@article{DiesendorfRollGeigeretal.2023, author = {Diesendorf, Viktoria and Roll, Valeria and Geiger, Nina and F{\"a}hr, Sofie and Obernolte, Helena and Sewald, Katherina and Bodem, Jochen}, title = {Drug-induced phospholipidosis is not correlated with the inhibition of SARS-CoV-2 - inhibition of SARS-CoV-2 is cell line-specific}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {13}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2023.1100028}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-326202}, year = {2023}, abstract = {Recently, Tummino et al. reported that 34 compounds, including Chloroquine and Fluoxetine, inhibit SARS-CoV-2 replication by inducing phospholipidosis, although Chloroquine failed to suppress viral replication in Calu-3 cells and patients. In contrast, Fluoxetine represses viral replication in human precision-cut lung slices (PCLS) and Calu-3 cells. Thus, it is unlikely that these compounds have similar mechanisms of action. Here, we analysed a subset of these compounds in the viral replication and phospholipidosis assays using the Calu-3 cells and PCLS as the patient-near system. Trimipramine and Chloroquine induced phospholipidosis but failed to inhibit SARS-CoV-2 replication in Calu-3 cells, which contradicts the reported findings and the proposed mechanism. Fluoxetine, only slightly induced phospholipidosis in Calu-3 cells but reduced viral replication by 2.7 orders of magnitude. Tilorone suppressed viral replication by 1.9 orders of magnitude in Calu-3 cells without causing phospholipidosis. Thus, induction of phospholipidosis is not correlated with the inhibition of SARS-CoV-2, and the compounds act via other mechanisms. However, we show that compounds, such as Amiodarone, Tamoxifen and Tilorone, with antiviral activity on Calu-3 cells, also inhibited viral replication in human PCLS. Our results indicate that antiviral assays against SARS-CoV-2 are cell-line specific. Data from Vero E6 can lead to non-transferable results, underlining the importance of an appropriate cell system for analysing antiviral compounds against SARS-CoV-2. We observed a correlation between the active compounds in Calu-3 cells and PCLS.}, language = {en} } @phdthesis{Aboagye2019, author = {Aboagye, Benjamin}, title = {Behavioral and physiologic consequences of inducible inactivation of the \(Tryptophan\) \(hydroxylase\) 2 gene in interaction with early-life adversity}, doi = {10.25972/OPUS-17358}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173581}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Disruptions in brain serotonin (5-hydroxytryptamine, 5-HT) signaling pathways have been associated with etiology and pathogenesis of various neuropsychiatric disorders, but specific neural mechanisms of 5-HT function are yet to be fully elucidated. Tryptophan hydroxylase 2 (TPH2) is the rate-limiting enzyme for brain 5-HT synthesis. Therefore, in this study a tamoxifen (Tam)-inducible cre-mediated conditional gene (Tph2) knockout in adult mouse brain (Tph2icKO) has been established to decipher the specific role of brain 5-HT in the regulation of behavior in adulthood. Immunohistochemistry and high-performance liquid chromatography (HPLC) were used first to test the efficacy of Tam-inducible inactivation of Tph2 and consequential reduction of 5-HT in adult mouse brain. Tam treatment resulted in ≥90\% reduction in the number of 5-HT immuno-reactive cells in the anterior raphe nuclei. HPLC revealed a significant reduction in concentration of 5-HT and its metabolite 5-hydroxyindole acetic acid (5-HIAA) in selected brain regions of Tph2icKO, indicating the effectiveness of the protocol used. Second, standard behavioral tests were used to assess whether reduced brain 5-HT concentrations could alter anxiety-, fear- and depressive-like behavior in mice. No altered anxiety- and depressive-like behaviors were observed in Tph2icKO compared to control mice (Tph2CON) in all indices measured, but Tph2icKO mice exhibited intense and sustained freezing during context-dependent fear memory retrieval. Tph2icKO mice also exhibited locomotor hyperactivity in the aversive environments, such as the open field, and consumed more food and fluid than Tph2CON mice. Lastly, the combined effect of maternal separation (MS) stress and adult brain 5-HT depletion on behavior was assessed in male and female mice. Here, MS stress, 5-HT depletion and their interaction elicited anxiety-like behavior in a sex-dependent manner. MS reduced exploratory behavior in both male and female mice. Reduced 5-HT enhanced anxiety in female, but not in male mice. Furthermore, expression of genes related to the 5-HT system and emotionality (Tph2, Htr1a, Htr2a, Maoa and Avpr1a) was assessed by performing a quantitative real-time PCR. In Tph2icKO mice there was a reduction in expression of Tph2 in the raphe nuclei of both male and female mice. Interaction between MS stress and 5-HT deficiency was detected showing increased Htr2a and Maoa expression in raphe and hippocampus respectively of female mice. In male mice, MS stress and 5-HT depletion interaction effects reduced Avpr1a expression in raphe, while the expression of Htr1a, Htr2a and Maoa was differentially altered by 5-HT depletion and MS in various brain regions.}, subject = {Anxiety}, language = {en} }