@article{EgenolfAltenschildescheKressetal.2021, author = {Egenolf, Nadine and Altenschildesche, Caren Meyer zu and Kreß, Luisa and Eggermann, Katja and Namer, Barbara and Gross, Franziska and Klitsch, Alexander and Malzacher, Tobias and Kampik, Daniel and Malik, Rayaz A. and Kurth, Ingo and Sommer, Claudia and {\"U}{\c{c}}eyler, Nurcan}, title = {Diagnosing small fiber neuropathy in clinical practice: a deep phenotyping study}, series = {Therapeutic Advances in Neurological Disorders}, volume = {14}, journal = {Therapeutic Advances in Neurological Disorders}, issn = {1756-2864}, doi = {10.1177/17562864211004318}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232019}, year = {2021}, abstract = {Background and aims: Small fiber neuropathy (SFN) is increasingly suspected in patients with pain of uncertain origin, and making the diagnosis remains a challenge lacking a diagnostic gold standard. Methods: In this case-control study, we prospectively recruited 86 patients with a medical history and clinical phenotype suggestive of SFN. Patients underwent neurological examination, quantitative sensory testing (QST), and distal and proximal skin punch biopsy, and were tested for pain-associated gene loci. Fifty-five of these patients additionally underwent pain-related evoked potentials (PREP), corneal confocal microscopy (CCM), and a quantitative sudomotor axon reflex test (QSART). Results: Abnormal distal intraepidermal nerve fiber density (IENFD) (60/86, 70\%) and neurological examination (53/86, 62\%) most frequently reflected small fiber disease. Adding CCM and/or PREP further increased the number of patients with small fiber impairment to 47/55 (85\%). Genetic testing revealed potentially pathogenic gene variants in 14/86 (16\%) index patients. QST, QSART, and proximal IENFD were of lower impact. Conclusion: We propose to diagnose SFN primarily based on the results of neurological examination and distal IENFD, with more detailed phenotyping in specialized centers.}, language = {en} } @article{LangeSteigerwaldMalzacheretal.2021, author = {Lange, Florian and Steigerwald, Frank and Malzacher, Tobias and Brandt, Gregor Alexander and Odorfer, Thorsten Michael and Roothans, Jonas and Reich, Martin M. and Fricke, Patrick and Volkmann, Jens and Matthies, Cordula and Capetian, Philipp D.}, title = {Reduced Programming Time and Strong Symptom Control Even in Chronic Course Through Imaging-Based DBS Programming}, series = {Frontiers in Neurology}, volume = {12}, journal = {Frontiers in Neurology}, issn = {1664-2295}, doi = {10.3389/fneur.2021.785529}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249634}, year = {2021}, abstract = {Objectives: Deep brain stimulation (DBS) programming is based on clinical response testing. Our clinical pilot trial assessed the feasibility of image-guided programing using software depicting the lead location in a patient-specific anatomical model. Methods: Parkinson's disease patients with subthalamic nucleus-DBS were randomly assigned to standard clinical-based programming (CBP) or anatomical-based (imaging-guided) programming (ABP) in an 8-week crossover trial. Programming characteristics and clinical outcomes were evaluated. Results: In 10 patients, both programs led to similar motor symptom control (MDS-UPDRS III) after 4 weeks (medicationOFF/stimulationON; CPB: 18.27 ± 9.23; ABP: 18.37 ± 6.66). Stimulation settings were not significantly different, apart from higher frequency in the baseline program than CBP (p = 0.01) or ABP (p = 0.003). Time spent in a program was not significantly different (CBP: 86.1 ± 29.82\%, ABP: 88.6 ± 29.0\%). Programing time was significantly shorter (p = 0.039) with ABP (19.78 ± 5.86 min) than CBP (45.22 ± 18.32). Conclusion: Image-guided DBS programming in PD patients drastically reduces programming time without compromising symptom control and patient satisfaction in this small feasibility trial.}, language = {en} }