@incollection{LutzCantoreggiVelic1993, author = {Lutz, Werner K. and Cantoreggi, S. and Velic, I.}, title = {DNA binding and stimulation of cell division in the carcinogenicity of styrene 7,8-oxide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71597}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1993}, abstract = {[7-3H)Styrene 7,8-oxide was administered by oral gavage to male CD rats at a dose of 1.3 mg/kg. After 4 h, the forestomach was excised, DNA was isolated, purified to constant specific radioactivity and degraded nzymatically to the 3 '-nucleotides. Highperformance liquid chromatography fractions with the normal nucleotides contained most of the radiolabel, but a minute level of adduct label was also detccted. Using the units of the covalent binding index (micromoles adduct per mole DNA nucleotide)/(millimole chemical administered per kilogram body weight), a DNA binding potency of 1.0 was derived. A comparison of the covalent binding indices and carcinogenic potencies of other genotoxic forestarnach carcinogens showed that the tumorigenic activity of styrene oxide is unlikely to be purely genotoxic. Therefore, styrene oxide was compared with 3-tbutylhydroxyanisole (BHA) with respect to stimulation of cell proliferation in the forestomach. Male Fischer 344 rats were treated for four weeks at three dose levels of styrene oxide (0, 137, 275 and 550 mg/kg, three times per week by oral gavage) and BHA (0, 0.5, 1 and 2\% in the diet); the highest doses had been reported to result in 84\% and 22\% carcinomas in the forestomach, respectively. Cell proliferation was assessed by incorporation of bromodeoxyuridine into DNA and immunohistochemical analysis. An increase in the lablling indexwas found in a11 treated animals. In the prefundic region of the forestomach, the labeHing index increased significantly, from 42\% (controls) to 54\% with styrene oxide and from 41 to 55\% with BHA. Rats treated with BHA also had severe hyperplastic lesions in the prefundic region, i.e., at the location of BHA-induced forestomach carcinomas. The number of cells per millimetre of section length was increased up to 19 fold. Hyperplastic lesions were not seen with styrene oxide, despite the higher tumour incidence reported with this compound. We conclude that the carcinogenicity of styrene oxide to the forestomach most probably involves a mechanism in which marginal genotoxicity is combined with promotion by increased cell proliferation.}, subject = {Styrol}, language = {en} } @phdthesis{Mueller2012, author = {M{\"u}ller, Stephanie}, title = {Identification of early molecular changes associated with Fumonisin B1-induced carcinogenesis in vivo and in vitro}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71336}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Fumonisin B1 (FB1) is a mycotoxin produced by various Fusarium species and constitutes a major contaminant of maize worldwide. A 2-year carcinogenicity study of the National Toxicology Program (NTP) in Fischer N344 rats showed that male rats were most susceptible to FB1-induced tumor formation in the kidney. Histopathologically, a rare and highly malignant tumor type originating from the proximal tubules of rat kidney with increased potential for invasion and metastasis was identified. However, mechanisms underlying the FB1-induced carcinogenesis in kidneys of male rats are still not clear. Previous studies have shown that FB1-mediated disruption of sphingolipid metabolism via inhibition of ceramide synthase is a primary key event in FB1 toxicity. The disruption of sphingolipid metabolism may cause time- and dose-related changes in the relative balance of various bioactive intermediates. Furthermore, the ability of FB1 to induce renal cell death and subsequent compensatory cell proliferation is well known, but it does not completely explain the invasive growth characteristics and exceptionally high metastatic potential of FB1-induced tumors. Considering the complexity of sphingolipid metabolism and the fact that various sphingolipids (e.g. ceramide, sphingoid bases and their respective 1-phosphates) act on opposing signaling pathways, it is hypothesized that the balance between individual sphingolipids and thus the overall cellular response to FB1 may shift with time and by continuing FB1 exposure, resulting in the disruption of specific cell signaling pathways, which may promote tumor formation in kidney. To identify early FB1-induced gene expression patterns in the kidney, which may be associated with sphingolipid-mediated signaling pathways in cancer, a short-term i.p. study on FB1 in male Sprague Dawley rats was performed and changes in gene expression were analyzed using a qRT-PCR array that comprises 84 relevant genes of 6 pathways pivotally involved in the formation of cancer. Furthermore, apoptosis and cell proliferation as well as changes in specific sphingolipids were investigated in FB1-treated kidneys. As shown by classical histopathology (H\&E) and (immuno)-histochemical staining (TUNEL and BrdU), FB1 caused a time- and dose-dependent increase in tubular apoptosis in the cortex and OSOM of the kidney, which was compensated by the induction of proliferation in the affected areas. HPLC-MS/MS analysis of bioactive sphingolipids demonstrated that FB1 induced a marked elevation of the pro-apoptotic sphingoid bases sphinganine and sphingosine, which paralleled the time- and dose-dependent increase in renal tubular apoptosis. With prolonged exposure to FB1, increased metabolic conversion of the accumulated sphinganine to the sphinganine-1-phosphate, a second messenger with anti-apoptotic and proliferative properties, was observed in kidney. This finding was compliant with the increased regenerative cell proliferation in the cortex and OSOM. In addition to effects on sphingoid bases and their 1-phosphate metabolites, this study, for the first time, demonstrated reduced levels of specific ceramides in rat kidney after FB1 exposure. In particular, C16-ceramide, which is a widespread constituent of membrane-bound complex sphingolipids involved in cell adhesion, was time- and dose-dependently decreased after treatment with FB1. Besides its role as component of the cell membrane, C16-ceramide functions as a signaling molecule for the initiation of apoptosis in response to various stress stimuli. Under conditions of chronic FB1 exposure, a significant reduction in pro-apoptotic C16-ceramide together with markedly increased levels of anti-apoptotic and proliferation-promoting sphingoid base 1-phosphates may thus favor resistance to stress-induced apoptosis and facilitate the survival of abnormal cells with potential to initiate tumor formation. Our study also revealed that early exposure to FB1 resulted in increased expression of a plethora of genes involved in tumor initiation as well as tumor progression. While single FB1 exposure was demonstrated to predominately induce gene expression of proto-oncogenic transcription factors (e.g. Fos, Jun, Myc) and apoptotis-related genes (e.g. members of the tumor-necrosis factor family), repeated exposure resulted in marked upregulation of genes mediating cell survival and cell proliferation (e.g. Bcl-XL, Bcl-2, Nfκb1 and Egfr). Moreover, continued exposure to FB1 initiated increased expression of genes critically involved in tumor migration, adhesion, invasion and metastasis. A close correlation was established between gene expression changes in response to FB1 and known signaling pathways mediated by extracellular or intracellular action of sphingoid base 1-phosphates - bioactive lipids that were markedly increased after FB1 treatment. In particular, genes encoding components of the plasminogen activator system were abundantly upregulated. These mediate invasion and metastasis in response to So1P, and may hence particularly promote the formation of highly aggressive and invasive tumors in kidney as observed after chronic exposure to FB1. Thus, it is conceivable that upregulation of a majority of genes in response to FB1 may be a direct or indirect consequence of increased So1P signaling. Another aim of this study was to identify differences in the organ-specific susceptibility for tumor formation by comparing FB1-mediated effects on apoptosis, cell proliferation, sphingolipids, and selected cancer-related genes in kidney and liver. Collectively, the present results revealed that kidney and liver showed marked differences in several endpoints of FB1 toxicity, which seemed to be primarily associated with their different susceptibility to FB1-mediated alterations in sphingolipid metabolism. The strong correlation between histopathological lesions and alterations in sphingolipid metabolism as well as sphingoid base 1-phosphate accumulation and concomitant S1P receptor expression suggested that tumor formation and progression to highly malignant carcinomas seems to be rather favored in kidney compared to liver. However, genes mostly deregulated by FB1 treatment in kidney (PAI-1, Thbs1 and Itga2) were also found to be induced in liver. To verify FB1-induced gene expression in kidney, normal rat tubular epithelial (NRK-52E) cells were analyzed for FB1-induced expression changes of the same cancer-related genes as in vivo. The results of qRT-PCR analysis revealed that gene expression changes in NRK-52E cells after FB1 treatment strongly correlated with those found in rat kidney and paralleled the marked alterations in sphingolipid metabolism. Furthermore, a good correlation between FB1-induced expression changes of cancer-related genes obtained in vivo and in vitro and those known to be mediated by bioactive sphingoid base 1-phosphates in cancer was established. Moreover, experiments modeling the invasive behavior of NRK-52E cells showed that FB1 may enhance cell invasion, which also correlated with both the increase in invasion- and metastasis-associated genes and bioactive sphingoid base 1-phophates. Importantly, NRK-52E cells basally expressed the S1P receptors S1P2 and S1P3, which are known to be involved in tumor migration and invasion. Since these receptors were also identified as most abundant S1PRs in kidneys of male Sprague Dawley rats, they may present important mediators of gene expression and invasion in response to FB1 in vivo. In summary, FB1-mediated disruption of sphingolipid metabolism and subsequent time- and dose-related increase in intermediates, such as bioactive sphingoid base 1-phosphates, correlate with early changes in genes and signaling pathways that may mediate loss of growth control, replication, evasion of apoptosis, cell motility and invasion, and thus favor renal tumor formation in response to FB1. However, to clarify whether the obtained gene expression changes in cancer-related genes in kidney are specific to the biological action of sphingoid base 1-phosphates and their respective receptors, further mechanistic studies are necessary.}, subject = {Nephrotoxizit{\"a}t}, language = {en} }