@phdthesis{Wiest2015, author = {Wiest, Johannes}, title = {Synthese und Charakterisierung neuer Ionischer Fl{\"u}ssigkeiten zur Verbesserung der Aufl{\"o}sungsrate und L{\"o}slichkeit eines schwer wasserl{\"o}slichen Wirkstoffes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121733}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Ionische Fl{\"u}ssigkeiten (engl. Ionic Liquids = IL) sind organische Salze mit einem Schmelzpunkt von unter 100 °C und bieten einen interessanten Ansatz um die orale Bioverf{\"u}gbarkeit von schlecht wasserl{\"o}slichen Arzneistoffen zu verbessern. Aufgrund seiner schlechten Wasserl{\"o}slichkeit wurde aus dem Wirkstoff BGG492 der Novartis AG eine Ionische Fl{\"u}ssigkeit (IL) mit dem sterisch anspruchsvollen Gegenion Tetrabutylphosphonium hergestellt. Die IL ist ein amorpher, glasartiger Feststoff mit einem Schmelzpunkt von 57 °C. Die freie S{\"a}ure (FS), das Kaliumsalz (BGG-K+) und die IL (siehe Abb. 69) wurden in festem Zustand mittels polarisationsmikroskopischen Aufnahmen, R{\"o}ntgen-Pulverdiffraktometrie, R{\"o}ntgenkristallstrukturanalysen, Infrarot-Spektroskopie und Festk{\"o}rper-NMR-Spektroskopie untersucht. Der ionische Charakter der IL in festem Zustand konnte mittels Bandenverschiebung der deprotonierten Sulfonamidgruppe im IR-Spektrum best{\"a}tigt werden. In der R{\"o}ntgenkristallstrukturanalyse konnte gezeigt werden, dass sich die Molek{\"u}le der FS in Schichten anordneten, in denen jedes Molek{\"u}l mit vier Nachbarmolek{\"u}len {\"u}ber Wasserstoffbr{\"u}cken verbunden war. Das BGG-K+ kristallisierte als Monohydrat. In dieser Kristallstruktur bildeten die Kaliumkationen in der bc-Ebene mit den BGG-Anionen ober- und unterhalb Schichten. Im Gegensatz zu der FS waren keine intermolekularen Wasserstoffbr{\"u}cken zu beobachten. Die 15N-Festk{\"o}rper-NMR-Spektren des BGG-K+ und der IL zeigten die gleiche chemische Verschiebung f{\"u}r den unsubstituierten Stickstoffes N-1' der Pyrazolgruppe und belegten somit ebenfalls die ionische Struktur der IL im festen Zustand. Die amorphe Struktur der IL wurde mittels R{\"o}ntgen-Pulverdiffraktometrie und Polarisationsmikroskop best{\"a}tigt und eine fl{\"u}ssigkristalline Phase konnte ausgeschlossen werden. Die IL zeigte im Vergleich zu der FS eine 700-fach schnellere Aufl{\"o}sungsrate J und eine signifikante Verl{\"a}ngerung der Dauer der {\"U}bers{\"a}ttigung in w{\"a}ssriger L{\"o}sung. Der sprunghafte Anstieg der Kon-zentration in L{\"o}sung („spring") und die Dauer der {\"U}bers{\"a}ttigung („parachute") wurden mittels photometrischen und potentiometrischen Titrationen untersucht. Mit Hilfe der NMR-Spektroskopie konnte der Mechanismus der {\"U}bers{\"a}ttigung aufgekl{\"a}rt werden. Das sterisch anspruchsvolle Gegenion Tetrabutylphosphonium verhinderte die Protonierung der deprotonierten Sulfonamidgruppe von BGG. In L{\"o}sung kam es zur Bildung von Aggregaten („Cluster"), in die sich das Gegenion teilweise einlagerte. Nach der Protonierung und der Bildung von Kristallisationskeimen pr{\"a}zipitierte die ungeladenen FS und der metastabile Zustand der {\"U}bers{\"a}ttigung („parachute") brach zusammen. Um den Einfluss der Struktur des Gegenions auf die Aufl{\"o}sungsrate und die Dauer der {\"U}bers{\"a}ttigung zu untersuchen, wurden ca. 40 Phosphonium- und Ammonium-Kationen synthetisiert. Die Schmelzpunkte der Phosphonium- und Ammonium-Salze wurden mittels dynamischer Differenzkalorimetrie (DSC) ermittelt. F{\"u}r das Phosphonium-Salz P3332OH-Bromid konnte eine enantiotrope Umwandlung der Modifikationen mittels temperaturabh{\"a}ngiger XRPD-Messungen best{\"a}tigt werden. Die Zelltoxizit{\"a}ts-Untersuchungen der Phosphonium- und Ammonium-Salze an humanen Leberzellen (HepG2), Nierenzellen (HEK 293T) und murinen Makro-phagenzellen (J774.1) zeigten, dass mit h{\"o}herer Lipophilie die Zelltoxizit{\"a}t zunahm. Polare Kationen zeigten keine Zytotoxizit{\"a}t (IC50 > 1000 µM). Die Zelltoxizit{\"a}t der Ammonium-Salze war im direkten Vergleich mit den Phosphonium-Salzen etwas geringer. Die synthetisierten Phosphonium- und Ammonium-Salze, die als Chloride-, Bromide- und Iodide vorlagen, wurden durch Anionenaustausch in Hydroxide umgewandelt. Die Ionischen Fl{\"u}ssigkeiten wurden in einer S{\"a}ure-Base-Reaktion mit der freien S{\"a}ure des BGG-Molek{\"u}ls und den Hydroxiden hergestellt. Der ionische Charakter konnte mittels Bandenverschiebung der deprotonierten Sulfonamidgruppe im IR-Spektrum best{\"a}tigt werden. Die Substanzen waren amorph (XRPD) und die Glas{\"u}bergangstemperaturen (DSC) bewegten sich f{\"u}r die Mono-Kationen im Bereich zwischen 40 °C - 97 °C, f{\"u}r Dikationen 81 °C - 124 °C und f{\"u}r Trikationen 124 °C - 148 °C. Damit erf{\"u}llten einige Substanzen die Definition einer Ionischen Fl{\"u}ssigkeit nicht (Smp. < 100 °C) und wurden daher als Niedrig-Gitter-Enthalpie-Salze (low lattice enthalpy salt = LLES) bezeichnet. Die ILs und LLES zeigten signifikante Unterschiede in der Aufl{\"o}sungsrate J, der {\"U}bers{\"a}ttigungszeit und der Wasserdampfsorption. In dieser Arbeit konnte gezeigt werden, dass allein durch die Auswahl des Gegenions wichtige Parameter f{\"u}r die orale Bioverf{\"u}gbarkeit gesteuert werden k{\"o}nnen. Durch diesen Ansatz war es m{\"o}glich, aus dem sehr schlecht wasserl{\"o}slichen Arzneistoff BGG492 Ionische Fl{\"u}ssigkeiten bzw. LLES herzustellen, die sich drastisch schneller aufl{\"o}sten und teilweise {\"u}ber mehrere Stunden {\"u}bers{\"a}ttigte L{\"o}sungen bildeten. Insgesamt zeigte sich, dass durch eine Zunahme der Polarit{\"a}t des Gegenions eine gr{\"o}ßere Aufl{\"o}sungsrate J und eine geringere Zelltoxizit{\"a}t erzielt werden konnten. Jedoch verringerte sich dadurch die Dauer der {\"U}bers{\"a}ttigung in L{\"o}sung und erh{\"o}hte die Hygroskopizit{\"a}t der ILs und LLES.}, subject = {Bioverf{\"u}gbarkeit}, language = {de} }