@article{DobińskiKneisel2021, author = {Dobiński, Wojciech and Kneisel, Christof}, title = {Permafrost and glaciers: perspectives for the Earth and planetary sciences — another step forward}, series = {Geosciences}, volume = {11}, journal = {Geosciences}, number = {2}, issn = {2076-3263}, doi = {10.3390/geosciences11020068}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228766}, year = {2021}, abstract = {No abstract available}, language = {en} } @article{DirscherlDietzKneiseletal.2021, author = {Dirscherl, Mariel and Dietz, Andreas J. and Kneisel, Christof and Kuenzer, Claudia}, title = {A novel method for automated supraglacial lake mapping in Antarctica using Sentinel-1 SAR imagery and deep learning}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {2}, issn = {2072-4292}, doi = {10.3390/rs13020197}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222998}, year = {2021}, abstract = {Supraglacial meltwater accumulation on ice sheets can be a main driver for accelerated ice discharge, mass loss, and global sea-level-rise. With further increasing surface air temperatures, meltwater-induced hydrofracturing, basal sliding, or surface thinning will cumulate and most likely trigger unprecedented ice mass loss on the Greenland and Antarctic ice sheets. While the Greenland surface hydrological network as well as its impacts on ice dynamics and mass balance has been studied in much detail, Antarctic supraglacial lakes remain understudied with a circum-Antarctic record of their spatio-temporal development entirely lacking. This study provides the first automated supraglacial lake extent mapping method using Sentinel-1 synthetic aperture radar (SAR) imagery over Antarctica and complements the developed optical Sentinel-2 supraglacial lake detection algorithm presented in our companion paper. In detail, we propose the use of a modified U-Net for semantic segmentation of supraglacial lakes in single-polarized Sentinel-1 imagery. The convolutional neural network (CNN) is implemented with residual connections for optimized performance as well as an Atrous Spatial Pyramid Pooling (ASPP) module for multiscale feature extraction. The algorithm is trained on 21,200 Sentinel-1 image patches and evaluated in ten spatially or temporally independent test acquisitions. In addition, George VI Ice Shelf is analyzed for intra-annual lake dynamics throughout austral summer 2019/2020 and a decision-level fused Sentinel-1 and Sentinel-2 maximum lake extent mapping product is presented for January 2020 revealing a more complete supraglacial lake coverage (~770 km\(^2\)) than the individual single-sensor products. Classification results confirm the reliability of the proposed workflow with an average Kappa coefficient of 0.925 and a F\(_1\)-score of 93.0\% for the supraglacial water class across all test regions. Furthermore, the algorithm is applied in an additional test region covering supraglacial lakes on the Greenland ice sheet which further highlights the potential for spatio-temporal transferability. Future work involves the integration of more training data as well as intra-annual analyses of supraglacial lake occurrence across the whole continent and with focus on supraglacial lake development throughout a summer melt season and into Antarctic winter.}, language = {en} } @article{KunzKneisel2021, author = {Kunz, Julius and Kneisel, Christof}, title = {Three-dimensional investigation of an open- and a closed-system Pingo in northwestern Canada}, series = {Permafrost and Periglacial Processes}, volume = {32}, journal = {Permafrost and Periglacial Processes}, number = {4}, doi = {10.1002/ppp.2115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257678}, pages = {541-557}, year = {2021}, abstract = {The present study presents three-dimensional investigations of a hydrostatic pingo in the Mackenzie Delta region and a hydraulic pingo in the Ogilvie Mountains and contributes to a better understanding about the internal structures of the two pingo types. A combined approach using quasi-three-dimensional electrical resistivity tomography, ground-penetrating radar and frost probing allowed a clear delineation of frozen and unfrozen areas in the subsurface. At the hydrostatic pingo a massive ice core as well as a surrounding talik could be detected, but the location of the ice core and the talik differs from previous published assumptions. In contrast to acknowledged theory, at our site the massive ice core is not located in the center of the pingo but at the western edge, whereas the eastern flank is underlain by a talik, which surrounds the massive ice core. At the hydraulic pingo, the expected internal structure could be confirmed and the pathway of upwelling water could also be detected. The combined approach of the applied methods represents the first known three-dimensional geoelectrical investigation of pingos and provides new insights into the internal structure and architecture of the two different pingo types. The chosen approach allows further conclusions on the formation of these permafrost-affected landforms.}, language = {en} } @article{EmmertKneisel2021, author = {Emmert, Adrian and Kneisel, Christof}, title = {Internal structure and palsa development at Orravatnsr{\´u}stir Palsa Site (Central Iceland), investigated by means of integrated resistivity and ground-penetrating radar methods}, series = {Permafrost and Periglacial Processes}, volume = {32}, journal = {Permafrost and Periglacial Processes}, number = {3}, doi = {10.1002/ppp.2106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238933}, pages = {503 -- 519}, year = {2021}, abstract = {The natural cyclical development of palsas makes it difficult to use visible signs of decay as reference points for environmental change. Thus, to determine the actual development stage of a palsa, investigations of the internal structure are crucial. Our study presents 2-D and 3-D electrical resistivity imaging (ERI) and 2-D ground-penetrating radar (GPR) results, measurements of surface and subsurface temperatures, and of the soil matric potential from Orravatnsr{\´u}stir Palsa Site in Central Iceland. By a joint interpretation of the results, we deduce the internal structure (i.e., thickness of thaw zone and permafrost, ice/water content) of five palsas of different size and shape. The results differentiate between initial and mature development stages and show that palsas of different development stages can exist in close proximity. While internal characteristics indicate undisturbed development of four palsas, one palsa shows indications of environmental change. Our study shows the value of the multimethod geophysical approach and introduces measurements of the soil matric potential as a promising method to assess the current state of the subsurface.}, language = {en} }