@phdthesis{Zink2024, author = {Zink, Johannes}, title = {Algorithms for Drawing Graphs and Polylines with Straight-Line Segments}, doi = {10.25972/OPUS-35475}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354756}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Graphs provide a key means to model relationships between entities. They consist of vertices representing the entities, and edges representing relationships between pairs of entities. To make people conceive the structure of a graph, it is almost inevitable to visualize the graph. We call such a visualization a graph drawing. Moreover, we have a straight-line graph drawing if each vertex is represented as a point (or a small geometric object, e.g., a rectangle) and each edge is represented as a line segment between its two vertices. A polyline is a very simple straight-line graph drawing, where the vertices form a sequence according to which the vertices are connected by edges. An example of a polyline in practice is a GPS trajectory. The underlying road network, in turn, can be modeled as a graph. This book addresses problems that arise when working with straight-line graph drawings and polylines. In particular, we study algorithms for recognizing certain graphs representable with line segments, for generating straight-line graph drawings, and for abstracting polylines. In the first part, we first examine, how and in which time we can decide whether a given graph is a stick graph, that is, whether its vertices can be represented as vertical and horizontal line segments on a diagonal line, which intersect if and only if there is an edge between them. We then consider the visual complexity of graphs. Specifically, we investigate, for certain classes of graphs, how many line segments are necessary for any straight-line graph drawing, and whether three (or more) different slopes of the line segments are sufficient to draw all edges. Last, we study the question, how to assign (ordered) colors to the vertices of a graph with both directed and undirected edges such that no neighboring vertices get the same color and colors are ascending along directed edges. Here, the special property of the considered graph is that the vertices can be represented as intervals that overlap if and only if there is an edge between them. The latter problem is motivated by an application in automated drawing of cable plans with vertical and horizontal line segments, which we cover in the second part. We describe an algorithm that gets the abstract description of a cable plan as input, and generates a drawing that takes into account the special properties of these cable plans, like plugs and groups of wires. We then experimentally evaluate the quality of the resulting drawings. In the third part, we study the problem of abstracting (or simplifying) a single polyline and a bundle of polylines. In this problem, the objective is to remove as many vertices as possible from the given polyline(s) while keeping each resulting polyline sufficiently similar to its original course (according to a given similarity measure).}, subject = {Graphenzeichnen}, language = {en} } @phdthesis{Gegg2023, author = {Gegg, Tanja Susanne}, title = {In Vitro Toxizit{\"a}t der Nanopartikel Graphen und Siliciumdioxid f{\"u}r die Medikamentenapplikation}, doi = {10.25972/OPUS-33056}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-330562}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Graphen und Siliciumdioxid Nanopartikel sind als Tr{\"a}gersubstanz f{\"u}r Medikamente beim Drug Targeting von Interesse. Diese Arbeit ist eine toxikologische Untersuchung der Nanopartikel Graphen und Siliciumdioxid im Zellmodell. Dabei wurden Graphen Nanopartikel mit einer Dicke von 6 bis 8 nm und einer Breite von 15 µm verwendet. Die verwendeten Siliciumdioxid Nanopartikel waren kugelf{\"o}rmig und por{\"o}s mit einer Partikel-Gr{\"o}ße von 5 bis 20 nm. Die dosisabh{\"a}ngige Toxizit{\"a}t (Konzentrationen 0,01 mg/ml, 0,1 mg/ml und 1 mg/ml, Inkubation {\"u}ber 24 Stunden) gegen{\"u}ber 5 verschiedenen Zelllinien (cerebEND, Caco-2, Hep G2, HEK-293, H441) wurde gepr{\"u}ft. Dabei kamen Zellviabilit{\"a}tstests (CellTiter-Glo Assay, EZ4U-Test) zum Einsatz. Zudem wurde mit den Apoptose-Markern Bax und Caspase-3 auf Gen- und Proteinebene (Polymerasekettenreaktion und Western Blot) {\"u}berpr{\"u}ft, ob eine Apoptose eingeleitet wurde. Zur Untersuchung der Zellviabilit{\"a}t wurde der CellTiter-Glo Assay verwendet. F{\"u}r Graphen Nanopartikel zeigte sich ab einer Konzentration von 1 mg/ml bei den Zelllinien HEK-293 und H441 ein statistisch signifikanter Abfall der Zellviabilit{\"a}t. CerebEND und Hep G2 Zellen reagierten auf Graphen Nanopartikel ab einer Konzentration von 1 mg/ml ebenfalls mit einem deutlichen Abfall der Zellviabilit{\"a}t, diese Ergebnisse waren jedoch nicht statistisch signifikant. Die Zelllinie Caco-2 zeigte sich von den Graphen Nanopartikeln unbeeindruckt, es kam zu keiner statistisch signifikanten Ver{\"a}nderung der Zellviabilit{\"a}t. Siliciumdioxid Nanopartikel bewirkten ab einer Konzentration von 1 mg/ml einen statistisch signifikanten Abfall der Zellviabilit{\"a}t bei den Zelllinien cerebEND, HEK-293 und H441. HepG2 Zellen zeigten bei 1 mg/ml Siliciumdioxid einen deutlichen aber statistisch nicht signifikanten Abfall der Zellviabilit{\"a}t. Die Zelllinie Caco-2 erwies sich auch bei Siliciumdioxid Nanopartikel als {\"a}ußerst robust und zeigte keine statistisch signifikanten Ver{\"a}nderungen der Zellviabilit{\"a}t. Messungen der Zellviabilit{\"a}t auf Grundlage von Adsorptionsmessung, wie beim EZ4U-Test, hatten sich als ungeeignet erwiesen, da die Eigenfarbe der Nanopartikel Graphen und Siliciumdioxid mit dieser Messung interferierte. Zudem wurde gepr{\"u}ft, ob die bei einem Teil der Zelllinien eingetretene toxische Wirkung der Nanopartikel ab einer Konzentration von 1 mg/ml durch Nekrose oder durch Apoptose zustande kam. Die Polymerasekettenreaktion zeigte mit einer einzigen Ausnahme keine statistisch signifikante Erh{\"o}hung der Genexpression f{\"u}r Bax und Caspase-3 und gab somit auch keine Hinweise auf die Einleitung einer Apoptose. Im Western Blot zeigte sich keine statistisch signifikante Erh{\"o}hung der Proteinexpression von Bax und Caspase-3. Zudem konnte im Western Blot auch keine aktivierte Caspase-3 nachgewiesen werden. Somit lagen auf Grundlage von Polymerasekettenreaktion und Western Blot keine Hinweise auf das Eintreten einer Apoptose vor. Die toxische Wirkung der Nanopartikel Graphen und Siliciumdioxid, die bei einem Teil der Zelllinien ab einer Konzentration von 1 mg/ml nachgewiesen werden konnte, beruhte demnach auf Nekrose.}, subject = {Nanopartikel}, language = {de} } @phdthesis{Vogt2020, author = {Vogt, Matthias Guido}, title = {Elektronische Eigenschaften von Wabengittern mit starker Spin-Bahn-Kopplung}, doi = {10.25972/OPUS-20750}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207506}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Im Rahmen dieser Arbeit wurden die elektronischen Eigenschaften von Graphen auf Metalloberfl{\"a}chen mittels Rastertunnelmikroskopie und Quasiteilcheninterferenz (englisch quasiparticle interference, QPI)-Messungen untersucht. Durch das Verwenden schwerer Substrate sollte die Spin-Bahn-Wechselwirkung des Graphen verst{\"a}rkt werden und damit eine Bandl{\"u}cke am K-Punkt der Bandstruktur mittels QPI beobachtet werden. Um das Messen von QPI auf Graphen zu testen, wurde auf der Oberfl{\"a}che eines SiC(0001)-Kristalls durch Erhitzen Graphen erzeugt und mit dem Rastertunnelmikroskop untersucht. Dieses System wurde schon ausf{\"u}hrlich in der Literatur beschrieben und bereits bekannte QPI-Messungen von Streuringen, die auf den Dirac-Kegeln des Graphen am K-Punkt basieren, konnte ich auf gr/SiC(0001) in guter Qualit{\"a}t erfolgreich reproduzieren. Anschließend wurde Graphen nach einem wohlbekannten Verfahren durch Aufbringen von Ethylen auf ein erhitztes Ir(111)-Substrat erzeugt. Dieses gr/Ir(111)-System diente auch als Grundlage f{\"u}r Interkalationsversuche von Bismut (gr/Bi/Ir(111)) und Gadolinium (gr/Gd/Ir(111)) zwischen das Graphen und das Substrat. Auf gr/Bi/Ir(111) wurde ein schon aus der Literatur bekanntes Netzwerk aus Versetzungslinien beobachtet, dem zus{\"a}tzlich eine Temperaturabh{\"a}ngigkeit nachgewiesen werden konnte. Beim Versuch, Gadolinium zu interkalieren, wurden zwei verschieden Oberfl{\"a}chenstrukturen beobachtet, die auf eine unterschiedlich Anordnung bzw. Menge des interkalierten Gadoliniums zur{\"u}ckzuf{\"u}hren sein k{\"o}nnten. Auf keinem dieser drei Systeme konnten allerdings Streuringe mittels QPI beobachtet werden. Als Vorbereitung der Interkalation von Gadolinium wurden dessen Wachstum und magnetische Eigenschaften auf einem W(110)-Kristall untersucht. Dabei konnte eine aus der Literatur bekannte temperaturabh{\"a}ngige Austauschaufspaltung reproduziert werden. Dar{\"u}ber hinaus konnten sechs verschieden magnetische Dom{\"a}nen beobachtet werden. Zus{\"a}tzlich sind auf der Oberfl{\"a}che magnetische Streifen auszumachen, die m{\"o}glicherweise auf einer Spinspirale basieren. Als Grundlage f{\"u}r die m{\"o}gliche zuk{\"u}nftige Erzeugung Graphen-artiger Molek{\"u}lgitter wurde das Wachstum von H-TBTQ und Me-TBTQ auf Ag(111) untersucht. Die Molek{\"u}le richten sich dabei nach der Oberfl{\"a}chenstruktur des Silber aus und bilden l{\"a}ngliche Inseln, deren Kanten in drei Vorzugsrichtungen verlaufen. Auf H-TBTQ wurde zudem eine zweite, Windm{\"u}hlen-artige Ausrichtung der Molek{\"u}le auf der Oberfl{\"a}che beobachtet. Auf den mit den Molek{\"u}len bedeckten Stellen der Oberfl{\"a}che wurde eine Verschiebung des Ag-Oberfl{\"a}chenzustands beobachtet, die mit einem Ladungstransfer vom Ag(111)-Substrat auf die TBTQ-Molek{\"u}le zu erkl{\"a}ren sein k{\"o}nnte.}, subject = {Spin-Bahn-Wechselwirkung}, language = {de} } @phdthesis{Pakkayil2017, author = {Pakkayil, Shijin Babu}, title = {Towards ferromagnet/superconductor junctions on graphene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153863}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {This thesis reports a successful fabrication and characterisation of ferromagnetic/superconductor junction (F/S) on graphene. The thesis preposes a fabrication method to produce F/S junctions on graphene which make use of ALD grown Al2O3 as the tunnel barrier for the ferromagnetic contacts. Measurements done on F/G/S/G/F suggests that by injecting spin polarised current into the superconductor, a spin imbalance is created in the quasiparticle density of states of the superconductor which then diffuses through the graphene channel. The observed characteristic curves are similar to the ones which are already reported on metallic ferromagnet/superconductor junctions where the spin imbalance is created using Zeeman splitting. Further measurements also show that the curves loose their characteristic shapes when the temperature is increased above the critical temperature (Tc) or when the external magnetic field is higher then the critical field (Hc) of the superconducting contact. But to prove conclusively and doubtlessly the existence of spin imbalance in ferromagnet/superconductor junctions on graphene, more devices have to be made and characterised preferably in a dilution refrigerator.}, subject = {Graphen}, language = {en} } @phdthesis{Herrmann2016, author = {Herrmann, Oliver}, title = {Graphene-based single-electron and hybrid devices, their lithography, and their transport properties}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146924}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {This work explores three different aspects of graphene, a single-layer of carbon atoms arranged in a hexagonal lattice, with regards to its usage in future electronic devices; for instance in the context of quantum information processing. For a long time graphene was believed to be thermodynamically unstable. The discovery of this strictly two-dimensional material completed the family of carbon based structures, which had already been subject of intensive research with focus on zero-dimensional fullerenes and one-dimensional carbon nanotubes. Within only a few years of its discovery, the field of graphene related research has grown into one of today's most diverse and prolific areas in condensed matter physics, highlighted by the award of the 2010 Nobel Prize in Physics to A.K. Geim and K. Noveselov for "their groundbreaking experiments regarding the two-dimensional material graphene". From the point of view of an experimental physicist interested in the electronic properties of a material system, the most intriguing characteristic of graphene is found in the Dirac-like nature of its charge carriers, a peculiar fact that distinguishes graphene from all other known standard semiconductors. The dynamics of charge carriers close to zero energy are described by a linear energy dispersion relation, as opposed to a parabolic one, which can be understood as a result of the underlying lattice symmetry causing them to behave like massless relativistic particles. This fundamentally different behavior can be expected to lead to the observation of completely new phenomena or the occurrence of deviations in well-known effects. Following a brief introduction of the material system in chapter 2, we present our work studying the effect of induced superconductivity in mesoscopic graphene Josephson junctions by proximity to superconducting contacts in chapter 3. We explore the use of Nb as the superconducting material driven by the lack of high critical temperature and high critical magnetic field superconductor technology in graphene devices at that time. Characterization of sputter-deposited Nb films yield a critical transition temperature of \(T_{C}\sim 8{\rm \,mK}\). A prerequisite for successful device operation is a high interface quality between graphene and the superconductor. In this context we identify the use of an Ti as interfacial layer and incorporate its use by default in our lithography process. Overall we are able to increase the interface transparency to values as high as \(85\\%\). With the prospect of interesting effects in the ballistic regime we try to enhance the electronic quality of our Josephson junction devices by substrate engineering, yet with limited success. We achieve moderate charge carrier mobilities of up to \(7000{\rm \,cm^2/Vs}\) on a graphene/Boron-nitride heterostructure (fabrication details are covered in chapter 5) putting the junction in the diffusive regime (\(L_{device}