@article{BuchbergerBoehm2013, author = {Buchberger, Alexander and B{\"o}hm, Stephanie}, title = {The Budding Yeast Cdc48Shp1 Complex Promotes Cell Cycle Progression by Positive Regulation of Protein Phosphatase 1 (Glc7)}, series = {PLoS One}, journal = {PLoS One}, doi = {10.1371/journal.pone.0056486}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96073}, year = {2013}, abstract = {The conserved, ubiquitin-selective AAA ATPase Cdc48 regulates numerous cellular processes including protein quality control, DNA repair and the cell cycle. Cdc48 function is tightly controlled by a multitude of cofactors mediating substrate specificity and processing. The UBX domain protein Shp1 is a bona fide substrate-recruiting cofactor of Cdc48 in the budding yeast S. cerevisiae. Even though Shp1 has been proposed to be a positive regulator of Glc7, the catalytic subunit of protein phosphatase 1 in S. cerevisiae, its cellular functions in complex with Cdc48 remain largely unknown. Here we show that deletion of the SHP1 gene results in severe growth defects and a cell cycle delay at the metaphase to anaphase transition caused by reduced Glc7 activity. Using an engineered Cdc48 binding-deficient variant of Shp1, we establish the Cdc48Shp1 complex as a critical regulator of mitotic Glc7 activity. We demonstrate that shp1 mutants possess a perturbed balance of Glc7 phosphatase and Ipl1 (Aurora B) kinase activities and show that hyper-phosphorylation of the kinetochore protein Dam1, a key mitotic substrate of Glc7 and Ipl1, is a critical defect in shp1. We also show for the first time a physical interaction between Glc7 and Shp1 in vivo. Whereas loss of Shp1 does not significantly affect Glc7 protein levels or localization, it causes reduced binding of the activator protein Glc8 to Glc7. Our data suggest that the Cdc48Shp1 complex controls Glc7 activity by regulating its interaction with Glc8 and possibly further regulatory subunits.}, language = {en} } @article{FetivaLissGertzmannetal.2023, author = {Fetiva, Maria Camila and Liss, Franziska and Gertzmann, D{\"o}rthe and Thomas, Julius and Gantert, Benedikt and Vogl, Magdalena and Sira, Nataliia and Weinstock, Grit and Kneitz, Susanne and Ade, Carsten P. and Gaubatz, Stefan}, title = {Oncogenic YAP mediates changes in chromatin accessibility and activity that drive cell cycle gene expression and cell migration}, series = {Nucleic Acids Research}, volume = {51}, journal = {Nucleic Acids Research}, number = {9}, doi = {10.1093/nar/gkad107}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350218}, pages = {4266-4283}, year = {2023}, abstract = {YAP, the key protein effector of the Hippo pathway, is a transcriptional co-activator that controls the expression of cell cycle genes, promotes cell growth and proliferation and regulates organ size. YAP modulates gene transcription by binding to distal enhancers, but the mechanisms of gene regulation by YAP-bound enhancers remain poorly understood. Here we show that constitutive active YAP5SA leads to widespread changes in chromatin accessibility in untransformed MCF10A cells. Newly accessible regions include YAP-bound enhancers that mediate activation of cycle genes regulated by the Myb-MuvB (MMB) complex. By CRISPR-interference we identify a role for YAP-bound enhancers in phosphorylation of Pol II at Ser5 at MMB-regulated promoters, extending previously published studies that suggested YAP primarily regulates the pause-release step and transcriptional elongation. YAP5SA also leads to less accessible 'closed' chromatin regions, which are not directly YAP-bound but which contain binding motifs for the p53 family of transcription factors. Diminished accessibility at these regions is, at least in part, a consequence of reduced expression and chromatin-binding of the p53 family member ΔNp63 resulting in downregulation of ΔNp63-target genes and promoting YAP-mediated cell migration. In summary, our studies uncover changes in chromatin accessibility and activity that contribute to the oncogenic activities of YAP.}, language = {en} }