@article{MuellerMuellerRiederer2021, author = {M{\"u}ller, Thomas and Mueller, Bernhard Klaus and Riederer, Peter}, title = {Perspective: Treatment for disease modification in chronic neurodegeneration}, series = {Cells}, volume = {10}, journal = {Cells}, number = {4}, issn = {2073-4409}, doi = {10.3390/cells10040873}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236644}, year = {2021}, abstract = {Symptomatic treatments are available for Parkinson's disease and Alzheimer's disease. An unmet need is cure or disease modification. This review discusses possible reasons for negative clinical study outcomes on disease modification following promising positive findings from experimental research. It scrutinizes current research paradigms for disease modification with antibodies against pathological protein enrichment, such as α-synuclein, amyloid or tau, based on post mortem findings. Instead a more uniform regenerative and reparative therapeutic approach for chronic neurodegenerative disease entities is proposed with stimulation of an endogenously existing repair system, which acts independent of specific disease mechanisms. The repulsive guidance molecule A pathway is involved in the regulation of peripheral and central neuronal restoration. Therapeutic antagonism of repulsive guidance molecule A reverses neurodegeneration according to experimental outcomes in numerous disease models in rodents and monkeys. Antibodies against repulsive guidance molecule A exist. First clinical studies in neurological conditions with an acute onset are under way. Future clinical trials with these antibodies should initially focus on well characterized uniform cohorts of patients. The efficiency of repulsive guidance molecule A antagonism and associated stimulation of neurogenesis should be demonstrated with objective assessment tools to counteract dilution of therapeutic effects by subjectivity and heterogeneity of chronic disease entities. Such a research concept will hopefully enhance clinical test strategies and improve the future therapeutic armamentarium for chronic neurodegeneration.}, language = {en} } @article{HetzerOrthHoellerWuerzneretal.2019, author = {Hetzer, Benjamin and Orth-H{\"o}ller, Dorothea and W{\"u}rzner, Reinhard and Kreidl, Peter and Lackner, Michaela and M{\"u}ller, Thomas and Knabl, Ludwig and Geisler-Moroder, Daniel Rudolf and Mellmann, Alexander and Sesli, {\"O}zcan and Holzknecht, Jeanett and Noce, Damia and Akarathum, Noppadon and Chotinaruemol, Somporn and Prelog, Martina and Oberdorfer, Peninnah}, title = {"Enhanced acquisition of antibiotic-resistant intestinal E. coli during the first year of life assessed in a prospective cohort study"}, series = {Antimicrobial Resistance \& Infection Control}, volume = {8}, journal = {Antimicrobial Resistance \& Infection Control}, doi = {10.1186/s13756-019-0522-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320284}, year = {2019}, abstract = {Background Increasing bacterial resistance to antibiotics is a serious problem worldwide. We sought to record the acquisition of antibiotic-resistant Escherichia coli (E. coli) in healthy infants in Northern Thailand and investigated potential determinants. Methods Stool samples from 142 infants after birth, at ages 2wk, 2mo, 4 to 6mo, and 1y, and parent stool samples were screened for E. coli resistance to tetracycline, ampicillin, co-trimoxazole, and cefazoline by culture, and isolates were further investigated for multiresistance by disc diffusion method. Pulsed-field gel electrophoresis was performed to identify persistent and transmitted strains. Genetic comparison of resistant and transmitted strains was done by multilocus sequence typing (MLST) and strains were further investigated for extra- and intra-intestinal virulence factors by multiplex PCR. Results Forty-seven (33\%) neonatal meconium samples contained resistant E. coli. Prevalence increased continuously: After 1y, resistance proportion (tetracycline 80\%, ampicillin 72\%, co-trimoxazole 66\%, cefazoline 35\%) almost matched those in parents. In 8 infants (6\%), identical E. coli strains were found in at least 3 sampling time points (suggesting persistence). Transmission of resistant E. coli from parents to child was observed in only 8 families. MLST showed high diversity. We could not identify any virulence genes or factors associated with persistence, or transmission of resistant E. coli. Full-term, vaginal birth and birth in rural hospital were identified as risk factors for early childhood colonization with resistant E. coli. Conclusion One third of healthy Thai neonates harboured antibiotic-resistant E. coli in meconium. The proportion of resistant E. coli increased during the first year of life almost reaching the value in adults. We hypothesize that enhancement of infection control measures and cautious use of antibiotics may help to control further increase of resistance.}, language = {en} }