@article{HoffmannPieczykolanKochetal.2020, author = {Hoffmann, Mareike A. and Pieczykolan, Aleks and Koch, Iring and Huestegge, Lynn}, title = {Two sources of task prioritization: The interplay of effector-based and task order-based capacity allocation in the PRP paradigm}, series = {Attention, Perception, \& Psychophysics}, volume = {82}, journal = {Attention, Perception, \& Psychophysics}, issn = {1943-3921}, doi = {10.3758/s13414-020-02071-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235365}, pages = {3402-3414}, year = {2020}, abstract = {When processing of two tasks overlaps, performance is known to suffer. In the well-established psychological refractory period (PRP) paradigm, tasks are triggered by two stimuli with a short temporal delay (stimulus onset asynchrony; SOA), thereby allowing control of the degree of task overlap. A decrease of the SOA reliably yields longer RTs of the task associated with the second stimulus (Task 2) while performance in the other task (Task 1) remains largely unaffected. This Task 2-specific SOA effect is usually interpreted in terms of central capacity limitations. Particularly, it has been assumed that response selection in Task 2 is delayed due to the allocation of less capacity until this process has been completed in Task 1. Recently, another important factor determining task prioritization has been proposed—namely, the particular effector systems associated with tasks. Here, we study both sources of task prioritization simultaneously by systematically combining three different effector systems (pairwise combinations of oculomotor, vocal, and manual responses) in the PRP paradigm. Specifically, we asked whether task order-based task prioritization (SOA effect) is modulated as a function of Task 2 effector system. The results indicate a modulation of SOA effects when the same (oculomotor) Task 1 is combined with a vocal versus a manual Task 2. This is incompatible with the assumption that SOA effects are solely determined by Task 1 response selection duration. Instead, they support the view that dual-task processing bottlenecks are resolved by establishing a capacity allocation scheme fed by multiple input factors, including attentional weights associated with particular effector systems.}, language = {en} } @article{HuesteggeHerbortGoschetal.2019, author = {Huestegge, Lynn and Herbort, Oliver and Gosch, Nora and Kunde, Wilfried and Pieczykolan, Aleks}, title = {Free-choice saccades and their underlying determinants: explorations of high-level voluntary oculomotor control}, series = {Journal of Vision}, volume = {19}, journal = {Journal of Vision}, number = {3}, doi = {10.1167/19.3.14}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201493}, pages = {14}, year = {2019}, abstract = {Models of eye-movement control distinguish between different control levels, ranging from automatic (bottom-up, stimulus-driven selection) and automatized (based on well-learned routines) to voluntary (top-down, goal-driven selection, e.g., based on instructions). However, one type of voluntary control has yet only been examined in the manual and not in the oculomotor domain, namely free-choice selection among arbitrary targets, that is, targets that are of equal interest from both a bottom-up and top-down processing perspective. Here, we ask which features of targets (identity- or location-related) are used to determine such oculomotor free-choice behavior. In two experiments, participants executed a saccade to one of four peripheral targets in three different choice conditions: unconstrained free choice, constrained free choice based on target identity (color), and constrained free choice based on target location. The analysis of choice frequencies revealed that unconstrained free-choice selection closely resembled constrained choice based on target location. The results suggest that free-choice oculomotor control is mainly guided by spatial (location-based) target characteristics. We explain these results by assuming that participants tend to avoid less parsimonious recoding of target-identity representations into spatial codes, the latter being a necessary prerequisite to configure oculomotor commands.}, language = {en} } @article{PieczykolanHuestegge2017, author = {Pieczykolan, Aleks and Huestegge, Lynn}, title = {Cross-modal Action Complexity: Action- and Rule-related Memory Retrieval in Dual-response Control}, series = {Frontiers in Psychology}, volume = {8}, journal = {Frontiers in Psychology}, number = {529}, doi = {10.3389/fpsyg.2017.00529}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157794}, year = {2017}, abstract = {Normally, we do not act within a single effector system only, but rather coordinate actions across several output modules (cross-modal action). Such cross-modal action demands can vary substantially with respect to their complexity in terms of the number of task-relevant response combinations and to-be-retrieved stimulus-response (S-R) mapping rules. In the present study, we study the impact of these two types of cross-modal action complexity on dual-response costs (i.e., performance differences between single- and dual-action demands). In Experiment 1, we combined a manual and an oculomotor task, each involving four response alternatives. Crucially, one (unconstrained) condition involved all 16 possible combinations of response alternatives, whereas a constrained condition involved only a subset of possible response combinations. The results revealed that preparing for a larger number of response combinations yielded a significant, but moderate increase in dual-response costs. In Experiment 2, we utilized one common lateralized auditory (e.g., left) stimulus to trigger incompatible response compounds (e.g., left saccade and right key press or vice versa). While one condition only involved one set of task-relevant S-R rules, another condition involved two sets of task-relevant rules (coded by stimulus type: noise/tone), while the number of task-relevant response combinations was the same in both conditions. Here, an increase in the number of to-be-retrieved S-R rules was associated with a substantial increase in dual-response costs that were also modulated on a trial-by-trial basis when switching between rules. Taken together, the results shed further light on the dependency of cross-modal action control on both action- and rule-related memory retrieval processes.}, language = {en} }