@article{JanzWalzCirnuetal.2024, author = {Janz, Anna and Walz, Katharina and Cirnu, Alexandra and Surjanto, Jessica and Urlaub, Daniela and Leskien, Miriam and Kohlhaas, Michael and Nickel, Alexander and Brand, Theresa and Nose, Naoko and W{\"o}rsd{\"o}rfer, Philipp and Wagner, Nicole and Higuchi, Takahiro and Maack, Christoph and Dudek, Jan and Lorenz, Kristina and Klopocki, Eva and Erg{\"u}n, S{\"u}leyman and Duff, Henry J. and Gerull, Brenda}, title = {Mutations in DNAJC19 cause altered mitochondrial structure and increased mitochondrial respiration in human iPSC-derived cardiomyocytes}, series = {Molecular Metabolism}, volume = {79}, journal = {Molecular Metabolism}, issn = {2212-8778}, doi = {10.1016/j.molmet.2023.101859}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350393}, year = {2024}, abstract = {Highlights • Loss of DNAJC19's DnaJ domain disrupts cardiac mitochondrial structure, leading to abnormal cristae formation in iPSC-CMs. • Impaired mitochondrial structures lead to an increased mitochondrial respiration, ROS and an elevated membrane potential. • Mutant iPSC-CMs show sarcomere dysfunction and a trend to more arrhythmias, resembling DCMA-associated cardiomyopathy. Background Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. Methods We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca\(^{2+}\) kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tv\(_{HeLa}\)). Results Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca\(^{2+}\) concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to β-adrenergic stimulation. Conclusions Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca\(^{2+}\) kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy.}, language = {en} } @article{UeceylerUrlaubMayeretal.2019, author = {{\"U}{\c{c}}eyler, Nurcan and Urlaub, Daniela and Mayer, Christine and Uehlein, Sabrina and Held, Melissa and Sommer, Claudia}, title = {Tumor necrosis factor-α links heat and inflammation with Fabry pain}, series = {Molecular Genetics and Metabolism}, volume = {127}, journal = {Molecular Genetics and Metabolism}, doi = {https://doi.org/10.1016/j.ymgme.2019.05.009}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229190}, pages = {200-206}, year = {2019}, abstract = {Fabry disease (FD) is an X-linked lysosomal storage disorder associated with pain triggered by heat or febrile infections. We modelled this condition by measuring the cytokine expression of peripheral blood mononuclear cells (PBMC) from FD patients in vitro upon stimulation with heat and lipopolysaccharide (LPS). We enrolled 67 FD patients and 37 healthy controls. We isolated PBMC, assessed their gene expression of selected pro- and anti-inflammatory cytokines, incubated them with heat, LPS, globotriaosylceramide (Gb3), and tumor necrosis factor-α (TNF), and measured TNF secretion in the supernatant and intracellular Gb3 accumulation, respectively. We found increased TNF, interleukin (IL-)1β, and toll-like receptor 4 (TLR4) gene expression in FD men (p < .05 to p < .01). TNF and IL-10 were higher, and IL-4 was lower in the subgroup of FD men with pain compared to controls (p < .05 to p < .01). Hereby, TNF was only increased in FD men with pain and classical mutations (p < .05) compared to those without pain. PBMC from FD patients secreted more TNF upon stimulation with LPS (p < .01) than control PBMC. Incubation with Gb3 and an additional α-galactosidase A inhibitor did not further increase TNF secretion, but incubation with TNF greatly increased the Gb3 load in FD PBMC compared to controls (p < .01). Also, LPS incubation and heat challenge (40 °C) increased Gb3 accumulation in PBMC of patients compared to baseline (p < .05 each), while no alterations were observed in control PBMC. Our data show that TNF holds a crucial role in the pathophysiology of FD associated pain, which may open a novel perspective for analgesic treatment in FD pain.}, language = {en} }