@article{UhlerRedlichZhangetal.2021, author = {Uhler, Johannes and Redlich, Sarah and Zhang, Jie and Hothorn, Torsten and Tobisch, Cynthia and Ewald, J{\"o}rg and Thorn, Simon and Seibold, Sebastian and Mitesser, Oliver and Morin{\`e}re, J{\´e}r{\^o}me and Bozicevic, Vedran and Benjamin, Caryl S. and Englmeier, Jana and Fricke, Ute and Ganuza, Cristina and Haensel, Maria and Riebl, Rebekka and Rojas-Botero, Sandra and Rummler, Thomas and Uphus, Lars and Schmidt, Stefan and Steffan-Dewenter, Ingolf and M{\"u}ller, J{\"o}rg}, title = {Relationships of insect biomass and richness with land use along a climate gradient}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-26181-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265058}, year = {2021}, abstract = {Recently reported insect declines have raised both political and social concern. Although the declines have been attributed to land use and climate change, supporting evidence suffers from low taxonomic resolution, short time series, a focus on local scales, and the collinearity of the identified drivers. In this study, we conducted a systematic assessment of insect populations in southern Germany, which showed that differences in insect biomass and richness are highly context dependent. We found the largest difference in biomass between semi-natural and urban environments (-42\%), whereas differences in total richness (-29\%) and the richness of threatened species (-56\%) were largest from semi-natural to agricultural environments. These results point to urbanization and agriculture as major drivers of decline. We also found that richness and biomass increase monotonously with increasing temperature, independent of habitat. The contrasting patterns of insect biomass and richness question the use of these indicators as mutual surrogates. Our study provides support for the implementation of more comprehensive measures aimed at habitat restoration in order to halt insect declines.}, language = {en} } @article{RothHackerHeidrichetal.2021, author = {Roth, Nicolas and Hacker, Herrmann Heinrich and Heidrich, Lea and Friess, Nicolas and Garc{\´i}a-Barroas, Enrique and Habel, Jan Christian and Thorn, Simon and M{\"u}ler, J{\"o}rg}, title = {Host specificity and species colouration mediate the regional decline of nocturnal moths in central European forests}, series = {Ecography}, volume = {44}, journal = {Ecography}, number = {6}, doi = {10.1111/ecog.05522}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258731}, pages = {941-952}, year = {2021}, abstract = {The high diversity of insects has limited the volume of long-term community data with a high taxonomic resolution and considerable geographic replications, especially in forests. Therefore, trends and causes of changes are poorly understood. Here we analyse trends in species richness, abundance and biomass of nocturnal macro moths in three quantitative data sets collected over four decades in forests in southern Germany. Two local data sets, one from coppiced oak forests and one from high oak forests included 125K and 48K specimens from 559 and 532 species, respectively. A third regional data set, representing all forest types in the temperate zone of central Europe comprised 735K specimens from 848 species. Generalized additive mixed models revealed temporal declines in species richness (-38\%), abundance (-53\%) and biomass (-57\%) at the regional scale. These were more pronounced in plant host specialists and in dark coloured species. In contrast, the local coppiced oak forests showed an increase, in species richness (+62\%), while the high oak forests showed no clear trends. Left and right censoring as well as cross validation confirmed the robustness of the analyses, which led to four conclusions. First, the decline in insects appears in hyper diverse insect groups in forests and affects species richness, abundance and biomass. Second, the pronounced decline in host specialists suggests habitat loss as an important driver of the observed decline. Third, the more severe decline in dark species might be an indication of global warming as a potential driver. Fourth, the trends in coppiced oak forests indicate that maintaining complex and diverse forest ecosystems through active management may be a promising conservation strategy in order to counteract negative trends in biodiversity, alongside rewilding approaches.}, language = {en} } @article{LeverkusThornGustafssonetal.2021, author = {Leverkus, Alexandro B. and Thorn, Simon and Gustafsson, Lena and Noss, Reed and M{\"u}ller, J{\"o}rg and Pausas, Juli G. and Lindenmayer, David B.}, title = {Environmental policies to cope with novel disturbance regimes-steps to address a world scientists' warning to humanity}, series = {Environmental Research Letters}, volume = {16}, journal = {Environmental Research Letters}, number = {2}, issn = {1748-9326}, doi = {10.1088/1748-9326/abdc5a}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254180}, year = {2021}, abstract = {No abstract available.}, language = {en} } @article{HaggeMuellerBirkemoeetal.2021, author = {Hagge, Jonas and M{\"u}ller, J{\"o}rg and Birkemoe, Tone and Buse, J{\"o}rn and Christensen, Rune Haubo Bojesen and Gossner, Martin M. and Gruppe, Axel and Heibl, Christoph and Jarzabek-M{\"u}ller, Andrea and Seibold, Sebastian and Siitonen, Juha and Soutinho, Jo{\~a}o Gon{\c{c}}alo and Sverdrup-Thygeson, Anne and Thorn, Simon and Drag, Lukas}, title = {What does a threatened saproxylic beetle look like? Modelling extinction risk using a new morphological trait database}, series = {Journal of Animal Ecology}, volume = {90}, journal = {Journal of Animal Ecology}, number = {8}, doi = {10.1111/1365-2656.13512}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244717}, pages = {1934 -- 1947}, year = {2021}, abstract = {The extinction of species is a non-random process, and understanding why some species are more likely to go extinct than others is critical for conservation efforts. Functional trait-based approaches offer a promising tool to achieve this goal. In forests, deadwood-dependent (saproxylic) beetles comprise a major part of threatened species, but analyses of their extinction risk have been hindered by the availability of suitable morphological traits. To better understand the mechanisms underlying extinction in insects, we investigated the relationships between morphological features and the extinction risk of saproxylic beetles. Specifically, we hypothesised that species darker in colour, with a larger and rounder body, a lower mobility, lower sensory perception and more robust mandibles are at higher risk. We first developed a protocol for morphological trait measurements and present a database of 37 traits for 1,157 European saproxylic beetle species. Based on 13 selected, independent traits characterising aspects of colour, body shape, locomotion, sensory perception and foraging, we used a proportional-odds multiple linear mixed-effects model to model the German Red List categories of 744 species as an ordinal index of extinction risk. Six out of 13 traits correlated significantly with extinction risk. Larger species as well as species with a broad and round body had a higher extinction risk than small, slim and flattened species. Species with short wings had a higher extinction risk than those with long wings. On the contrary, extinction risk increased with decreasing wing load and with higher mandibular aspect ratio (shorter and more robust mandibles). Our study provides new insights into how morphological traits, beyond the widely used body size, determine the extinction risk of saproxylic beetles. Moreover, our approach shows that the morphological characteristics of beetles can be comprehensively represented by a selection of 13 traits. We recommend them as a starting point for functional analyses in the rapidly growing field of ecological and conservation studies of deadwood.}, language = {en} } @article{KriegelFritzeThorn2021, author = {Kriegel, Peter and Fritze, Michael-Andreas and Thorn, Simon}, title = {Surface temperature and shrub cover drive ground beetle (Coleoptera: Carabidae) assemblages in short-rotation coppices}, series = {Agricultural and Forest Entomology}, volume = {23}, journal = {Agricultural and Forest Entomology}, number = {4}, doi = {10.1111/afe.12441}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239873}, pages = {400 -- 410}, year = {2021}, abstract = {Increasing demand for biomass has led to an on-going intensification of fuel wood plantations with possible negative effects on open land biodiversity. Hence, ecologists increasingly call for measures that reduce those negative effects on associated biodiversity. However, our knowledge about the efficiency of such measures remains scarce. We investigated the effects of gap implementation in short rotation coppices (SRCs) on carabid diversity and assemblage composition over 3 years, with pitfall traps in gaps, edges and interiors. In parallel, we quantified soil surface temperature, shrub- and herb cover. Edges had the highest number of species and abundances per trap, whereas rarefied species richness was significantly lower in short rotation coppice interiors than in other habitat types. Carabid community composition differed significantly between habitat types. The main environmental drivers were temperature for number of species and abundance and shrub cover for rarefied species richness. We found significantly higher rarefied species richness in gaps compared with interiors. Hence, we argue that gap implementation benefits overall diversity in short rotation coppices. Furthermore, the differences in species community composition between habitat types through increased species turnover support carabid diversity in short rotation coppices. These positive effects were largely attributed to microclimate conditions. However, to maintain positive effects, continuous management of herb layer might be necessary.}, language = {en} } @article{VogelPrinzingBussleretal.2021, author = {Vogel, Sebastian and Prinzing, Andreas and Bußler, Heinz and M{\"u}ller, J{\"o}rg and Schmidt, Stefan and Thorn, Simon}, title = {Abundance, not diversity, of host beetle communities determines abundance and diversity of parasitoids in deadwood}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {11}, doi = {10.1002/ece3.7535}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238892}, pages = {6881 -- 6888}, year = {2021}, abstract = {Most parasites and parasitoids are adapted to overcome defense mechanisms of their specific hosts and hence colonize a narrow range of host species. Accordingly, an increase in host functional or phylogenetic dissimilarity is expected to increase the species diversity of parasitoids. However, the local diversity of parasitoids may be driven by the accessibility and detectability of hosts, both increasing with increasing host abundance. Yet, the relative importance of these two mechanisms remains unclear. We parallelly reared communities of saproxylic beetle as potential hosts and associated parasitoid Hymenoptera from experimentally felled trees. The dissimilarity of beetle communities was inferred from distances in seven functional traits and from their evolutionary ancestry. We tested the effect of host abundance, species richness, functional, and phylogenetic dissimilarities on the abundance, species richness, and Shannon diversity of parasitoids. Our results showed an increase of abundance, species richness, and Shannon diversity of parasitoids with increasing beetle abundance. Additionally, abundance of parasitoids increased with increasing species richness of beetles. However, functional and phylogenetic dissimilarity showed no effect on the diversity of parasitoids. Our results suggest that the local diversity of parasitoids, of ephemeral and hidden resources like saproxylic beetles, is highest when resources are abundant and thereby detectable and accessible. Hence, in some cases, resources do not need to be diverse to promote parasitoid diversity.}, language = {en} } @article{VogelBusslerFinnbergetal.2021, author = {Vogel, Sebastian and Bussler, Heinz and Finnberg, Sven and M{\"u}ller, J{\"o}rg and Stengel, Elisa and Thorn, Simon}, title = {Diversity and conservation of saproxylic beetles in 42 European tree species: an experimental approach using early successional stages of branches}, series = {Insect Conservation and Diversity}, volume = {14}, journal = {Insect Conservation and Diversity}, number = {1}, doi = {10.1111/icad.12442}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218401}, pages = {132 -- 143}, year = {2021}, abstract = {Tree species diversity is important to maintain saproxylic beetle diversity in managed forests. Yet, knowledge about the conservational importance of single tree species and implications for forest management and conservation practices are lacking. We exposed freshly cut branch-bundles of 42 tree species, representing tree species native and non-native to Europe, under sun-exposed and shaded conditions for 1 year. Afterwards, communities of saproxylic beetles were reared ex situ for 2 years. We tested for the impact of tree species and sun exposure on alpha-, beta-, and gamma-diversity as well as composition of saproxylic beetle communities. Furthermore, the number of colonised tree species by each saproxylic beetle species was determined. Tree species had a lower impact on saproxylic beetle communities compared to sun exposure. The diversity of saproxylic beetles varied strongly among tree species, with highest alpha- and gamma-diversity found in Quercus petraea. Red-listed saproxylic beetle species occurred ubiquitously among tree species. We found distinct differences in the community composition of broadleaved and coniferous tree species, native and non-native tree species as well as sun-exposed and shaded deadwood. Our study enhances the understanding of the importance of previously understudied and non-native tree species for the diversity of saproxylic beetles. To improve conservation practices for saproxylic beetles and especially red-listed species, we suggest a stronger incorporation of tree species diversity and sun exposure of into forest management strategies, including the enrichment of deadwood from native and with a specific focus on locally rare or silviculturally less important tree species.}, language = {en} }