@phdthesis{Altmann2023, author = {Altmann, Stephan}, title = {Characterization of Metabolic Glycoengineering in Mesenchymal Stromal Cells for its Application in thermoresponsive Bioinks}, doi = {10.25972/OPUS-29100}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-291003}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This work developed during the first funding period of the subproject B05 in the framework of the interdisciplinary research consortium TRR 225 'From the Fundamentals of Biofabrication toward functional Tissue Models' and was part of a cooperation between the Orthopedic Department represented by Prof. Dr. Regina Ebert and the Institute of Organic Chemistry represented by Prof. Dr. J{\"u}rgen Seibel. This project dealed with cellular behavior during the bioprinting process and how to influence it by modifying the cell glycocalyx with functional target molecules. The focus was on the impact of potential shear stress, that cells experience when they get processed in thermoresponsive bioinks, and a way to increase the cell stiffness via metabolic glycoengineering to attenuate shear forces. For the characterization of the metabolic glycoengineering, four different peracetylated and four non-acetylated modified monosaccharides (two mannose and two sialic acid sugars) were tested in primary human mesenchymal stromal cells (hMSC) and telomerase-immortalized hMSC (hMSC-TERT). Viability results demonstrated a dose-dependent correlation for all sugars, at which hMSC-TERT seemed to be more susceptible leading to lower viability rates. The assessment of the incorporation efficiencies was performed by click chemistry using fluorescent dyes and revealed also a dose-dependent correlation for all mannose and sialic acid sugars, while glucose and galactose variants were not detected in the glycocalyx. However, incorporation efficiencies were highest when using mannose sugars in the primary hMSC. A subsequent analysis of the temporal retention of the incorporated monosaccharides showed a constant declining fluorescence signal up to 6 d for azido mannose in hMSC-TERT, whereas no signal could be detected for alkyne mannose after 2 d. Investigation of the differentiation potential and expression of different target genes revealed no impairment after incubation with mannose sugars, indicating a normal phenotype for hMSC-TERT. Following the successful establishment of the method, either a coumarin derivative or an artificial galectin 1 ligand were incorporated into the cell glycocalyx of hMSC-TERT as functional target molecule. The biophysical analysis via shear flow deformation cytometry revealed a slightly increased cell stiffness and lowered fluidity for both molecules. A further part of this project aimed to control lectin-mediated cell adhesion by artificial galectin 1 ligands. As that hypothesis was settled in the work group of Prof. Dr. J{\"u}rgen Seibel, this work supported with an initial characterization of galectin 1 as part of the hMSC biology. A stable galectin 1 expression at gene and protein level in both hMSC and hMSC-TERT could be confirmed, at which immunocytochemical stainings could detect the protein only in the glycocalyx. The treatment of hMSC-TERT with a galectin 1 ligand in different concentrations did not show an altered gene expression of galectin 1. However, these first data in addition to the investigation of stiffness confirmed the applicability of specific and artificial IV galectin 1 ligands in biofabrication approaches to alter cell properties of hMSC. To conclude, metabolic glycoengineering has been successfully implemented in hMSC and hMSC-TERT to introduce glycocalyx modifications which reside there for several days. A proof of concept was carried out by the increase of cell stiffness and fluidity by the incorporation of a coumarin derivative or an artificial galectin 1 ligand. For the characterization of shear stress impact on cells after printing in thermoresponsive bioinks, the processing of hMSC-TERT (mixing or additionally printing) with Pluronic F127 or Polyoxazoline-Polyoxazine (POx-POzi) polymer solution was investigated. While there were no changes in viability when using POx-POzi bioink, processing with Pluronic F127 indicated slightly lower viability and increased apoptosis activity. Assessment of cellular responses to potential shear stress showed no reorganization of the cytoskeleton independent of the bioink, but highly increased expression of the mechanoresponsive proto-oncogene c Fos which was more pronounced when using Pluronic F127 and just mixed with the bioinks. Interestingly, processing of the mechanoresponsive reporter cell line hMSC-TERT-AP1 revealed slightly elevated mechanotransduction activity when using POx-POzi polymer and just mixed with the bioinks as well. In conclusion, hMSC-TERT embedded in thermoresponsive bioinks might shortly experience shear stress during the printing process, but that did not lead to remarkable cell damage likely due to the rheological properties of the bioinks. Furthermore, the printing experiments also suggested that cells do not sense more shear stress when additionally printed.}, subject = {Glykobiologie}, language = {en} } @phdthesis{Mut2023, author = {Mut, J{\"u}rgen}, title = {Synthese komplexer funktionaler Mono- und Oligosaccharid-Bausteine zur Untersuchung und Modifikation von Membranoberfl{\"a}chen humaner mesenchymaler Stromazellen}, doi = {10.25972/OPUS-32065}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320654}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Bei der Biofabrikation werden Zellen mit einem Biomaterial versetzt (vereint werden diese als Biotinte definiert) und durch additive Fertigungsmethoden wie dem 3D-Druck zu hierarchischen Strukturen aufgebaut. Zur Herstellung von k{\"u}nstlichen Gewebe und zuk{\"u}nftig auch von funktionalen Organen ist ein detailliertes Zellverst{\"a}ndnis essentiell. Im Rahmen dieser Dissertation wurden Systeme generiert, um die Zellmembranen von mesenchymalen Stromazellen gezielt zu ver{\"a}ndern und um die Modifikationen zu charakterisieren. Durch Inkubation mit unnat{\"u}rlichen Zuckern werden diese von Zellen aufgenommen und in den Zellmetabolismus eingeschleust und auf die Glycoproteine {\"u}bertragen. Diese Methode ist als metabolic glycoengineering bekannt. Dazu wurden diverse humane Saccharid-Analoga mit bioorthogonalen Gruppen (Azid oder Alkin) synthetisiert. Alle in dieser Arbeit vorgestellten Molek{\"u}le wurden NMR-spektroskopisch als auch massenspektrometrisch charakterisiert. Die acetylierten Mannosamin-Derivate konnten {\"u}ber zwei Stufen und die Sialins{\"a}ure-Derivate {\"u}ber sechs Stufen synthetisiert werden. Sialins{\"a}uren sind die terminalen Zucker an Glycanketten von Proteinen mit wichtigen biologischen Funktionen. Im Rahmen des SFB TRR225 konnte in Kooperation mit der Gruppe von Prof. Dr. R. Ebert der Einbau der Saccharide in mesenchymalen Stromazellen durch Fluoreszenzmikroskopie evaluiert werden. Aufgrund des effizienteren Einbaus der Sialins{\"a}ure mit Alkingruppe gegen{\"u}ber der mit Azidgruppe, wurde dieser in den folgenden massenspektrometrischen Analysen eingesetzt. Die Messungen der markierten Glycoproteine wurden von Dr. Marc Driessen durchgef{\"u}hrt und der metabolische Einbau von SiaNAl und Ac4ManNAl in den Stromazellen gegen{\"u}bergestellt. 55 Glycoproteine konnten durch SiaNAl und 94 durch Ac4ManNAl charakterisiert werden. Ein Abgleich der Proteindatenbanken eine Anreicherung von Proteine durch F{\"u}tterung von SiaNAl die in Signaltransduktion, Zellkontakte und Differenzierung involviert sind, womit metabolic glycoengineering prinzipiell zur Optimierung von Biofabrikationsprozessen genutzt werden kann.}, subject = {Glykane}, language = {de} } @phdthesis{BertleffZieschang2014, author = {Bertleff-Zieschang, Nadja Luisa}, title = {Galectin-1: A Synthetic and Biological Study of a Tumor Target}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101529}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Galectin-1 (hGal-1) is overexpressed by numerous cancer types and previously conducted studies confirmed that the β-galactoside-binding protein mediates various molecular interactions associated with tumor growth, spread and survival. Upon interaction with carbohydrate-based binding epitopes of glycan structures on human cell surfaces galectin-1 induces proliferative, angiogenetic and migratory signals and modulates negative T cell regulation which essentially helps the tumor to evade the immune response. These findings attributed galectin-1 a pivotal role in tumor physiology and strongly suggest the protein as target for diagnostic and therapeutic applications. Within the scope of this work a strategy was elaborated for designing tailor-made galectin-1 ligands by functionalizing selected hydroxyl groups of the natural binding partner N-acetyllactosamine (LacNAc) that are not involved in the sophisticated interplay between the disaccharide and the protein. Synthetic modifications intended to introduce chemical groups i) to address a potential binding site adjacent to the carbohydrate recognition domain (CRD) with extended hGal-1-ligand interactions, ii) to implement a tracer isotope for diagnostic detection and iii) to install a linker unit for immobilization on microarrays. Resulting structures were investigated regarding their targeting ability towards galectin-1 by cocrystallization experiments, SPR and ITC studies. Potent binders were further probed for their diagnostic potential to trace elevated galectin-1 levels in microarray experiments and for an application in positron emission tomography (PET).}, subject = {Organische Synthese}, language = {en} }