@article{MaerzKurlbaumRocheLancasteretal.2021, author = {M{\"a}rz, Juliane and Kurlbaum, Max and Roche-Lancaster, Oisin and Deutschbein, Timo and Peitzsch, Mirko and Prehn, Cornelia and Weismann, Dirk and Robledo, Mercedes and Adamski, Jerzy and Fassnacht, Martin and Kunz, Meik and Kroiss, Matthias}, title = {Plasma Metabolome Profiling for the Diagnosis of Catecholamine Producing Tumors}, series = {Frontiers in Endocrinology}, volume = {12}, journal = {Frontiers in Endocrinology}, issn = {1664-2392}, doi = {10.3389/fendo.2021.722656}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245710}, year = {2021}, abstract = {Context Pheochromocytomas and paragangliomas (PPGL) cause catecholamine excess leading to a characteristic clinical phenotype. Intra-individual changes at metabolome level have been described after surgical PPGL removal. The value of metabolomics for the diagnosis of PPGL has not been studied yet. Objective Evaluation of quantitative metabolomics as a diagnostic tool for PPGL. Design Targeted metabolomics by liquid chromatography-tandem mass spectrometry of plasma specimens and statistical modeling using ML-based feature selection approaches in a clinically well characterized cohort study. Patients Prospectively enrolled patients (n=36, 17 female) from the Prospective Monoamine-producing Tumor Study (PMT) with hormonally active PPGL and 36 matched controls in whom PPGL was rigorously excluded. Results Among 188 measured metabolites, only without considering false discovery rate, 4 exhibited statistically significant differences between patients with PPGL and controls (histidine p=0.004, threonine p=0.008, lyso PC a C28:0 p=0.044, sum of hexoses p=0.018). Weak, but significant correlations for histidine, threonine and lyso PC a C28:0 with total urine catecholamine levels were identified. Only the sum of hexoses (reflecting glucose) showed significant correlations with plasma metanephrines. By using ML-based feature selection approaches, we identified diagnostic signatures which all exhibited low accuracy and sensitivity. The best predictive value (sensitivity 87.5\%, accuracy 67.3\%) was obtained by using Gradient Boosting Machine Modelling. Conclusions The diabetogenic effect of catecholamine excess dominates the plasma metabolome in PPGL patients. While curative surgery for PPGL led to normalization of catecholamine-induced alterations of metabolomics in individual patients, plasma metabolomics are not useful for diagnostic purposes, most likely due to inter-individual variability.}, language = {en} } @article{KuehnemundtLeifeldSchergetal.2021, author = {K{\"u}hnemundt, Johanna and Leifeld, Heidi and Scherg, Florian and Schmitt, Matthias and Nelke, Lena C. and Schmitt, Tina and Bauer, Florentin and G{\"o}ttlich, Claudia and Fuchs, Maximilian and Kunz, Meik and Peindl, Matthias and Br{\"a}hler, Caroline and Kronenthaler, Corinna and Wischhusen, J{\"o}rg and Prelog, Martina and Walles, Heike and Dandekar, Thomas and Dandekar, Gudrun and Nietzer, Sarah L.}, title = {Modular micro-physiological human tumor/tissue models based on decellularized tissue for improved preclinical testing}, series = {ALTEX}, volume = {38}, journal = {ALTEX}, doi = {10.14573/altex.2008141}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231465}, pages = {289-306}, year = {2021}, abstract = {High attrition-rates entailed by drug testing in 2D cell culture and animal models stress the need for improved modeling of human tumor tissues. In previous studies our 3D models on a decellularized tissue matrix have shown better predictivity and higher chemoresistance. A single porcine intestine yields material for 150 3D models of breast, lung, colorectal cancer (CRC) or leukemia. The uniquely preserved structure of the basement membrane enables physiological anchorage of endothelial cells and epithelial-derived carcinoma cells. The matrix provides different niches for cell growth: on top as monolayer, in crypts as aggregates and within deeper layers. Dynamic culture in bioreactors enhances cell growth. Comparing gene expression between 2D and 3D cultures, we observed changes related to proliferation, apoptosis and stemness. For drug target predictions, we utilize tumor-specific sequencing data in our in silico model finding an additive effect of metformin and gefitinib treatment for lung cancer in silico, validated in vitro. To analyze mode-of-action, immune therapies such as trispecific T-cell engagers in leukemia, as well as toxicity on non-cancer cells, the model can be modularly enriched with human endothelial cells (hECs), immune cells and fibroblasts. Upon addition of hECs, transmigration of immune cells through the endothelial barrier can be investigated. In an allogenic CRC model we observe a lower basic apoptosis rate after applying PBMCs in 3D compared to 2D, which offers new options to mirror antigen-specific immunotherapies in vitro. In conclusion, we present modular human 3D tumor models with tissue-like features for preclinical testing to reduce animal experiments.}, language = {en} }