnung zwischen 80 ‑ 85 dB(A). Somit k{\"o}nnen Messungen bei Verwendung von Geh{\"o}rschutz angenehm f{\"u}r den Patienten durchgef{\"u}hrt werden. Durch neue Techniken der Zukunft wird es wahrscheinlich sein, h{\"o}here Aufl{\"o}sungen, h{\"o}heres SNR oder k{\"u}rzere Aufnahmedauern zu erzielen, beziehungsweise stattdessen diese in eine geringe Lautst{\"a}rke „umzuwandeln". Ebenso werden m{\"o}glicherweise auf der hardware-technischen Seite Fortschritte erzielt werden, so dass in neueren MRT-Scannergenerationen mehr Wert auf die L{\"a}rmd{\"a}mmung gelegt wird und somit der softwarebasierten Lautst{\"a}rkereduktion einen Schritt entgegen gekommen wird. Damit k{\"o}nnten zuk{\"u}nftige Patienten-Messungen g{\"a}nzlich ohne st{\"o}renden Geh{\"o}rschutz durchgef{\"u}hrt werden.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Benkert2015, author = {Benkert, Thomas}, title = {Neue Steady-State-Techniken in der Magnetresonanztomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115381}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Die bSSFP-Sequenz kombiniert kurze Akquisitionszeiten mit einem hohen Signal-zu-Rausch-Verh{\"a}ltnis, was sie zu einer vielversprechenden Bildgebungsmethode macht. Im klinischen Alltag ist diese Technik jedoch bisher - abgesehen von vereinzelten Anwendungen - kaum etabliert. Die Hauptgr{\"u}nde hierf{\"u}r sind Signalausl{\"o}schungen in Form von Bandingartefakten sowie der erzielte T2/T1-gewichtete Mischkontrast. Das Ziel dieser Dissertation war die Entwicklung von Methoden zur L{\"o}sung der beiden genannten Limitationen, um so eine umfassendere Verwendung von bSSFP f{\"u}r die MR-Diagnostik zu erm{\"o}glichen. Magnetfeldinhomogenit{\"a}ten, die im Wesentlichen durch Suszeptibilit{\"a}tsunterschiede oder Imperfektionen seitens der Scannerhardware hervorgerufen werden, {\"a}ußern sich bei der bSSFP-Bildgebung in Form von Bandingartefakten. Mit DYPR-SSFP (DYnamically Phase-cycled Radial bSSFP) wurde ein Verfahren vorgestellt, um diese Signalausl{\"o}schungen effizient zu entfernen. W{\"a}hrend f{\"u}r bereits existierende Methoden mehrere separate bSSFP-Bilder akquiriert und anschließend kombiniert werden m{\"u}ssen, ist f{\"u}r die Bandingentfernung mittels DYPR-SSFP lediglich die Aufnahme eines einzelnen Bildes notwendig. Dies wird durch die neuartige Kombination eines dynamischen Phasenzyklus mit einer radialen Trajektorie mit quasizuf{\"a}lligem Abtastschema erm{\"o}glicht. Die notwendigen Bestandteile k{\"o}nnen mit geringem Aufwand implementiert werden. Des Weiteren ist kein spezielles Rekonstruktionsschema notwendig, was die breite Anwendbarkeit des entwickelten Ansatzes erm{\"o}glicht. Konventionelle Methoden zur Entfernung von Bandingartefakten werden sowohl bez{\"u}glich ihrer Robustheit als auch bez{\"u}glich der notwendigen Messzeit {\"u}bertroffen. Um die Anwendbarkeit von DYPR-SSFP auch jenseits der gew{\"o}hnlichen Bildgebung zu demonstrieren, wurde die Methode mit der Fett-Wasser-Separation kombiniert. Basierend auf der Dixon-Technik konnten so hochaufgel{\"o}ste Fett- sowie Wasserbilder erzeugt werden. Aufgrund der Bewegungsinsensitiv{\"a}t der zugrunde liegenden radialen Trajektorie konnten die Messungen unter freier Atmung durchgef{\"u}hrt werden, ohne dass nennenswerte Beeintr{\"a}chtigungen der Bildqualit{\"a}t auftraten. Die erzielten Ergebnisse am Abdomen zeigten weder Fehlzuordnungen von Fett- und Wasserpixeln noch verbleibende Bandingartefakte. Ein Nachteil der gew{\"o}hnlichen Dixon-basierten Fett-Wasser-Separation ist es, dass mehrere separate Bilder zu verschiedenen Echozeiten ben{\"o}tigt werden. Dies f{\"u}hrt zu einer entsprechenden Verl{\"a}ngerung der zugeh{\"o}rigen Messzeit. Abhilfe schafft hier die Verwendung einer Multiecho-Sequenz. Wie gezeigt werden konnte, erm{\"o}glicht eine derartige Kombination die robuste, bandingfreie Fett-Wasser-Separation in klinisch akzeptablen Messzeiten. DYPR-SSFP erlaubt die Entfernung von Bandingartefakten selbst bei starken Magnetfeldinhomogenit{\"a}ten. Dennoch ist es m{\"o}glich, dass Signalausl{\"o}schungen aufgrund des Effekts der Intravoxeldephasierung verbleiben. Dieses Problem tritt prim{\"a}r bei der Bildgebung von Implantaten oder am Ultrahochfeld auf. Als Abhilfe hierf{\"u}r wurde die Kombination von DYPR-SSFP mit der sogenannten z-Shim-Technik untersucht, was die Entfernung dieser Artefakte auf Kosten einer erh{\"o}hten Messzeit erm{\"o}glichte. Die mit DYPR-SSFP akquirierten radialen Projektionen weisen aufgrund des angewendeten dynamischen Phasenzyklus leicht verschiedene Signallevel und Phasen auf. Diese Tatsache zeigt sich durch inkoh{\"a}rente Bildartefakte, die sich jedoch durch eine Erh{\"o}hung der Projektionsanzahl effektiv reduzieren lassen. Folglich bietet es sich in diesem Kontext an, Anwendungen zu w{\"a}hlen, bei denen bereits intrinsisch eine verh{\"a}ltnism{\"a}ßig hohe Anzahl von Projektionen ben{\"o}tigt wird. Hierbei hat sich gezeigt, dass neben der hochaufgel{\"o}sten Bildgebung die Wahl einer 3D radialen Trajektorie eine aussichtsreiche Kombination darstellt. Die in der vorliegenden Arbeit vorgestellte 3D DYPR-SSFP-Technik erlaubte so die isotrope bandingfreie bSSFP-Bildgebung, wobei die Messzeit im Vergleich zu einer gew{\"o}hnlichen bSSFP-Akquisition konstant gehalten werden konnte. Verbleibende, durch den dynamischen Phasenzyklus hervorgerufene Artefakte konnten effektiv mit einem Rauschunterdr{\"u}ckungsalgorithmus reduziert werden. Anhand Probandenmessungen wurde gezeigt, dass 3D DYPR-SSFP einen aussichtsreichen Kandidaten f{\"u}r die Bildgebung von Hirnnerven sowie des Bewegungsapparats darstellt. W{\"a}hrend die DYPR-SSFP-Methode sowie die darauf beruhenden Weiterentwicklungen effiziente L{\"o}sungen f{\"u}r das Problem der Bandingartefakte bei der bSSFP-Bildgebung darstellen, adressiert die vorgestellte RA-TOSSI-Technik (RAdial T-One sensitive and insensitive Steady-State Imaging) das Problem des bSSFP-Mischkontrasts. Die M{\"o}glichkeit der Generierung von T2-Kontrasten basierend auf der bSSFP-Sequenz konnte bereits in vorausgehenden Arbeiten gezeigt werden. Hierbei wurde die Tatsache ausgenutzt, dass der T1-Anteil des Signalverlaufs nach Beginn einer bSSFP-Akquisition durch das Einf{\"u}gen von Inversionspulsen in ungleichm{\"a}ßigen Abst{\"a}nden aufgehoben werden kann. Ein so akquiriertes Bild weist folglich einen reinen, klinisch relevanten T2-Kontrast auf. Die im Rahmen dieser Arbeit vorgestellte Methode basiert auf dem gleichen Prinzip, jedoch wurde anstelle einer gew{\"o}hnlichen kartesischen Trajektorie eine radiale Trajektorie in Kombination mit einer KWIC-Filter-Rekonstruktion verwendet. Somit k{\"o}nnen bei gleichbleibender oder sogar verbesserter Bildqualit{\"a}t aus einem einzelnen, mit RA-TOSSI akquirierten Datensatz verschiedene T2-Wichtungen als auch gew{\"o}hnliche T2/T1-Wichtungen generiert werden. Mittels Variation der Anzahl der eingef{\"u}gten Inversionspulse konnte ferner gezeigt werden, dass es neben den besagten Wichtungen m{\"o}glich ist, zus{\"a}tzliche Kontraste zu generieren, bei denen verschiedene Substanzen im Bild ausgel{\"o}scht sind. Diese Substanzen k{\"o}nnen am Beispiel der Gehirnbildgebung Fett, graue Masse, weiße Masse oder CSF umfassen und zeichnen sich neben den reinen T2-Kontrasten durch eine {\"a}hnlich hohe klinische Relevanz aus. Die m{\"o}gliche Bedeutung der vorgestellten Methode f{\"u}r die klinische Verwendung wurde durch Messungen an einer Gehirntumorpatientin demonstriert. Zusammenfassend l{\"a}sst sich sagen, dass die im Rahmen dieser Dissertation entwickelten Techniken einen wertvollen Beitrag zur L{\"o}sung der eingangs beschriebenen Probleme der bSSFP-Bildgebung darstellen. Mit DYPR-SSFP akquirierte Bilder sind bereits mit bestehender, kommerzieller Rekonstruktionssoftware direkt am Scanner rekonstruierbar. Die Software f{\"u}r die Rekonstruktion von RA-TOSSI-Datens{\"a}tzen wurde f{\"u}r Siemens Scanner implementiert. Folglich sind beide Methoden f{\"u}r klinische Studien einsetzbar, was gleichzeitig den Ausblick dieser Arbeit darstellt.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Neumann2014, author = {Neumann, Daniel}, title = {Advances in Fast MRI Experiments}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108165}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging technique, that is rou- tinely used in clinical practice for detection and diagnosis of a wide range of different diseases. In MRI, no ionizing radiation is used, making even repeated application unproblematic. This is an important advantage over other common imaging methods such as X-rays and Computer To- mography. One major drawback of MRI, however, are long acquisition times and associated high costs of experiments. Since the introduction of MRI, several important technical developments have been made to successfully reduce acquisition times. In this work, novel approaches were developed to increase the efficiency of MRI acquisitions. In Chapter 4, an improved radial turbo spin-echo (TSE) combined acquisition and reconstruction strategy was introduced. Cartesian turbo spin-echo sequences [3] are widely used especially for the detection and diagnosis of neurological pathologies, as they provide high SNR images with both clinically important proton density and T2 contrasts. TSE acquisitions combined with radial sampling are very efficient, since it is possible to obtain a number of ETL images with different contrasts from a single radial TSE measurement [56-58]. Conventionally, images with a particular contrast are obtained from both radial and Cartesian TSE acquisitions by combining data from different echo times into a single image. In the radial case, this can be achieved by employing k-space weighted image contrast (KWIC) reconstruction. In KWIC, the center region of k-space is filled exclusively with data belonging to the desired contrast while outer regions also are assembled with data acquired at other echo times. However, this data sharing leads to mixed contrast contributions to both Cartesian and radial TSE images. This is true especially for proton density weighted images and therefore may reduce their diagnostic value. In the proposed method, an adapted golden angle reordering scheme is introduced for radial TSE acquisitions, that allows a free choice of the echo train length and provides high flexibility in image reconstruction. Unwanted contrast contaminations are greatly reduced by employing a narrow-band KWIC filter, that restricts data sharing to a small temporal window around the de- sired echo time. This corresponds to using fewer data than required for fully sampled images and consequently leads to images exhibiting aliasing artifacts. In a second step, aliasing-free images are obtained using parallel imaging. In the neurological examples presented, the CG-SENSE algorithm [42] was chosen due to its stable convergence properties and its ability to reconstruct arbitrarily sampled data. In simulations as well as in different in vivo neurological applications, no unwanted contrast contributions could be observed in radial TSE images reconstructed with the proposed method. Since this novel approach is easy to implement on today's scanners and requires low computational power, it might be valuable for the clinical breakthrough of radial TSE acquisitions. In Chapter 5, an auto-calibrating method was introduced to correct for stimulated echo contribu- tions to T2 estimates from a mono-exponential fit of multi spin-echo (MSE) data. Quantification of T2 is a useful tool in clinical routine for the detection and diagnosis of diseases as well as for tis- sue characterization. Due to technical imperfections, refocusing flip angles in a MSE acquisition deviate from the ideal value of 180○. This gives rise to significant stimulated echo contributions to the overall signal evolution. Therefore, T2 estimates obtained from MSE acquisitions typically are notably higher than the reference. To obtain accurate T2 estimates from MSE acquisitions, MSE signal amplitudes can be predicted using the extended phase graph (EPG, [23, 24]) algo- rithm. Subsequently, a correction factor can be obtained from the simulated EPG T2 value and applied to the MSE T2 estimates. However, EPG calculations require knowledge about refocus- ing pulse amplitudes, T2 and T1 values and the temporal spacing of subsequent echoes. While the echo spacing is known and, as shown in simulations, an approximate T1 value can be assumed for high ratios of T1/T2 without compromising accuracy of the results, the remaining two parameters are estimated from the data themselves. An estimate for the refocusing flip angle can be obtained from the signal intensity ratio of the second to the first echo using EPG. A conventional mono- exponential fit of the MSE data yields a first estimate for T2. The T2 correction is then obtained iteratively by updating the T2 value used for EPG calculations in each step. For all examples pre- sented, two iterations proved to be sufficient for convergence. In the proposed method, a mean flip angle is extracted across the slice. As shown in simulations, this assumption leads to greatly reduced deviations even for more inhomogeneous slice profiles. The accuracy of corrected T2 values was shown in experiments using a phantom consisting of bottles filled with liquids with a wide range of different T2 values. While T2 MSE estimates were shown to deviate significantly from the spin-echo reference values, this is not the case for corrected T2 values. Furthermore, applicability was demonstrated for in vivo neurological experiments. In Chapter 6, a new auto-calibrating parallel imaging method called iterative GROG was pre- sented for the reconstruction of non-Cartesian data. A wide range of different non-Cartesian schemes have been proposed for data acquisition in MRI, that present various advantages over conventional Cartesian sampling such as faster acquisitions, improved dynamic imaging and in- trinsic motion correction. However, one drawback of non-Cartesian data is the more complicated reconstruction, which is ever more problematic for non-Cartesian parallel imaging techniques. Iterative GROG uses Calibrationless Parallel Imaging by Structured Low-Rank Matrix Completion (CPI) for data reconstruction. Since CPI requires points on a Cartesian grid, it cannot be used to directly reconstruct non-Cartesian data. Instead, Grappa Operator Gridding (GROG) is employed in a first step to move the non-Cartesian points to the nearest Cartesian grid locations. However, GROG requires a fully sampled center region of k-space for calibration. Combining both methods in an iterative scheme, accurate GROG weights can be obtained even from highly undersampled non-Cartesian data. Subsequently, CPI can be used to reconstruct either full k- space or a calibration area of arbitrary size, which can then be employed for data reconstruction with conventional parallel imaging methods. In Chapter 7, a new 2D sampling scheme was introduced consisting of multiple oscillating effi- cient trajectories (MOET), that is optimized for Compressed Sensing (CS) reconstructions. For successful CS reconstruction of a particular data set, some requirements have to be met. First, ev- ery data sample has to carry information about the whole object, which is automatically fulfilled for the Fourier sampling employed in MRI. Additionally, the image to be reconstructed has to be sparse in an arbitrary domain, which is true for a number of different applications. Last, data sam- pling has to be performed in an incoherent fashion. For 2D imaging, this important requirement of CS is difficult to achieve with conventional Cartesian and non-Cartesian sampling schemes. Ra- dial sampling is often used for CS reconstructions of dynamic data despite the streaking present in undersampled images. To obtain incoherent aliasing artifacts in undersampled images while at the same time preserving the advantages of radial sampling for dynamic imaging, MOET com- bines radial spokes with oscillating gradients of varying amplitude and alternating orientation orthogonal to the readout direction. The advantage of MOET over radial sampling in CS re- constructions was demonstrated in simulations and in in vivo cardiac imaging. MOET provides superior results especially when used in CS reconstructions with a sparsity constraint directly in image space. Here, accurate results could be obtained even from few MOET projections, while the coherent streaking artifacts present in the case of radial sampling prevent image recovery even for smaller acceleration factors. For CS reconstructions of dynamic data with sparsity constraint in xf-space, the advantage of MOET is smaller since the temporal reordering is responsible for an important part of incoherency. However, as was shown in simulations of a moving phantom and in the reconstruction of ungated cardiac data, the additional spatial incoherency provided by MOET still leads to improved results with higher accuracy and may allow reconstructions with higher acceleration factors.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Schmitt2013, author = {Schmitt, Peter}, title = {MR imaging of tumors: Approaches for functional and fast morphological characterization}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135967}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The subject of this work was to develop, implement, optimize and apply methods for quantitative MR imaging of tumors. In the context of functional and physiological characterization, this implied transferring techniques established in tumor model research to human subjects and assessing their feasibility for use in patients. In the context of the morphologic assessment and parameter imaging of tumors, novel concepts and techniques were developed, which facilitated the simultaneous quantification of multiple MR parameters, the generation of "synthetic" MR images with various contrasts, and the fast single-shot acquisition of purely T2-weighted images.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Lother2013, author = {Lother, Steffen Reiner}, title = {Entwicklung eines 3D MR-Tomographen zur Erdfeld- und multimodalen MR-MPI-Bildgebung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-99181}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Das Ziel dieser Arbeit war die Entwicklung und die Anfertigung eines 3D Erdfeld-NMR Tomographen, um damit die ben{\"o}tigte Technik der MR eines MR-MPI-Tomographen am Lehrstuhl zu etablieren. Daraufhin wurden alle n{\"o}tigen Komponenten f{\"u}r ein komplettes 3D Erdfeld-NMR-System entwickelt, gebaut und getestet. Mit diesem Wissen wurde in enger Zusammenarbeit mit der MPI-Arbeitsgruppe am Lehrstuhl ein multimodaler MR-MPI-Tomograph angefertigt und die prinzipielle Machbarkeit der technischen Kombination dieser zwei Modalit{\"a}ten (MRT/MPI) in einer einzigen Apparatur gezeigt. Auf diesem Entwicklungsweg sind zus{\"a}tzlich innovative Systemkomponenten entstanden, wie der Bau eines neuen Pr{\"a}polarisationssystems, mit dem das Pr{\"a}polarisationsfeld kontrolliert und optimiert abgeschaltet werden kann. Des Weiteren wurde ein neuartiges 3D Gradientensystem entwickelt, das parallel und senkrecht zum Erdmagnetfeld ausgerichtet werden kann, ohne die Bildgebungseigenschaften zu verlieren. Hierf{\"u}r wurde ein 3D Standard-Gradientensystem mit nur einer weiteren Spule, auf insgesamt vier Gradientenspulen erweitert. Diese wurden entworfen, gefertigt und anhand von Magnetfeldkarten ausgemessen. Anschließend konnten diese Ergebnisse mit der hier pr{\"a}sentierten Theorie und den Simulationsergebnissen {\"u}bereinstimmend verglichen werden. MPI (Magnetic Particle Imaging) ist eine neue Bildgebungstechnik mit der nur Kontrastmittel detektiert werden k{\"o}nnen. Das hat den Vorteil der direkten und eindeutigen Detektion von Kontrastmitteln, jedoch fehlt die Hintergrundinformation der Probe. Wissenschaftliche Arbeiten prognostizieren großes Potential, die Hintergrundinformationen der MRT mit den hochaufl{\"o}senden Kontrastmittelinformationen mittels MPI zu kombinieren. Jedoch war es bis jetzt nicht m{\"o}glich, diese beiden Techniken in einer einzigen Apparatur zu etablieren. Mit diesem Prototyp konnte erstmalig eine MR-MPI-Messung ohne Probentransfer durchgef{\"u}hrt und die empfindliche Lokalisation von Kontrastmittel mit der {\"U}berlagerung der notwendigen Hintergrundinformation der Probe gezeigt werden. Dies ist ein Meilenstein in der Entwicklung der Kombination von MRT und MPI und bringt die Vision eines zuk{\"u}nftigen, klinischen, multimodalen MR-MPI-Tomographen ein großes St{\"u}ck n{\"a}her.}, subject = {NMR-Spektroskopie}, language = {de} } @phdthesis{Choli2013, author = {Choli, Morwan}, title = {Hybridmethoden zur Reduzierung der spezifischen Absorptionsrate f{\"u}r neuroradiologische MRT-Untersuchungen an Hochfeldsystemen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-100023}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die klinische Magnetresonanztomografie (MRT) operiert meist bei einer Magnetfeldst{\"a}rke von 1,5 Tesla (T). Es halten jedoch immer mehr 3T MRT-Systeme Einzug im klinischen Alltag und seit kurzem auch 7T Ganzk{\"o}rper-MRT-Systeme in die Grundlagenforschung. H{\"o}here Magnetfeldst{\"a}rken f{\"u}hren grunds{\"a}tzlich zum einem verbesserten Signal-zu-Rausch- Verh{\"a}ltnis, welches sich gewinnbringend in eine erh{\"o}hte Ortsaufl{\"o}sung oder schnellere Bildaufnahme {\"a}ußert. Ein Nachteil ist aber die dabei im Patienten deponierte Hochfrequenz-Energie (HF-Energie), welche quadratisch mit ansteigender Feldst{\"a}rke zusammenh{\"a}ngt. Charakterisiert wird diese durch die spezifische Absorptionsrate (SAR) und ist durch vorgegebene gesetzliche Grenzwerte beschr{\"a}nkt. Moderne, SAR-intensive MRT-Techniken (z.B. Multispinecho-Verfahren) sind bereits bei 1,5T nahe den zul{\"a}ssigen SAR-Grenzwerten und somit nicht unver{\"a}ndert auf Hochfeld-Systeme {\"u}bertragbar. In dieser Arbeit soll das Potential modularer Hybrid-MRT-Techniken genutzt werden, um das SAR bei besonders SAR-intensiven MRT-Verfahren ohne signifikante Einbußen in der Bildqualit{\"a}t erheblich zu verringern. Die Hybrid-Techniken sollen in Verbindung mit zus{\"a}tzlichen Methoden der SAR-Reduzierung den breiteren Einsatz SAR-intensiver MRT-Techniken an hohen Magnetfeldern erm{\"o}glichen. Ziel dieser Arbeit ist es, routinef{\"a}hige und SAR-reduzierte MRT-Standard-Protokolle f{\"u}r neuroanatomische Humanuntersuchungen mit r{\"a}umlicher H{\"o}chstaufl{\"o}sung bei Magnetfeldern von 3T und 7T zu etablieren.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Joseph2013, author = {Joseph, Arun Antony}, title = {Real-time MRI of Moving Spins Using Undersampled Radial FLASH}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-94000}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Nuclear spins in motion is an intrinsic component of any dynamic process when studied using magnetic resonance imaging (MRI). Moving spins define many functional characteristics of the human body such as diffusion, perfusion and blood flow. Quantitative MRI of moving spins can provide valuable information about the human physiology or of a technical system. In particular, phase-contrast MRI, which is based on two images with and without a flow-encoding gradient, has emerged as an important diagnostic tool in medicine to quantify human blood flow. Unfortunately, however, its clinical usage is hampered by long acquisition times which only provide mean data averaged across multiple cardiac cycles and therefore preclude Monitoring the immediate physiological responses to stress or exercise. These limitations are expected to be overcome by real-time imaging which constitutes a primary aim of this thesis. Short image acquisition times, as the core for real-time phase-contrast MRI, can be mainly realized through undersampling of the acquired data. Therefore the development focused on related technical aspects such as pulse sequence design, k-space encoding schemes and image reconstruction. A radial encoding scheme was experimentally found to be robust to motion and less sensitive to undersampling than Cartesian encoding. Radial encoding was combined with a FLASH acquisition technique for building an efficient real-time phase-contrast MRI sequence. The sequence was further optimized through overlapping of gradients to achieve the shortest possible echo time. Regularized nonlinear inverse reconstruction (NLINV), a technique which jointly estimates the image content and its corresponding coil sensitivities, was used for image reconstruction. NLINV was adapted specifically for phase-contrast MRI to produce both Magnitude images and phase-contrast maps. Real-time phase-contrast MRI therefore combined two highly undersampled (up to a factor of 30) radial gradient-echo acquisitions with and without a flow-encoding gradient with modified NLINV reconstructions. The developed method achieved real-time phase-contrast MRI at both high spatial (1.3 mm) and temporal resolution (40 ms). Applications to healthy human subjects as well as preliminary studies of patients demonstrated real-time phase-contrast MRI to offer improved patient compliance (e.g., free breathing) and immediate access to physiological variations of flow parameters (e.g., response to enhanced intrathoracic pressure). In most cases, quantitative blood flow was measured in the ascending aorta as an important blood vessel of the cardiovascular circulation system commonly studied in the clinic. The performance of real-time phase-contrast MRI was validated in comparison to standard Cine phase-contrast MRI using studies of flow phantoms as well as under in vivo conditions. The evaluations confirmed good agreement for comparable results. As a further extension to real-time phase-contrast MRI, this thesis implemented and explored a dual-echo phase-contrast MRI method which employs two sequential gradient echoes with and without flow encoding. The introduction of a flow-encoding gradient in between the two echoes aids in the further reduction of acquisition time. Although this technique was efficient under in vitro conditions, in vivo studies showed the influence of additional motion-induced Phase contributions. Due to these additional temporal phase information, the approach showed Little promise for quantitative flow MRI. As a further method three-dimensional real-time phase-contrast MRI was developed in this thesis to visualize and quantify multi-directional flow at about twice the measuring time of the standard real-time MRI method, i.e. at about 100 ms temporal resolution. This was achieved through velocity mapping along all three physical gradient directions. Although the method is still too slow to adequately cover cardiovascular blood flow, the preliminary results were found to be promising for future applications in tissues and organ systems outside the heart. Finally, future developments are expected to benefit from the adaptation of model-based reconstruction techniques to real-time phase-contrast MRI.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Hoelscher2012, author = {H{\"o}lscher, Uvo Christoph}, title = {Relaxations-Dispersions-Bildgebung in der Magnetresonanztomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79554}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Das Ziel dieser Promotion ist der Aufbau eines dreMR Setups f{\"u}r einen klinischen 1,5T Scanner, das die Relaxations-Dispersions-Bildgebung erm{\"o}glicht, und die anschließende Ergr{\"u}ndung von m{\"o}glichst vielen Anwendungsfeldern von dreMR. Zu der Aufgabe geh{\"o}rt die Bereitstellung der zugrunde liegenden Theorie, der Bau des experimentellen Setups (Offset-Spule und Stromversorgung) sowie die Programmierung der n{\"o}tigen Software. Mit dem gebauten Setup konnten zwei große Anwendungsfelder — dreMR Messungen mit und ohne Kontrastmitteln — untersucht werden.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Wichmann2012, author = {Wichmann, Tobias}, title = {Spulen-Arrays mit bis zu 32 Empfangselementen f{\"u}r den Einsatz an klinischen NMR-Ger{\"a}ten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79358}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {In dieser Arbeit wurden f{\"u}r spezielle Anwendungen an klinischen MR-Ger{\"a}ten optimierte Phased-Array-Spulen entwickelt. Das Ziel war, durch die Verwendung neuer Spulen entweder neue Anwendungsgebiete f{\"u}r klinische MR-Ger{\"a}te zu er{\"o}ffnen oder bei bestehenden Applikationen die Diagnosem{\"o}glichkeiten durch eine Kombination von h{\"o}herem SNR und kleineren g-Faktoren im Vergleich zu bestehenden Spulen zu verbessern. In Kapitel 3 wurde untersucht, ob es durch den Einsatz neu entwickelter, dedizierter Kleintierspulen sinnvoll m{\"o}glich ist, Untersuchungen an Kleintieren an klinischen MR-Ger{\"a}ten mit einer Feldst{\"a}rke von 1,5T durchzuf{\"u}hren. Der Einsatz dieser Spulen verspricht dem klinischen Anwender Studien an Kleintieren durchf{\"u}hren zu k{\"o}nnen, bei denen er den gleichen Kontrast wie bei einer humanen Anwendung erh{\"a}lt und gleichzeitig Kontrastmittel sowie Sequenzen, die klinisch erprobt sind, einzusetzen. Durch die gew{\"a}hlten geometrischen Abmessungen der Spulen ist es m{\"o}glich, Zubeh{\"o}r von dedizierten Tier-MR-Ger{\"a}ten, wie z. B. Tierliegen oder EKG- bzw. Atemtriggereinheiten, zu verwenden. Durch Vorversuche an f{\"u}r Ratten dimensionierten Spulen wurden grundlegende Zusammenh{\"a}nge zwischen verwendetem Entkopplungsmechanismus und SNR bzw. Beschleunigungsf{\"a}higkeit erarbeitet. F{\"u}r Ratten wurde gezeigt, dass in akzeptablen Messzeiten von unter f{\"u}nf Minuten MR-Messungen des Abdomens in sehr guter Bildqualit{\"a}t m{\"o}glich sind. Ebenfalls gezeigt wurde die M{\"o}glichkeit durch den Einsatz von paralleler Bildgebung sowie Kontrastmitteln hochaufgel{\"o}ste Angiographien durchzuf{\"u}hren. Es stellte sich heraus, dass bei 1,5T dedizierte M{\"a}usespulen bei Raumtemperatur von den SNR-Eigenschaften am Limit des sinnvoll Machbaren sind. Trotzdem war es m{\"o}glich, auch f{\"u}r M{\"a}use ein 4-Kanal-Phased-Array zu entwickeln und den Einsatz bei kontrastmittelunterst{\"u}tzten Applikationen zu demonstrieren. Insgesamt wurde gezeigt, dass durch den Einsatz von speziellen, angepassten Kleintierspulen auch Tieruntersuchungen an klinischen MR-Ger{\"a}ten mit niedriger Feldst{\"a}rke durchf{\"u}hrbar sind. Obwohl sich die Bestimmung der Herzfunktion an MR-Ger{\"a}ten im klinischen Alltag zum Goldstandard entwickelt hat, ist die MR-Messung durch lange Atemanhaltezyklen f{\"u}r einen Herzpatienten sehr m{\"u}hsam. In Kapitel 4 wurde deswegen die Entwicklung einer 32-Kanal-Herzspule beschrieben, welche den Komfort f{\"u}r Patienten deutlich erh{\"o}hen kann. Schon mit einem ersten Prototypen f{\"u}r 3T war es m{\"o}glich, erstmals Echtzeitbildgebung mit leicht reduzierter zeitlicher Aufl{\"o}sung durchzuf{\"u}hren und damit auf das Atemanhalten komplett zu verzichten. Dies erm{\"o}glicht den Zugang neuer Patientengruppen, z. B. mit Arrythmien, zu MR-Untersuchungen. Durch eine weitere Optimierung des Designs wurde das SNR sowie das Beschleunigungsverm{\"o}gen signifikant gesteigert. Bei einem Beschleunigungsfaktor R = 5 in einer Richtung erh{\"a}lt man z. B. gemittelt {\"u}ber das gesamte Herz ein ca. 60 \% gesteigertes SNR zu dem Prototypen. Die Kombination dieser Spule zusammen mit neuentwicklelten Methoden wie z. B. Compressed- Sensing stellt es in Aussicht, die Herzfunktion zuk{\"u}nftig in der klinischen Routine in Echtzeit quantifizieren zu k{\"o}nnen. In Kapitel 5 wurde die Entwicklung einer optimierten Brustspulen f{\"u}r 3T beschrieben. Bei Vorversuchen bei 1,5T wurden Vergleiche zwischen der Standardspule der Firma Siemens Healthcare und einem 16-Kanal-Prototypen durchgef{\"u}hrt. Trotz gr{\"o}ßerem Spulenvolumen zeigt die Neuentwicklung sowohl hinsichtlich SNR als auch paralleler Bildgebungseigenschaften eine signifikante Verbesserung gegen{\"u}ber der Standardspule. Durch die Einhaltung aller Kriterien f{\"u}r Medizinprodukte kann diese Spule auch f{\"u}r den klinischen Einsatz verwendet werden. Mit den verbesserten Eigenschaften ist es beispielsweise m{\"o}glich, bei gleicher Messdauer eine h{\"o}here Aufl{\"o}sung zu erreichen. Aufgrund des intrinsischen SNR-Vorteils der 3 T-Spule gegen{\"u}ber der 1,5 T-Spule ist es dort sogar m{\"o}glich, bei h{\"o}heren Beschleunigungsfaktoren klinisch verwertbare Schnittbilder zu erzeugen. Zusammenfassend wurden f{\"u}r alle drei Applikationen NMR-Empfangsspulen entwickelt, die im Vergleich zu den bisher verf{\"u}gbaren Spulen, hinsichtlich SNR und Beschleunigungsverm{\"o}gen optimiert sind und dem Anwender neue M{\"o}glichkeiten bieten.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{BasseLuesebrink2012, author = {Basse-L{\"u}sebrink, Thomas Christian}, title = {Application of 19F MRI for in vivo detection of biological processes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77188}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {This thesis focuses on various aspects and techniques of 19F magnetic resonance (MR). The first chapters provide an overview of the basic physical properties, 19F MR and MR sequences related to this work. Chapter 5 focuses on the application of 19F MR to visualize biological processes in vivo using two different animal models. The dissimilar models underlined the wide applicability of 19F MR in preclinical research. A subsection of Chapter 6 shows the application of compressed sensing (CS) to 19F turbo-spin-echo chemical shift imaging (TSE-CSI), which leads to reduced measurement time. CS, however, can only be successfully applied when a sufficient signal-to-noise ratio (SNR) is available. When the SNR is low, so-called spike artifacts occur with the CS algorithm used in the present work. However, it was shown in an additional subsection that these artifacts can be reduced using a CS-based post processing algorithm. Thus, CS might help overcome limitations with time consuming 19F CSI experiments. Chapter 7 deals with a novel technique to quantify the B+1 profile of an MR coil. It was shown that, using a specific application scheme of off resonant pulses, Bloch-Siegert (BS)-based B+1 mapping can be enabled using a Carr Purcell Meiboom Gill (CPMG)-based TSE sequence. A fast acquisition of the data necessary for B+1 mapping was thus enabled. In the future, the application of BS-CPMG-TSE B+1 mapping to improve quantification using 19F MR could therefore be possible.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Gutberlet2011, author = {Gutberlet, Marcel}, title = {K-Raum-Symmetrie und dichtegewichtete Bildgebung: Optimierung der Magnet-Resonanz-Bildgebung hinsichtlich Signal-zu-Rauschverh{\"a}ltnis, Abbildungsqualit{\"a}t und Messzeit}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71834}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Die Magnet-Resonanz (MR)-Bildgebung ist mit vielf{\"a}ltigen Anwendungen ein nicht mehr wegzudenkendes Instrument der klinischen Diagnostik geworden. Dennoch f{\"u}hrt die stark limitierte Messzeit h{\"a}ufig zu einer Einschr{\"a}nkung der erzielbaren r{\"a}umlichen Aufl{\"o}sung und Abdeckung, einer Beschr{\"a}nkung des Signal-zu-Rauschverh{\"a}ltnis (Signal-to-Noise Ratio) (SNR) sowie einer Signalkontamination durch benachbartes Gewebe. Bereits bestehende Methoden zur Reduktion der Akquisitionszeit sind die partielle Fourier (PF)-Bildgebung und die parallele Bildgebung (PPA). Diese unterscheiden sich zum einen im Schema zur Unterabtastung des k-Raums und zum anderen in der verwendeten Information zur Rekonstruktion der fehlenden k-Raum-Daten aufgrund der beschleunigten Akquisition. W{\"a}hrend in der PPA die unterschiedlichen Sensitivit{\"a}ten einer Mehrkanal-Empfangsspule zur Bildrekonstruktion verwendet werden, basiert die PF-Bildgebung auf der Annahme einer langsamen Variation der Bildphase. Im ersten Abschnitt dieser Arbeit wurde das Konzept der Virtuellen Spulendekonvolutions (Virtual Coil Deconvolution) (VIDE)-Technik vorgestellt, das das gleiche Schema der Unterabtastung des k-Raums wie die konventionelle PPA verwendet, aber anstelle der Spulensensitivit{\"a}t die Bildphase als zus{\"a}tzliche Information zur Herstellung der fehlenden Daten der beschleunigten Bildgebung verwendet. Zur Minimierung der Rekonstruktionsfehler und der Rauschverst{\"a}rkung in der VIDE-Technik wurde ein optimiertes Akquisitionsschema entwickelt. Die Kombination der PPA und PF-Bildgebung zur Beschleunigung der MR-Bildgebung wird durch das unterschiedliche Unterabtastschema erschwert. Wie Blaimer et al. in ihrer Arbeit gezeigt haben, kann das Prinzip der VIDE-Technik auf Mehrkanal-Spulen {\"u}bertragen werden, sodass mit dieser Methode die PPA und die PF-Bildgebung optimal vereint werden k{\"o}nnen. Dadurch kann die Rauschverst{\"a}rkung aufgrund der Spulengeometrie ohne zus{\"a}tzliche Messungen deutlich reduziert werden. Obwohl die Abtastung des k-Raums in der MR-Bildgebung sehr variabel gestaltet werden kann, wird bis heute nahezu ausschließlich die regelm{\"a}ßige k-Raum-Abtastung in der klinischen Bildgebung verwendet. Der Grund hierf{\"u}r liegt, neben der schnellen Rekonstruktion und der einfachen Gestaltung der Variation des Bild-Kontrasts, in der Robustheit gegen Artefakte. Allerdings f{\"u}hrt die regelm{\"a}ßige k-Raum-Abtastung zu einer hohen Signalkontamination. Die Optimierung der SRF durch nachtr{\"a}gliches Filtern f{\"u}hrt jedoch zu einem SNR-Verlust. Die dichtegewichtete (DW-) Bildgebung erm{\"o}glicht die Reduktion der Signal-Kontamination bei optimalem SNR, f{\"u}hrt aber zur einer Reduktion des effektiven Gesichtsfelds (FOV) oder einer Erh{\"o}hung der Messzeit. Letzteres kann durch eine Kombination der PPA und DW-Bildgebung umgangen werden. Der zweite Teil dieser Arbeit befasste sich mit neuen Aufnahme- und Rekonstruktionsstrategien f{\"u}r die DW-Bildgebung, die eine Erh{\"o}hung des FOVs auch ohne Einsatz der PPA erlauben. Durch eine Limitierung der minimalen k-Raum-Abtastdichte konnte durch eine geringf{\"u}gige Reduktion des SNR-Vorteils der DW-Bildgebung gegen{\"u}ber der kartesischen, gefilterten Bildgebung eine deutliche Verringerung der Artefakte aufgrund der Unterabtastung in der DW-Bildgebung erreicht werden. Eine asymmetrische Abtastung kann unter der Voraussetzung einer homogenen Bildphase das Aliasing zus{\"a}tzlich reduzieren. Durch die Rekonstruktion der DW-Daten mit der Virtuelle Spulendekonvolution f{\"u}r die effektive DW-Bildgebung (VIDED)-Bildgebung konnten die Artefakte aufgrund der Unterabtastung eliminiert werden. In der 3d-Bildgebung konnte durch Anwendung der modifizierten DW-Bildgebung eine Steigerung des FOVs in Schichtrichtung ohne Messzeitverl{\"a}ngerung erreicht werden. Die nicht-kartesische k-Raum-Abtastung f{\"u}hrt im Fall einer Unterabtastung zu deutlich geringeren, inkoh{\"a}renten Aliasingartefakten im Vergleich zur kartesischen Abtastung. Durch ein alternierendes DW-Abtastschema wurde eine an die in der MR-Mammografie verwendete Spulengeometrie angepasste k-Raum-Abtastung entwickelt, das bei gleicher Messzeit die r{\"a}umliche Aufl{\"o}sung, das SNR und das FOV erh{\"o}ht. Im dritten Teil dieser Arbeit wurde die Verallgemeinerung der DW-Bildgebung auf signalgewichtete Sequenzen, d.h. Sequenzen mit Magnetisierungspr{\"a}paration (Inversion Recovery (IR), Saturation Recovery (SR)) sowie Sequenzen mit einer Relaxation w{\"a}hrend der Datenaufnahme (Multi-Gradienten-Echo, Multi-Spin-Echo) vorgestellt, was eine Steigerung der Bildqualit{\"a}t bei optimalem SNR erlaubt. Die Methode wurde auf die SR-Sequenz angewendet und deren praktischer Nutzen wurde in der Herz-Perfusions-Bildgebung gezeigt. Durch die Verwendung der in dieser Arbeit vorgestellten Technik konnte eine Reduktion der Kontamination bei einem SNR-Gewinn von 16\% im Vergleich zur konventionellen, kartesischen Abtastung bei gleicher Messzeit erreicht werden.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Weber2011, author = {Weber, Daniel}, title = {Morphologische und funktionelle MRT-Infarktcharakterisierung und Entwicklung einer diffusionsgewichteten MRT-Methode}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71157}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Diffusionstensorbildgebung im Vergleich zu anderen Parametermethoden f{\"u}r die Infarktcharakterisierung Ziel dieses Teils der Arbeit war die Kl{\"a}rung der Frage, welches Potential verschiedene MR-Parametersequenzen bei der Charakterisierung eines myokardialen Infarkts sowohl im akuten als auch im chronischen Fall haben. Dazu wurde eine Studie mit akut und chronisch infarzierten Rattenherzen durchgef{\"u}hrt. Untersucht wurden die Parameter T1, T2 und T2* sowie die aus der Diffusionstensorbildgebung berechneten Parameter ADC, FA, cs, cp und cl . Es zeigte sich, dass es kein Analogon zum bei einer cerebralen Isch{\"a}mie bekannten Mismatch-Konzept gibt. Weder im akuten noch im chronischen war Fall eine ausgewiesene Differenz im diagnostizierten Infarktareal zwischen verschiedenen Sequenzen feststellbar. Alles in allem eignen sich zur detaillierten Charakterisierung der Infarktnarbe am besten eine T2*- oder eine Diffusionstensorsequenz. Die T2*-Sequenz liefert optisch das aufschlussreichere Bild, die aufwendigere Diffusionstensorsequenz dagegen bietet aufgrund der vielfachen Darstellungsm{\"o}glichkeiten im Postprocessing ein Mehr an Information und zeigt dazu eine Ver{\"a}nderung der Narbe im Zeitverlauf. Oxygenierungsmessung am M{\"a}useherz in vivo Die Charakterisierung einer Infarktnarbe kann auch {\"u}ber die Darstellung morphologischer Strukturen hinaus erfolgen. Die Oxygenierung ist ein komplexer Parameter, der funktionelle Auskunft {\"u}ber die Vaskularisierung und Viabilit{\"a}t des Gewebes geben kann. Zugang zu diesem Parameter erh{\"a}lt man {\"u}ber T2*-Messungen, da der Parameter T2* sensitiv auf chemisch gebundenen Sauerstoff reagiert. Hier wurden der Einfluss von reiner Sauerstoffatmung im Gegensatz zu normaler Raumluftatmung auf die Oxygenierung bei gesunden und infarzierten M{\"a}usen untersucht. Die Messungen wurden trotz der Schwierigkeiten, die durch die Bewegung durch Atmung und Herzschlag entstehen, in vivo bei 17,6 Tesla implementiert und durchgef{\"u}hrt. Die Aufl{\"o}sung war ausreichend, um auch nach Infarkt extrem ausged{\"u}nnte Myokardw{\"a}nde gut aufl{\"o}sen und charakterisieren zu k{\"o}nnen. Der Effekt auf das Oxygenierungslevel ist stark unterschiedlich zwischen normalen und infarzierten Herzen, woraus auf eine noch nicht weit fortgeschrittene Revaskularisierung der Narbe eine Woche nach Infarzierung geschlossen werden kann. Die Methode wurde dar{\"u}ber hinaus an einem 7,0 Tesla-Magneten zur Verwendung an Ratten implementiert und auf das im Gegensatz zur Maus ver{\"a}nderte Atmungsverhalten der Ratte angepasst. Zum einen kann dadurch der Einfluss des hohen Magnetfeldes auf die Oxygenierungsmessung untersucht werden, zum anderen ist das Herz als zu untersuchendes Objekt bei der Ratte gr{\"o}ßer. Diffusionswichtung mittels Hole-Burning Die in dieser Arbeit zur Charakterisierung des Herzens verwendete Diffusionsmethode kann im Grenzfall von kurzen T2-Relaxationszeiten an ihre Grenzen stoßen: Bei den verwendeten starken Magnetfeldern klingt das messbare Signal aufgrund der Relaxationszeit T2 oft sehr schnell ab. Daher wurde eine Methode entwickelt, die einen v{\"o}llig neuen Ansatz zur diffusionsgewichteten Bildgebung verfolgt, bei dem die Informationen {\"u}ber die Diffusion unabh{\"a}ngig von der limitierenden T2-Zeit gewonnen werden k{\"o}nnen. Die sog. Hole-Burning-Diffusionssequenz verwendet in einem Vorexperiment lediglich die Longitudinalmagnetisierung zur Diffusionswichtung. Das Signal wird dann mit einer schnellen Auslesesequenz akquiriert. Bei der Pr{\"a}paration werden zun{\"a}chst auf Subvoxel-Niveau Streifen "gebrannt", d.h. die Magnetisierung wird dort ges{\"a}ttigt. Bis zur n{\"a}chsten S{\"a}ttigung ist das Verhalten der Magnetisierung abh{\"a}ngig von der T1-Relaxation in diesem Bereich und vom Diffusionsverhalten. Durch rasches Wiederholen des selektiven Pulszugs wird schließlich eine Gleichgewichtsmagnetisierung erreicht, die von der Diffusionskonstanten D und der T1-Relaxationszeit abh{\"a}ngt. Im Rahmen dieser Arbeit wurden die Abh{\"a}ngigkeiten verschiedener Sequenzparameter untersucht und diese mittels Simulationen optimiert. Außerdem wurde die Sequenz an einem Scanner implementiert und erste Experimente damit durchgef{\"u}hrt. Mit Hilfe von Simulationen konnten dazu Lookup-Tabellen generiert werden, mit denen in bestimmten Bereichen (insbesondere bei nicht zu kurzen T1-Relaxationszeiten) sowohl die Diffusionskonstante D als auch die T1-Relaxationszeit quantifiziert werden konnte.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Ehses2011, author = {Ehses, Philipp}, title = {Development of new Acquisition Strategies for fast Parameter Quantification in Magnetic Resonance Imaging}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72531}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Magnetic resonance imaging (MRI) is a medical imaging method that involves no ionizing radiation and can be used non-invasively. Another important - if not the most important - reason for the widespread and increasing use of MRI in clinical practice is its interesting and highly flexible image contrast, especially of biological tissue. The main disadvantages of MRI, compared to other widespread imaging modalities like computed tomography (CT), are long measurement times and the directly resulting high costs. In the first part of this work, a new technique for accelerated MRI parameter mapping using a radial IR TrueFISP sequence is presented. IR TrueFISP is a very fast method for the simultaneous quantification of proton density, the longitudinal relaxation time T1, and the transverse relaxation time T2. Chapter 2 presents speed improvements to the original IR TrueFISP method. Using a radial view-sharing technique, it was possible to obtain a full set of relaxometry data in under 6 s per slice. Furthermore, chapter 3 presents the investigation and correction of two major sources of error of the IR TrueFISP method, namely magnetization transfer and imperfect slice profiles. In the second part of this work, a new MRI thermometry method is presented that can be used in MRI-safety investigations of medical implants, e.g. cardiac pacemakers and implantable cardioverter-defibrillators (ICDs). One of the major safety risks associated with MRI examinations of pacemaker and ICD patients is RF induced heating of the pacing electrodes. The design of MRI-safe (or MRI-conditional) pacing electrodes requires elaborate testing. In a first step, many different electrode shapes, electrode positions and sequence parameters are tested in a gel phantom with its geometry and conductivity matched to a human body. The resulting temperature increase is typically observed using temperature probes that are placed at various positions in the gel phantom. An alternative to this local thermometry approach is to use MRI for the temperature measurement. Chapter 5 describes a new approach for MRI thermometry that allows MRI thermometry during RF heating caused by the MRI sequence itself. Specifically, a proton resonance frequency (PRF) shift MRI thermometry method was combined with an MR heating sequence. The method was validated in a gel phantom, with a copper wire serving as a simple model for a medical implant.}, subject = {Kernspintomografie}, language = {en} }