@phdthesis{Kanbar2023, author = {Kanbar, Farah}, title = {Asymptotic and Stationary Preserving Schemes for Kinetic and Hyperbolic Partial Differential Equations}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-210-2}, doi = {10.25972/WUP-978-3-95826-211-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301903}, school = {W{\"u}rzburg University Press}, pages = {xiv, 137}, year = {2023}, abstract = {In this thesis, we are interested in numerically preserving stationary solutions of balance laws. We start by developing finite volume well-balanced schemes for the system of Euler equations and the system of MHD equations with gravitational source term. Since fluid models and kinetic models are related, this leads us to investigate AP schemes for kinetic equations and their ability to preserve stationary solutions. Kinetic models typically have a stiff term, thus AP schemes are needed to capture good solutions of the model. For such kinetic models, equilibrium solutions are reached after large time. Thus we need a new technique to numerically preserve stationary solutions for AP schemes. We find a criterion for SP schemes for kinetic equations which states, that AP schemes under a particular discretization are also SP. In an attempt to mimic our result for kinetic equations in the context of fluid models, for the isentropic Euler equations we developed an AP scheme in the limit of the Mach number going to zero. Our AP scheme is proven to have a SP property under the condition that the pressure is a function of the density and the latter is obtained as a solution of an elliptic equation. The properties of the schemes we developed and its criteria are validated numerically by various test cases from the literature.}, subject = {Angewandte Mathematik}, language = {en} } @phdthesis{Klotzky2018, author = {Klotzky, Jens}, title = {Well-posedness of a fluid-particle interaction model}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169009}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {This thesis considers a model of a scalar partial differential equation in the presence of a singular source term, modeling the interaction between an inviscid fluid represented by the Burgers equation and an arbitrary, finite amount of particles moving inside the fluid, each one acting as a point-wise drag force with a particle related friction constant. \begin{align*} \partial_t u + \partial_x (u^2/2) \&= \sum_{i \in N(t)} \lambda_i \Big(h_i'(t)-u(t,h_i(t)\Big)\delta(x-h_i(t)) \end{align*} The model was introduced for the case of a single particle by Lagouti{\`e}re, Seguin and Takahashi, is a first step towards a better understanding of interaction between fluids and solids on the level of partial differential equations and has the unique property of considering entropy admissible solutions and the interaction with shockwaves. The model is extended to an arbitrary, finite number of particles and interactions like merging, splitting and crossing of particle paths are considered. The theory of entropy admissibility is revisited for the cases of interfaces and discontinuous flux conservation laws, existing results are summarized and compared, and adapted for regions of particle interactions. To this goal, the theory of germs introduced by Andreianov, Karlsen and Risebro is extended to this case of non-conservative interface coupling. Exact solutions for the Riemann Problem of particles drifting apart are computed and analysis on the behavior of entropy solutions across the particle related interfaces is used to determine physically relevant and consistent behavior for merging and splitting of particles. Well-posedness of entropy solutions to the Cauchy problem is proven, using an explicit construction method, L-infinity bounds, an approximation of the particle paths and compactness arguments to obtain existence of entropy solutions. Uniqueness is shown in the class of weak entropy solutions using almost classical Kruzkov-type analysis and the notion of L1-dissipative germs. Necessary fundamentals of hyperbolic conservation laws, including weak solutions, shocks and rarefaction waves and the Rankine-Hugoniot condition are briefly recapitulated.}, subject = {Hyperbolische Differentialgleichung}, language = {en} }