@article{ZieglerMeyerOtteetal.2022, author = {Ziegler, Alice and Meyer, Hanna and Otte, Insa and Peters, Marcell K. and Appelhans, Tim and Behler, Christina and B{\"o}hning-Gaese, Katrin and Classen, Alice and Detsch, Florian and Deckert, J{\"u}rgen and Eardley, Connal D. and Ferger, Stefan W. and Fischer, Markus and Gebert, Friederike and Haas, Michael and Helbig-Bonitz, Maria and Hemp, Andreas and Hemp, Claudia and Kakengi, Victor and Mayr, Antonia V. and Ngereza, Christine and Reudenbach, Christoph and R{\"o}der, Juliane and Rutten, Gemma and Schellenberger Costa, David and Schleuning, Matthias and Ssymank, Axel and Steffan-Dewenter, Ingolf and Tardanico, Joseph and Tschapka, Marco and Vollst{\"a}dt, Maximilian G. R. and W{\"o}llauer, Stephan and Zhang, Jie and Brandl, Roland and Nauss, Thomas}, title = {Potential of airborne LiDAR derived vegetation structure for the prediction of animal species richness at Mount Kilimanjaro}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {3}, issn = {2072-4292}, doi = {10.3390/rs14030786}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262251}, year = {2022}, abstract = {The monitoring of species and functional diversity is of increasing relevance for the development of strategies for the conservation and management of biodiversity. Therefore, reliable estimates of the performance of monitoring techniques across taxa become important. Using a unique dataset, this study investigates the potential of airborne LiDAR-derived variables characterizing vegetation structure as predictors for animal species richness at the southern slopes of Mount Kilimanjaro. To disentangle the structural LiDAR information from co-factors related to elevational vegetation zones, LiDAR-based models were compared to the predictive power of elevation models. 17 taxa and 4 feeding guilds were modeled and the standardized study design allowed for a comparison across the assemblages. Results show that most taxa (14) and feeding guilds (3) can be predicted best by elevation with normalized RMSE values but only for three of those taxa and two of those feeding guilds the difference to other models is significant. Generally, modeling performances between different models vary only slightly for each assemblage. For the remaining, structural information at most showed little additional contribution to the performance. In summary, LiDAR observations can be used for animal species prediction. However, the effort and cost of aerial surveys are not always in proportion with the prediction quality, especially when the species distribution follows zonal patterns, and elevation information yields similar results.}, language = {en} } @article{StereńczakLaurinChiricietal.2020, author = {Stereńczak, Krzysztof and Laurin, Gaia Vaglio and Chirici, Gherardo and Coomes, David A. and Dalponte, Michele and Latifi, Hooman and Puletti, Nicola}, title = {Global Airborne Laser Scanning Data Providers Database (GlobALS) — a new tool for monitoring ecosystems and biodiversity}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {11}, issn = {2072-4292}, doi = {10.3390/rs12111877}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207819}, year = {2020}, abstract = {Protection and recovery of natural resource and biodiversity requires accurate monitoring at multiple scales. Airborne Laser Scanning (ALS) provides high-resolution imagery that is valuable for monitoring structural changes to vegetation, providing a reliable reference for ecological analyses and comparison purposes, especially if used in conjunction with other remote-sensing and field products. However, the potential of ALS data has not been fully exploited, due to limits in data availability and validation. To bridge this gap, the global network for airborne laser scanner data (GlobALS) has been established as a worldwide network of ALS data providers that aims at linking those interested in research and applications related to natural resources and biodiversity monitoring. The network does not collect data itself but collects metadata and facilitates networking and collaborative research amongst the end-users and data providers. This letter describes this facility, with the aim of broadening participation in GlobALS.}, language = {en} }