@article{AlWarhiElmaidomyMaheretal.2022, author = {Al-Warhi, Tarfah and Elmaidomy, Abeer H. and Maher, Sherif A. and Abu-Baih, Dalia H. and Selim, Samy and Albqmi, Mha and Al-Sanea, Mohammad M. and Alnusaire, Taghreed S. and Ghoneim, Mohammed M. and Mostafa, Ehab M. and Hussein, Shaimaa and El-Damasy, Ashraf K. and Saber, Entesar Ali and Elrehany, Mahmoud A. and Sayed, Ahmed M. and Othman, Eman M. and El-Sherbiny, Mohamed and Abdelmohsen, Usama Ramadan}, title = {The wound-healing potential of Olea europaea L. Cv. Arbequina leaves extract: an integrated in vitro, in silico, and in vivo investigation}, series = {Metabolites}, volume = {12}, journal = {Metabolites}, number = {9}, issn = {2218-1989}, doi = {10.3390/metabo12090791}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286150}, year = {2022}, abstract = {Olea europaea L. Cv. Arbequina (OEA) (Oleaceae) is an olive variety species that has received little attention. Besides our previous work for the chemical profiling of OEA leaves using LC-HRESIMS, an additional 23 compounds are identified. An excision wound model is used to measure wound healing action. Wounds are provided with OEA (2\% w/v) or MEBO\(^®\) cream (marketed treatment). The wound closure rate related to vehicle-treated wounds is significantly increased by OEA. Comparing to vehicle wound tissues, significant levels of TGF-β in OEA and MEBO\(^®\) (p < 0.05) are displayed by gene expression patterns, with the most significant levels in OEA-treated wounds. Proinflammatory TNF-α and IL-1β levels are substantially reduced in OEA-treated wounds. The capability of several lignan-related compounds to interact with MMP-1 is revealed by extensive in silico investigation of the major OEA compounds (i.e., inverse docking, molecular dynamics simulation, and ΔG calculation), and their role in the wound-healing process is also characterized. The potential of OEA as a potent MMP-1 inhibitor is shown in subsequent in vitro testing (IC\(_{50}\) = 88.0 ± 0.1 nM). In conclusion, OEA is introduced as an interesting therapeutic candidate that can effectively manage wound healing because of its anti-inflammatory and antioxidant properties.}, language = {en} } @article{AlnusaireSayedElmaidomyetal.2021, author = {Alnusaire, Taghreed S. and Sayed, Ahmed M. and Elmaidomy, Abeer H. and Al-Sanea, Mohammad M. and Albogami, Sarah and Albqmi, Mha and Alowaiesh, Bassam F. and Mostafa, Ehab M. and Musa, Arafa and Youssif, Khayrya A. and Refaat, Hesham and Othman, Eman M. and Dandekar, Thomas and Alaaeldin, Eman and Ghoneim, Mohammed M. and Abdelmohsen, Usama Ramadan}, title = {An in vitro and in silico study of the enhanced antiproliferative and pro-oxidant potential of Olea europaea L. cv. Arbosana leaf extract via elastic nanovesicles (spanlastics)}, series = {Antioxidants}, volume = {10}, journal = {Antioxidants}, number = {12}, issn = {2076-3921}, doi = {10.3390/antiox10121860}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250064}, year = {2021}, abstract = {The olive tree is a venerable Mediterranean plant and often used in traditional medicine. The main aim of the present study was to evaluate the effect of Olea europaea L. cv. Arbosana leaf extract (OLE) and its encapsulation within a spanlastic dosage form on the improvement of its pro-oxidant and antiproliferative activity against HepG-2, MCF-7, and Caco-2 human cancer cell lines. The LC-HRESIMS-assisted metabolomic profile of OLE putatively annotated 20 major metabolites and showed considerable in vitro antiproliferative activity against HepG-2, MCF-7, and Caco-2 cell lines with IC\(_{50}\) values of 9.2 ± 0.8, 7.1 ± 0.9, and 6.5 ± 0.7 µg/mL, respectively. The encapsulation of OLE within a (spanlastic) nanocarrier system, using a spraying method and Span 40 and Tween 80 (4:1 molar ratio), was successfully carried out (size 41 ± 2.4 nm, zeta potential 13.6 ± 2.5, and EE 61.43 ± 2.03\%). OLE showed enhanced thermal stability, and an improved in vitro antiproliferative effect against HepG-2, MCF-7, and Caco-2 (IC\(_{50}\) 3.6 ± 0.2, 2.3 ± 0.1, and 1.8 ± 0.1 µg/mL, respectively) in comparison to the unprocessed extract. Both preparations were found to exhibit pro-oxidant potential inside the cancer cells, through the potential inhibitory activity of OLE against glutathione reductase and superoxide dismutase (IC\(_{50}\) 1.18 ± 0.12 and 2.33 ± 0.19 µg/mL, respectively). These inhibitory activities were proposed via a comprehensive in silico study to be linked to the presence of certain compounds in OLE. Consequently, we assume that formulating such a herbal extract within a suitable nanocarrier would be a promising improvement of its therapeutic potential.}, language = {en} } @article{KellerBrandelBeckeretal.2018, author = {Keller, Alexander and Brandel, Annette and Becker, Mira C. and Balles, Rebecca and Abdelmohsen, Usama Ramadan and Ankenbrand, Markus J. and Sickel, Wiebke}, title = {Wild bees and their nests host Paenibacillus bacteria with functional potential of avail}, series = {Microbiome}, volume = {6}, journal = {Microbiome}, number = {229}, doi = {10.1186/s40168-018-0614-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177554}, year = {2018}, abstract = {Background: In previous studies, the gram-positive firmicute genus Paenibacillus was found with significant abundances in nests of wild solitary bees. Paenibacillus larvae is well-known for beekeepers as a severe pathogen causing the fatal honey bee disease American foulbrood, and other members of the genus are either secondary invaders of European foulbrood or considered a threat to honey bees. We thus investigated whether Paenibacillus is a common bacterium associated with various wild bees and hence poses a latent threat to honey bees visiting the same flowers. Results: We collected 202 samples from 82 individuals or nests of 13 bee species at the same location and screened each for Paenibacillus using high-throughput sequencing-based 16S metabarcoding. We then isolated the identified strain Paenibacillus MBD-MB06 from a solitary bee nest and sequenced its genome. We did find conserved toxin genes and such encoding for chitin-binding proteins, yet none specifically related to foulbrood virulence or chitinases. Phylogenomic analysis revealed a closer relationship to strains of root-associated Paenibacillus rather than strains causing foulbrood or other accompanying diseases. We found anti-microbial evidence within the genome, confirmed by experimental bioassays with strong growth inhibition of selected fungi as well as gram-positive and gram-negative bacteria. Conclusions: The isolated wild bee associate Paenibacillus MBD-MB06 is a common, but irregularly occurring part of wild bee microbiomes, present on adult body surfaces and guts and within nests especially in megachilids. It was phylogenetically and functionally distinct from harmful members causing honey bee colony diseases, although it shared few conserved proteins putatively toxic to insects that might indicate ancestral predisposition for the evolution of insect pathogens within the group. By contrast, our strain showed anti-microbial capabilities and the genome further indicates abilities for chitin-binding and biofilm-forming, suggesting it is likely a useful associate to avoid fungal penetration of the bee cuticula and a beneficial inhabitant of nests to repress fungal threats in humid and nutrient-rich environments of wild bee nests.}, language = {en} }