@phdthesis{Makgotlho2014, author = {Makgotlho, Phuti Edward}, title = {Molecular characterization of the staphylococcal two component system sae and its role in the regulation of the adhesin Eap under SDS stress stimulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149403}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The Staphylococcus aureus two component system (TCS) sae governs expression of numerous virulence factors, including Eap (extracellular adherence protein), which in turn among other functions also mediates invasion of host cells. The sae TCS is encoded by the saePQRS operon, with saeS coding for the sensor histidine kinase (SaeS) and saeR encoding the response regulator (SaeR). The saeRS system is preceded by two additional open reading frames (ORFs), saeP and saeQ, which are predicted to encode a lipoprotein (SaeP) and a membrane protein (SaeQ), respectively. Earlier, we have shown that SDS-containing subinhibitory concentrations of biocides (Perform®) and SDS alone activate sae transcription and increase cellular invasiveness in S. aureus strain Newman. The effect is associated with an amino acid exchange in the N-terminus of SaeS (L18P), specific to strain Newman. In this work, the role of whether the two additional genes, saePQ coding for the accessory proteins SaeP and SaeQ, respectively, are involved in SDS-mediated saeRS was investigated. It could demonstrated that the lack of the SaeP protein resulted in an increased saeRS transcription without SDS stress in both SaeSL/P variants, while the SDS effect was less pronounced on sae and eap expression compared to the Newman wildtype, suggesting that the SaeP protein represses the sae system. Also, SDS-mediated inductions of sae and eap transcription along with enhanced invasion were found to be dependent on presence of the SaeSP variant in Newman wildtype. On the other hand, the study also shows that the saePQ region of the sae operon is required for fully functional two-component system saeRS under normal growth conditions, but it is not involved in SDS-mediated activation of the saeS signaling and sae-target class I gene, eap. In the second approach, the study investigates whether SDS-induced sae expression and host cell invasion is common among S. aureus strains not carrying the (L18P) point mutation. To demonstrate this strain Newman, its isogenic saeS mutants, and various S. aureus isolates were analysed for sae, eap expression and cellular invasiveness. Among the strains tested, SDS exposure resulted only in an increase of sae transcription, Eap production and cellular invasiveness in strain Newman wild type and MRSA strain ST239-635/93R, the latter without an increase in Eap. Interestingly, the epidemic community-associated MRSA strain, USA300 LAC showed a biphasic response in sae transcription at different growth stages, which, however, was not accompanied by increased invasiveness. All other clinical isolates investigated displayed a decrease of the parameters tested. While in strain Newman the SDS effect was due to the saeSP allele, this was not the case in strain ST239-635/93R and the biphasic USA300 strains. Also, increased invasiveness of ST239-635/93R was found to be independent of Eap production. Furthermore, to investigate the global effect of SDS on sae target gene expression, strain Newman wild-type and Newman ∆sae were treated with SDS and analyzed for their transcription profiles of sae target genes using microarray assays. We could show that subinhibitory concentrations of SDS upregulate and downregulate gene expression of several signaling pathways involved in biosynthetic, metabolic pathways as well as virulence, host cell adherence, stress reponse and many hypothetical proteins. In summary, the study sheds light on the role of the upstream region saePQ in SDS-mediated saeRS and eap expression during S. aureus SDS stress. Most importantly, the study also shows that subinhibitory SDS concentrations have pronounced strain-dependent effects on sae transcription and subsequent host cell invasion in S. aureus, with the latter likely to be mediated in some strains by other factors than the known invasin Eap and FnBP proteins. Moreover, there seems to exist more than the saeSP-mediated mechanism for SDS-induced sae transcription in clinical S. aureus isolates. These results help to further understand and clarify virulence and pathogenesis mechanisms and their regulation in S. aureus.}, subject = {Staphylococcus aureus}, language = {en} } @phdthesis{Koch2014, author = {Koch, Miriam}, title = {Role of Coagulation Factor XII in Atherosclerosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97850}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Atherosclerosis is considered a chronic inflammatory disease of the arterial vessel wall which is not only modulated by innate and adaptive immune responses but also by factors of the blood coagulation system. In general hypercoagulability seems to increase the development and progression of experimental atherosclerosis in mice on an atherogenic background. In addition, the great majority of coagulation proteins including coagulation factor XII (FXII) have been detected in early and advanced human atherosclerotic lesions supporting the cross-link between the coagulation system and atherosclerosis. Moreover, FXII has been detected in close proximity to macrophages, foam cells and smooth muscle cells in these lesions and has been demonstrated to be functionally active in human plaques. Although these data indicate that factor XII may play a role in atherogenesis a direct contribution of FXII to atherogenesis has not been addressed experimentally to date. Furthermore, clinical studies examining the function of FXII in vascular disease have yielded conflicting results. Hence, in order to investigate the function of coagulation factor XII in atherosclerosis apolipoprotein E and FXII-deficient (F12\(^{-/-}\) apoE\(^{-/-}\)) mice were employed. Compared to F12\(^{+/+}\)apoE\(^{-/-}\) controls, atherosclerotic lesion formation was reduced in F12\(^{-/-}\)apoE\(^{-/-}\) mice, associated with diminished systemic T-cell activation and Th1-cell polarization after 12 weeks of high fat diet. Moreover, a significant decrease in plasma levels of complement factor C5a was evidenced in F12\(^{-/-}\)apoE\(^{-/-}\) mice. Interestingly, C5a increased the production of interleukin-12 (IL-12) in dendritic cells (DCs) and enhanced their capacity to trigger antigen-specific interferon-gamma (IFNγ) production in OTII CD4\(^+\) T cells in vitro. Importantly, a reduction in frequencies of IL-12 expressing splenic DCs from atherosclerotic F12\(^{-/-}\)apoE\(^{-/-}\) versus F12\(^{+/+}\)apoE\(^{-/-}\) mice was observed in vivo, accompanied by a diminished splenic Il12 transcript expression and significantly reduced IL-12 serum levels. Consequently, these data reveal FXII to play an important role in atherosclerotic lesion formation and to promote DC-induced and systemic IL 12 expression as well as pro-inflammatory T-cell responses likely at least in part via the activation of the complement system.}, subject = {Gerinnungsfaktor XII}, language = {en} } @phdthesis{Knobloch2014, author = {Knobloch, Gunnar}, title = {Biochemical and structural characterization of chronophin}, doi = {10.25972/OPUS-11008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110088}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The haloacid dehalogenase (HAD) family of phosphatases is an ancient, ubiquitous group of enzymes, and their emerging role in human health and disease make them attractive targets for detailed analyses. This thesis comprises the biochemical and structural characterization of chronophin, an HAD-type phosphatase, which has been shown to act on Ser3-phosphorylated cofiln-1, a key regulator of actin dynamics, and on the Ser/Thr-phosphorylated steroid receptor co-activator 3 (SRC-3). Besides being a specific phosphoprotein phosphatase, chronophin also acts on the small molecule pyridoxal 5'-phosphate (PLP, vitamin B6), implying that chronophin serves as a regulator of a variety important physiological pathways. The analysis of chronophin was performed on different levels, ranging from intrinsic regulatory mechanisms, such as the allosteric regulation via dimerization or the characterization of specificity determinants, to modes of extrinsic modulation, including the association with putative interacting proteins or the generation of chronophin-specific inhibitors. The association of the previously identified putative chronophin interactors calcium- and integrinbinding protein 1 (CIB1) and calmodulin was investigated using recombinantly expressed and purified proteins. These studies revealed that the interaction of chronophin with CIB1 or calmodulin is mutually exclusive and regulated by calcium. Neither CIB1 nor calmodulin had an effect on the in vitro chronophin phosphatase activity towards PLP or phospho-cofilin-1, but might regulate other functions of this important phosphatase. The role of chronophin dimerization was studied by generating a constitutively monomeric variant, which showed reduced PLP hydrolyzing activity. X-ray crystallographic studies revealed that dimerization is essential for the positioning of the substrate specificity loop in chronophin, unraveling a previously unknown mechanism of allosteric regulation through a homophilic interaction. This mechanism potentially applies to other enzymes of the C2a subfamily of HAD-type phosphatases, as all structurally characterized members show a conserved mode of dimerization. The general determinants of substrate specificity in the C2a subfamily of HAD phosphatases were investigated by performing domain swapping experiments with chronophin and its paralog AUM and subsequent biochemical analyses of the hybrid proteins. The X-ray crystallographic structure determination of the chronophin catalytic domain equipped with the AUM capping domain revealed the first partial structure of AUM. This structural information was then used in subsequent studies that analyzed the divergent substrate specificities of AUM and chronophin in an evolutionary context. Finally, a set of four chronophin inhibitors were generated based on the structure of PLP and characterized biochemically, showing moderate inhibitory effects with IC50-values in the micromolar range. These compounds nevertheless constitute valuable tools for future in vitro experiments, such as studies concerning the structure-function relationship of chronophin as a PLP phosphatase. In addition, the crystal structure of one inhibitor bound to chronophin could be solved. These results provide the basis for the further development of competitive chronophin inhibitors with increased specificity and potency.}, subject = {Phosphatasen}, language = {en} } @phdthesis{Schaefer2014, author = {Sch{\"a}fer, Christin Marliese}, title = {Approaching antimicrobial resistance - Structural and functional characterization of the fungal transcription factor Mrr1 from Candida albicans and the bacterial ß-ketoacyl-CoA thiolase FadA5 from Mycobacterium tuberculosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108400}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The number of fungal infections is rising in Germany and worldwide. These infections are mainly caused by the opportunistic fungal pathogen C. albicans, which especially harms immunocompromised people. With increasing numbers of fungal infections, more frequent and longer lasting treatments are necessary and lead to an increase of drug resistances, for example against the clinically applied therapeutic fluconazole. Drug resistance in C. albicans can be mediated by the Multidrug resistance pump 1 (Mdr1), a membrane transporter belonging to the major facilitator family. However, Mdr1-mediated fluconazole drug resistance is caused by the pump's regulator, the transcription factor Mrr1 (Multidrug resistance regulator 1). It was shown that Mrr1 is hyperactive without stimulation or further activation in resistant strains which is due to so called gain of function mutations in the MRR1 gene. To understand the mechanism that lays behind this constitutive activity of Mrr1, the transcription factor should be structurally and functionally (in vitro) characterized which could provide a basis for successful drug development to target Mdr1-mediated drug resistance caused by Mrr1. Therefore, the entire 1108 amino acid protein was successfully expressed in Escherichia coli. However, further purification was compromised as the protein tended to form aggregates, unsuitable for crystallization trials or further characterization experiments. Expression trials in the eukaryote Pichia pastoris neither yielded full length nor truncated Mrr1 protein. In order to overcome the aggregation problem, a shortened variant, missing the N-terminal 249 amino acids named Mrr1 '250', was successfully expressed in E. coli and could be purified without aggregation. Similar to the wild type Mrr1 '250', selected gain of function variants were successfully cloned, expressed and purified with varying yields and with varying purity. The Mrr1 `250' construct contains most of the described regulatory domains of Mrr1. It was used for crystallization and an initial comparative analysis between the wild type protein and the variants. The proposed dimeric form of the transcription factor, necessary for DNA binding, could be verified for both, the wild type and the mutant proteins. Secondary structure analysis by circular dichroism measurements revealed no significant differences in the overall fold of the wild type and variant proteins. In vitro, the gain of function variants seem to be less stable compared to the wild type protein, as they were more prone to degradation. Whether this observation holds true for the full length protein's stability in vitro and in vivo remains to be determined. The crystallization experiments, performed with the Mrr1 '250' constructs, led to few small needle shaped or cubic crystals, which did not diffract very well and were hardly reproducible. Therefore no structural information of the transcription factor could be gained so far. Infections with M. tuberculosis, the causative agent of tuberculosis, are the leading cause of mortality among bacterial diseases. Especially long treatment times, an increasing number of resistant strains and the prevalence of for decades persisting bacteria create the necessity for new drugs against this disease. The cholesterol import and metabolism pathways were discovered as promising new targets and interestingly they seem to play an important role for the chronic stage of the tuberculosis infection and for persisting bacteria. In this thesis, the 3-ketoacyl-CoA thiolase FadA5 from M. tuberculosis was characterized and the potential for specifically targeting this enzyme was investigated. FadA5 catalyzes the last step of the β-oxidation reaction in the side-chain degradation pathway of cholesterol. We solved the three dimensional structure of this enzyme by X-ray crystallography and obtained two different apo structures and three structures in complex with acetyl-CoA, CoA and a hydrolyzed steroid-CoA, which is the natural product of FadA5. Analysis of the FadA5 apo structures revealed a typical thiolase fold as it is common for biosynthetic and degradative enzymes of this class for one of the structures. The second apo structure showed deviations from the typical thiolase fold. All obtained structures show the enzyme as a dimer, which is consistent with the observed dimer formation in solution. Thus the dimer is likely to be the catalytically active form of the enzyme. Besides the characteristic structural fold, the catalytic triad, comprising two cysteines and one histidine, as well as the typical coenzyme A binding site of enzymes belonging to the thiolase class could be identified. The two obtained apo structures differed significantly from each other. One apo structure is in agreement with the characteristic thiolase fold and the well-known dimer interface could be identified in our structure. The same characteristics were observed in all complex structures. In contrast, the second apo structure followed the thiolase fold only partially. One subdomain, spanning 30 amino acids, was in a different orientation. This reorientation was caused by the formation of two disulfide bonds, including the active site cysteines, which rendered the enzyme inactive. The disulfide bonds together with the resulting domain swap still permitted dimer formation, yet with a significantly shifted dimer interface. The comparison of the apo structures together with the preliminary activity analysis performed by our collaborator suggest, that FadA5 can be inactivated by oxidation and reactivated by reduction. If this redox switch is of biological importance requires further evaluation, however, this would be the first reported example of a bacterial thiolase employing redox regulation. Our obtained complex structures represent different stages of the thiolase reaction cycle. In some complex structures, FadA5 was found to be acetylated at the catalytic cysteine and it was in complex with acetyl-CoA or CoA. These structures, together with the FadA5 structure in complex with a hydrolyzed steroid-CoA, revealed important insights into enzyme dynamics upon ligand binding and release. The steroid-bound structure is as yet a unique example of a thiolase enzyme interacting with a complex ligand. The characterized enzyme was used as platform for modeling studies and for comparison with human thiolases. These studies permitted initial conclusions regarding the specific targetability of FadA5 as a drug target against M. tuberculosis infection, taking the closely related human enzymes into account. Additional analyses led to the proposal of a specific lead compound based on the steroid and ligand interactions within the active site of FadA5.}, subject = {Multidrug-Resistenz}, language = {en} } @phdthesis{Bartlang2014, author = {Bartlang, Manuela Slavica}, title = {Timing is everything: The interaction of psychosocial stress and the circadian clock in male C57BL/6 mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106486}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Due to the rotation of the earth in the solar system all inhabitants of our planet are exposed to regular environmental changes since more than 3.5 billion years. In order to anticipate these predictable changes in the environment, evolutionarily conserved biological rhythms have evolved in most organisms - ranging from ancient cyanobacteria up to human beings - and also at different levels of organization - from single cells up to behavior. These rhythms are endogenously generated by so called circadian clocks in our body and entrained to the 24 h cycle by external timing cues. In multi-cellular organisms the majority of the cells in the body is equipped with such an oscillator. In mammals, the circadian system is structured in a hierarchical fashion: A central pacemaker resides in the bilateral suprachiasmatic nucleus (SCN) of the hypothalamus, while subsidiary peripheral clocks exist in nearly every tissue and organ. In contrast to the aforementioned recurrent environmental changes most organisms are also exposed to unpredictable changes in the environment. In order to adapt to these sudden alterations the acute activation of the stress response system, involving the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system, displays a fundamental survival mechanism. However, if activation of the stress system becomes chronic, devastating somatic and affective disorders might be the consequence. At first glance, the circadian and the stress system seem to represent two separate bodily control systems that are involved in adaptation to predictable and unpredictable stimuli, respectively. However, both systems are fundamental for survival, and thus, communicate with each other at various levels. Early studies already demonstrated that stressor exposure at different times of the diurnal cycle generates different stress effects, whereupon the type of stressor plays a pivotal role. Moreover, alterations in the SCN and peripheral circadian clocks could be shown following stressor exposure. In cooperation with various co-workers, I investigated whether the stress responsiveness is modulated by the endogenous clock in a diurnal fashion and whether repeated psychosocial stress impacts the circadian clock depending on the time of day of stressor exposure. Therefore, male C57BL/6 mice were repeatedly exposed to a psychosocial stressor, either at the beginning of the inactive/light phase (SDL mice) or active/dark phase (SDD mice). Subsequently, different behavioral, physiological/endocrine and immunological/ inflammatory consequences were assessed. It could be shown that the effects of repeated psychosocial stressor exposure strongly depend on the time of day of stressor exposure. The present results demonstrate that repeated daily stressor exposure has a more negative outcome when applied during the active/dark phase compared to the inactive/light phase. Stressor exposure during the active phase resulted in a loss of general activity, decreased interest in an unfamiliar conspecific, a shift towards a more pro-inflammatory body milieu, and rhythm disturbances in plasma hormones, all representing well-accepted hallmarks of depression. In contrast, C57BL/6 mice exposed to the stressor in their inactive phase exhibited minor physiological alterations that might prevent the formation of the maladaptive consequences mentioned above, thus representing beneficial adaptations. The second focus of this thesis was put on the investigation of the effects of repeated psychosocial stressor exposure at different times of the light-dark cycle on various levels of the circadian system. An increased expression of the PERIOD2 (PER2) protein, which represents an essential core clock component, could be found in the SCN of mice repeatedly exposed to the stressor during their active phase. In consistence with the alterations in the central circadian pacemaker, the daily rhythm of different hormones and the activity rhythm were considerably affected by SDD. Mice exposed to the psychosocial stressor in their active phase showed a shifted, or absent, rhythm of the hormones corticosterone and leptin. Moreover, their activity was found to be phase-delayed, which seems to be attributable to the Period (Per) gene since Per1/Per2 double-mutants still exhibited their normal activity rhythm following 19 days of stressor exposure during the active phase. In contrast, a phase-advance in the peripheral adrenal gland clock could be seen in C57BL/6 mice subjected to the stressor during their inactive phase. This phase-shift might be required for maintaining the normal rhythmicity in hormonal release and activity. It has previously been suggested that activation of the HPA axis upon stressor exposure at different times of the light-dark cycle is depending on whether the stressor is of physical or psychological nature. Data from the HPA axis analysis now refine previous findings, indicating that psychosocial stressors also modulate HPA axis responses based on the time of day of stressor presentation. The present results demonstrate that HPA axis activity was reduced following repeated stressor exposure during the active phase. It is reasonable to speculate that this reduced basal activity of the stress system represents a failure in HPA axis adjustment, which could contribute to the negative consequences of repeated psychosocial stressor exposure during the dark phase. Taken together, it can be concluded that the endogenous clock in mice modulates the stress responsiveness in a circadian fashion and that repeated psychosocial stressor exposure affects the biological clock depending on the time of day of stressor presentation. Thereby, stressor exposure during the active phase results in a more negative outcome as compared to stressor experience during the inactive phase. It is assumed that the interaction between the circadian clock and the stress system is a complex issue that might ensure that the endogenous clock does not get out of synchrony in any order.}, subject = {Maus}, language = {en} } @phdthesis{Classen2014, author = {Claßen, Alice}, title = {Diversity, traits and ecosystem services of pollinators along climate and land use gradients on Mount Kilimanjaro}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101292}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Since more than two centuries naturalists are fascinated by the profound changes in biodiversity observed along climatic gradients. Although the theories explaining changes in the diversity and the shape of organisms along climatic gradients belong to the foundations of modern ecology, our picture on the spatial patterns and drivers of biodiversity is far from being complete. Ambiguities in theory and data are common and past work has been strongly concentrated on plants and vertebrates. In the last two decades, interest in the fundamental processes structuring diversity along climatic gradients gained new impetus as they are expected to improve our understanding about how ecosystems will respond to global environmental changes. Global temperatures are rising faster than ever before; natural habitats are transformed into agricultural land and existing land use systems get more and more intensified to meet the demands of growing human populations. The fundamental shifts in the abiotic and biotic environment are proclaimed to affect ecosystems all over the world; however, precise predictions about how ecosystems respond to global changes are still lacking. We investigated diversity, traits and ecosystem services of wild bees along climate and land use gradients on Mount Kilimanjaro (Tanzania, East Africa). Wild bees play a major role in ecosystems, as they contribute to the reproduction and performance of wild and crop plants. Their responsiveness to environmental changes is therefore of high ecological and economic importance. Temperature and energy resources have often been suggested to be the main determinants of global and local species richness, but the mechanisms behind remain poorly understood. In the study described in chapter II we analyzed species richness patterns of wild bees along climate and land use gradients on Mount Kilimanjaro and disentangled the factors explaining most of the changes in bee richness. We found that floral resources had a weak but significant effect on pollinator abundance, which in turn was positively related to species richness. However, temperature was the strongest predictor of species richness, affecting species richness both directly and indirectly by positively influencing bee abundances. We observed higher levels of bee-flower-interactions at higher temperatures, independently of flower and bee abundances. This suggests that temperature restricts species richness by constraining the exploitation of resources by ectotherms. Current land use did not negatively affect species richness. We conclude that the richness of bees is explained by both temperature and resource availability, whereas temperature plays the dominant role as it limits the access of ectotherms to floral resources and may accelerate ecological and evolutionary processes that drive the maintenance and origination of diversity. Not only species numbers, but also morphological traits like body size are expected to be shaped by both physiological and energetic constraints along elevational gradients. Paradoxically, Bergmann´s rule predicts increases of body sizes in cooler climates resulting from physiological constraints, while species-energy theory suggests declines in the mean body size of species caused by increased extinction probabilities for large-bodied species in low-energy habitats. In chapter III we confronted this ambiguity with field data by studying community-wide body size variation of wild bees on Mt. Kilimanjaro. We found that along a 3680 m elevational gradient bee individuals became on average larger within species, while large species were increasingly absent from high-elevational communities. This demonstrates, on the one hand, how well-established, but apparently contrasting ecological theories can be merged through the parallel consideration of different levels of biological organization. On the other hand it signals that the extinction risk in the course of environmental change is not equally distributed among species within a community. Land use intensification is known to threaten biodiversity, but the consequences for ecosystem services are still a matter of debate. In chapter IV, we experimentally tested the single and combined contributions of pest predators and pollinators to coffee production along a land use intensification gradient on Mount Kilimanjaro. We found that pest predation increased fruit set by on average 9\%, while pollination increased fruit weight of coffee by on average 7.4\%. Land use had no significant effect on both ecosystem services. However, we found that in coffee plantations with most intensified land use, pollination services were virtually exclusively provided by the honey bee (Apis mellifera). The reliance on a single pollinator species is risky, as possible declines of that species may directly lower pollination services, resulting in yield losses. In contrast, pollination services in structurally complex homegardens were found to be provided by a diverse pollinator community, increasing the stability of pollination services in a long term. We showed that on Mount Kilimanjaro pollinator communities changed along elevational gradients in terms of species richness (chapter II) and trait composition (chapter III). Temperature and the temperature-mediated accessibility of resources were identified as important predictors of these patterns, which contributes to our fundamental understanding about the factors that shape ectothermic insect communities along climatic gradients. The strong temperature-dependence of pollinators suggests that temperature shifts in the course of global change are likely to affect pollinator communities. Pollinators might either profit from rising temperatures, or shift to higher elevations, which could result in related biotic attrition in the lowland with consequences for the provision of ecosystem services in cropping systems. Up to now, land use intensification had no significant impact on the diversity of pollinator communities and their ecosystem services. Pollinators might profit from the strong landscape heterogeneity in the region and from the amount of flower resources in the understory of cropping systems. However,progressing homogenization of the landscape and the pronounced application of pesticides could result in reduced diversity and dominance of single species, as we already found in sun coffee plantations. Such shifts in community compositions could threaten the stability of ecosystem services within cropping and natural systems in a long term.}, subject = {Kilimandscharo}, language = {en} } @phdthesis{Kindeketa2014, author = {Kindeketa, William Joseph}, title = {Pollination in wild plant communities along altitudinal and land use gradients Mount Kilimanjaro, Tanzania}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-100136}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {1. Pollination of sexually reproducing plants requires pollen transfer agents, which can be biotic, abiotic or a combination of biotic and abiotic agents. The dominance of one of pollination system in wild plant communities depends on climatic factors and/or degrees of anthropogenic influences, which have effects on pollinator diversity and pollination function. Anthropogenic activities and climate change are also considered as main causes of ongoing invasion of invasive species into wild and managed habitats which can bring up competition for pollinators with possible negative consequences for the reproduction of co-occurring native plant species. 2. The study aimed to determine pollination systems and pollination limitation of invasive and native plant communities in natural savannah between 870 - 1130 m and semi-natural (managed) grassland between 1300 - 1750 m above sea level; effects of flower density and pollinator abundance on seed production of cross-pollinated and self-pollinated plants; and relationships of bee abundance and the proportion of cross- pollinated plants at the southern slope of Mount Kilimanjaro, Tanzania. 3. Pollinator-exclusion, open pollination and supplemental hand-pollination treatments were applied to 27 plant species in savannah and grassland habitats. Flowers were counted in each clusters based upon their species. Pollinators were sampled by using pan traps. Information-theory-based multi-model averaging and generalized linear mixed effects models were used to identify and analyze the effects of flower density, pollinator abundance, pollination treatments and habitat types on seed production. Regression models were used to determine relationships of altitude with bee abundance, and with proportion of cross-pollinated plants. 4. My results show that mean seed numbers of native plants were significantly lower in pollinator-exclusion treatments than in open-pollination treatments, indicating their reliance on pollinators for reproductive success. In contrast, seed numbers of invasive plants were similar in pollinator-exclusion and open-pollination treatments, demonstrating an ability of reproduction without pollinators. Despite of higher levels of self-pollination in invasive plants, supplemental hand-pollination treatments revealed pollen limitation in grassland and marginally in savannah habitats. There were no significant difference in seed numbers between supplemental hand pollination and open pollination treatments of native plant communities in savannah and grassland, which indicates no pollination limitation in the studied ecological system for native communities. Besides, grassland plants produced comparatively more seeds than savannah plants, however seeds in grasslands were lighter than those of the savannah which may be due to nutrient limitation in grassland. 5. I found 12 cross-pollinated and 15 self-pollinated plants along altitudinal gradient after comparing seeds from pollinator-excluded and open-pollinated experiments. I also found that proportions of cross-pollinated plants and bee abundance simultaneously decreased with increasing altitude. All cross-pollinated plants were native and grew in savannah habitats, with an exception of one species. 6. Neither effects of focal flower density nor a significant interaction between focal flower densities and bee abundance for self-pollinated plants were observed. However, there were effects of focal flower densities and interactions of flower density with bee abundance for cross-pollinated plants. Non-focal flower density has no significant effects on seed production of cross-pollinated and self-pollinated plants. 7. The results show that native plants depend more on cross-pollination than invasive plants, despite of most native plants in managed habitat (grassland) rely on self-pollination for reproduction. The tendency of having more cross-pollinated plants in natural savannah which are in low altitude coincides with other finding that the cross-pollinated plants and bee abundance simultaneously decrease with increasing altitude. Therefore, our findings support the hypotheses that self-fertilization of flowering plants increases with increasing altitude, and pollinator limitation is most pronounced in managed or disturbed habitats. Despite of reduction of pollinators in grassland, only invasive plants experience pollen limitation, which may be due to poor integration with available pollinator networks. 8. I also found bee abundance and flower density are not the main pollination factors required by self-pollinated plants during reproduction. However, focal flower density, which influences pollinator diversity, is more applicable to cross-pollinated plants. Climate change and anthropogenic activities in natural habitats are factors that influence pollinator abundance and functioning, which lead to a shift of mating systems in plant communities so as to assure their reproduction.}, subject = {Best{\"a}ubungs{\"o}kologie}, language = {en} } @phdthesis{Fackler2014, author = {Fackler, Marc}, title = {Biochemical characterization of GAS2L3, a target gene of the DREAM complex}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103394}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {GAS2L3 was identified recently as a target gene of the DREAM complex (Reichert et al., 2010; Wolter et al., 2012). It was shown that GAS2L3 is expressed in a cell cycle specific manner and that depletion of the protein leads to defects in cytokinesis and genomic instability (Wolter et al., 2012). Major aim of this thesis was, to further characterize the biochemical properties and physiological function of GAS2L3. By in vitro co-sedimentation and bundling assays, GAS2L3 was identified as a cytoskeleton associated protein which bundles, binds and crosslinks F-actin and MTs. GST pulldown assays and co-immunoprecipitation experiments revealed that GAS2L3 interacts in vitro and in vivo with the chromosomal passenger complex (CPC), a very important regulator of mitosis and cytokinesis, and that the interaction is mediated by the GAR domain of GAS2L3 and the C-terminal part of Borealin and the N-terminal part of Survivin. Kinase assays showed that GAS2L3 is not a substrate of the CPC but is strongly phosphorylated by CDK1 in vitro. Depletion of GAS2L3 by shRNA influenced protein stability and activity of the CPC. However pharmacological studies showed that the decreased CPC activity is not responsible for the observed cytokinesis defects upon GAS2L3 depletion. Immunofluorescence experiments revealed that GAS2L3 is localized to the constriction zone by the CPC in a GAR dependent manner and that the GAR domain is important for proper protein function. New interacting proteins of GAS2L3 were identified by stable isotope labelling by amino acids in cell culture (SILAC) in combination with tandem affinity purification and subsequent mass spectrometrical analysis. Co-immunoprecipitation experiments further confirmed the obtained mass spectrometrical data. To address the physiological function of GAS2L3 in vivo, a conditional and a non-conditional knockout mouse strain was established. The non-conditional mouse strain showed a highly increased mortality rate before weaning age probably due to heart failure. The physiological function of GAS2L3 in vivo as well as the exact reason for the observed heart phenotype is not known at the moment.}, subject = {Zellzyklus}, language = {en} } @phdthesis{Seifried2014, author = {Seifried, Annegrit}, title = {Mechanistic insights into specificity determinants and catalytic properties of the haloacid dehalogenase-type phosphatase AUM}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101009}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Mammalian haloacid dehalogenase (HAD)-type phosphatases are an emerging family of enzymes with important functions in physiology and disease. HAD phosphatases can target diverse metabolites, lipids, DNA, and serine/threonine or tyrosine phosphorylated proteins with often high specificity (Seifried et al., 2013). These enzymes thus markedly enlarge the repertoire and substrate spectrum of mammalian phosphatases. However, the basis of HAD phosphatase substrate specificity is still elusive and a number of mammalian HAD phosphatases remain uncharacterized to date. This study characterizes the biochemical and structural properties of AUM (aspartate-based, ubiquitous, Mg2+-dependent phosphatase), a previously unexplored mammalian HAD phosphatase. In vitro phosphatase assays of purified, recombinant AUM showed phosphatase activity towards para-nitrophenyl phosphate and adenine and guanine nucleotide di- and triphosphates. Inhibitor studies indicated that similar to other HAD superfamily members, the AUM-catalyzed dephosphorylation reaction proceeds via a pentacovalent phosphoaspartate intermediate. In line with an aspartate-based catalytic mechanism, AUM was insensitive to inhibitors of serine/threonine phosphatases. The characterization of the purified recombinant murine enzyme also revealed that AUM exists in equilibrium between dimers and tetramers. AUM was identified as the closest, yet functionally distinct relative of chronophin, a pyridoxal 5'-phosphate and serine/threonine-directed phosphatase. Phylogenetic analyses showed that AUM and chronophin evolved via duplication of an ancestral gene at the origin of the vertebrates. In contrast to chronophin, AUM acts as a tyrosine-specific HAD-type phosphatase in vitro and in cells. To elucidate how AUM and chronophin achieve these distinct substrate preferences, comparative evolutionary analyses, biochemical approaches and structural analyses were combined. Swapping experiments of less homologous regions between AUM and chronophin were performed. The mutational analysis revealed residues important for AUM catalysis and specificity. A single differently conserved residue in the cap domain of AUM or chronophin is crucial for phosphatase specificity (AUML204, chronophinH182). The X-ray crystal structure of the AUM cap fused to the catalytic core of chronophin (CAC, PDB: 4BKM) was solved to 2.65 {\AA} resolution. It presents the first crystal structure of the murine AUM capping domain. The detailed view of the catalytic clefts of AUM and chronophin reveals the structural basis of the divergent substrate specificities. These presented findings provide insights into the design principles of capped HAD phosphatases and show that their substrate specificity can be encoded by a small number of predictable residues. In addition, the catalytic properties of AUM were investigated, identifying a mechanism of reversible oxidation regulating the activity of AUM in vitro. AUM phosphatase activity is inhibited by oxidation and can be recovered by reduction. The underlying molecular mechanism was revealed by mutational analyses. The cysteines C35, C104 and C243, located in the AUM core domain, are responsible for the inhibition of AUM by oxidation. C293 mediates the redox-dependent tetramerization of AUM in vitro. Based on the chronophin and CAC structure, a direct impact of the oxidation of C35 on the nucleophile D34 is proposed. In addition, a redox-dependent disulfide bridge (C104, C243), connecting the core and cap domain of AUM may be important for an open/close-mechanism. This hypothesis is supported by CD spectroscopy experiments that demonstrate a structural change in AUM upon reduction. These data present the first evidence for the regulation of AUM catalysis by reversible oxidation. This finding is so far unique in the field of HAD phosphatases. In this context, the first cell-based AUM activity assay was developed. For this, the artificial substrate pNPP was combined with the reducing agent DTT to create a specific AUM activity readout. This fractionation-based assay is the first tool to differentiate between cell lines or tissues with different AUM concentrations or activities. Taken together, the presented biochemical characterization reveals the specificity determinants and catalytic properties of AUM. General insights into structural determinants of mammalian HAD phosphatase substrate recognition are provided and reversible oxidation as possible regulatory mechanism for AUM is proposed. These findings constitute a framework for further functional analyses to elucidate the biomedical importance of AUM.}, subject = {Proteintyrosinphosphatase}, language = {en} } @phdthesis{Ullrich2014, author = {Ullrich, Melanie}, title = {Identification of SPRED2 as a Novel Regulator of Hypothalamic-Pituitary-Adrenal Axis Activity and of Body Homeostasis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-107355}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {SPRED proteins are inhibitors of the Ras/ERK/MAPK signaling pathway, an evolutionary highly conserved and very widespread signaling cascade regulating cell proliferation, differentiation, and growth. To elucidate physiological consequences of SPRED2 deficiency, SPRED2 KO mice were generated by a gene trap approach. An initial phenotypical characterization of KO mice aged up to five months identified SPRED2 as a regulator of chondrocyte differentiation and bone growth. Here, the loss of SPRED2 leads to an augmented FGFR-dependent ERK activity, which in turn causes hypochondroplasia-like dwarfism. However, long term observations of older KO mice revealed a generally bad state of health and manifold further symptoms, including excessive grooming associated with severe self-inflicted wounds, an abnormally high water uptake, clear morphological signs of kidney deterioration, and a reduced survival due to sudden death. Based on these observations, the aim of this study was to discover an elicitor of this complex and versatile phenotype. The observed kidney degeneration in our SPRED2 KO mice was ascribed to hydronephrosis characterized by severe kidney atrophy and apoptosis of renal tubular cells. Kidney damage prompted us to analyze drinking behavior and routine serum parameters. Despite polydipsia, which was characterized by a nearly doubled daily water uptake, the significantly elevated Na+ and Cl- levels and the resulting serum hyperosmolality could not be compensated in SPRED2 KOs. Since salt and water balance is primarily under hormonal control of aldosterone and AVP, we analyzed both hormone levels. While serum AVP was similar in WTs and KOs, even after experimental water deprivation and an extreme loss of body fluid, serum aldosterone was doubled in SPRED2 KO mice. Systematic investigation of contributing upstream hormone axes demonstrated that hyperaldosteronism developed independently of an overactivated Renin-Angiotensin system as indicated by halved serum Ang II levels in KO mice. However, aldosterone synthase expression in the adrenal gland was substantially augmented. Serum corticosterone, which is like aldosterone released from the adrenal cortex, was more than doubled in SPRED2 KOs, too. Similar to corticosterone, the production of aldosterone is at least in part under control of pituitary ACTH, which is further regulated by upstream hypothalamic CRH release. In fact, stress hormone secretion from this complete hypothalamic-pituitary-adrenal axis was upregulated because serum ACTH, the mid acting pituitary hormone, and hypothalamic CRH, the upstream hormonal inductor of HPA axis activity, were also elevated by 30\% in SPRED2 KO mice. This was accompanied by an upregulated ERK activity in paraventricular nucleus-containing hypothalamic brain regions and by augmented hypothalamic CRH mRNA levels in our SPRED2 KO mice. In vitro studies using the hypothalamic cell line mHypoE-44 further demonstrated that both SPRED1 and SPRED2 were able to downregulate CRH promoter activity, CRH secretion, and Ets factor-dependent CRH transcription. This was in line with the presence of various Ets factor binding sites in the CRH promoter region, especially for Ets1. Thus, this study shows for the first time that SPRED2-dependent inhibition of Ras/ERK/MAPK signaling by suppression of ERK activity leads to a downregulation of Ets1 factor-dependent transcription, which further results in inhibition of CRH promoter activity, CRH transcription, and CRH release from the hypothalamus. The consecutive hyperactivity of the complete HPA axis in our SPRED2 KO mice reflects an elevated endogenous stress response becoming manifest by excessive grooming behavior and self-inflicted skin lesions on the one hand; on the other hand, in combination with elevated aldosterone synthase expression, this upregulated HPA hormone release explains hyperaldosteronism and the associated salt and water imbalances. Both hyperaldosteronism and polydipsia very likely contribute further to the observed kidney damage. Taken together, this study initially demonstrates that SPRED2 is essential for the appropriate regulation of HPA axis activity and of body homeostasis. To further enlighten and compare consequences of SPRED2 deficiency in mice and particularly in humans, two follow-up studies investigating SPRED2 function especially in heart and brain, and a genetic screen to identify human SPRED2 loss-of-function mutations are already in progress.}, subject = {Renin-Angiotensin-System}, language = {en} } @phdthesis{BertleffZieschang2014, author = {Bertleff-Zieschang, Nadja Luisa}, title = {Galectin-1: A Synthetic and Biological Study of a Tumor Target}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101529}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Galectin-1 (hGal-1) is overexpressed by numerous cancer types and previously conducted studies confirmed that the β-galactoside-binding protein mediates various molecular interactions associated with tumor growth, spread and survival. Upon interaction with carbohydrate-based binding epitopes of glycan structures on human cell surfaces galectin-1 induces proliferative, angiogenetic and migratory signals and modulates negative T cell regulation which essentially helps the tumor to evade the immune response. These findings attributed galectin-1 a pivotal role in tumor physiology and strongly suggest the protein as target for diagnostic and therapeutic applications. Within the scope of this work a strategy was elaborated for designing tailor-made galectin-1 ligands by functionalizing selected hydroxyl groups of the natural binding partner N-acetyllactosamine (LacNAc) that are not involved in the sophisticated interplay between the disaccharide and the protein. Synthetic modifications intended to introduce chemical groups i) to address a potential binding site adjacent to the carbohydrate recognition domain (CRD) with extended hGal-1-ligand interactions, ii) to implement a tracer isotope for diagnostic detection and iii) to install a linker unit for immobilization on microarrays. Resulting structures were investigated regarding their targeting ability towards galectin-1 by cocrystallization experiments, SPR and ITC studies. Potent binders were further probed for their diagnostic potential to trace elevated galectin-1 levels in microarray experiments and for an application in positron emission tomography (PET).}, subject = {Organische Synthese}, language = {en} } @phdthesis{Winkler2014, author = {Winkler, Markus Heinrich}, title = {Motivational properties of reward associated stimuli - Conditioning studies with smoke and monetary reinforcement}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121794}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Abstract Tobacco addiction is considered as a chronic relapsing disorder, characterized by compul-sive drug seeking and intake. Learning processes are stressed to account for the situational-specific expression of core features of the disorder, e.g., craving for drug, tolerance and ex-cessive consumption. According to incentive theories, smoke conditioned stimuli are hy-pothesized to be appetitive in nature, promoting craving, approach and consummatory be-havior. Commonly, smoking cues are treated as simple excitatory conditioned stimuli formed by a close and reliable overlap with the drug effect. However, the smoking ritual comprises a multitude of stimuli which may give rise to different forms of learning and con-ditioned responses partially opposing each other. Previous research suggests the predictive content and the temporal proximity of smoking stimuli to the drug effect as important de-terminants of cue reactivity. In contrast to stimuli related to the preparatory stage of smok-ing and the start of consumption (BEGIN stimuli), stimuli from the terminal stage of smok-ing (END stimuli) apparently lack high cue reactivity. Several lines of evidence suggest the poor cue properties of terminal stimuli to be related to their signaling of poor smoke availa-bility. Indeed, cue reactivity is commonly decreased when smoking appears to be unavaila-ble. Moreover, the learning literature suggests that stimuli predictive for the non-availability of reward may acquire the capacity to modulate or oppose the responses of ex-citatory conditioned stimuli. Therefore, the aim of the present thesis was to enhance our knowledge of stimulus control in human drug addiction and incentive motivation by running a series of conditioning studies with smoke intake and monetary reward as reinforcer. Sub-jective report and physiological measures of motivational valence and consummatory re-sponse tendencies were used as dependent variables. The first experiment of this thesis used a differential conditioning paradigm to reveal evi-dence for the conditioning of preparatory and consummatory responses to a CS+ for smok-ing. Neutral pictograms served as CSs and single puffs on a cigarette as US. In line with the predictions of incentive theories, the excitatory CS+ for smoking acquired the ability to evoke an appetitive conditioned response, as indicated by enhanced activity of the M. zy-gomaticus major. Moreover, anticipation of puffing on the cigarette increased the activity of the M. orbicularis oris (lip muscle), indicating the activation of consummatory response tendencies. Finally, the CS+ evoked stronger skin conductance responses, indicative of in-creased autonomic arousal and orienting in preparation for action. In contrast, the rating data were apparently unaffected by the experimental contingency. In sum, the physiological data provide support for the notion that excitatory smoke conditioning gives rise to appeti-tive and consummatory conditioned responses, which may at least partially contribute to the maintenance of tobacco addiction. The second experiment of this thesis adapted the conditioning protocol of the first study to probe the functional significance of terminal stimuli in the control of addictive behavior. This study manipulated the predictive relationship of BEGIN and END stimuli to smoke rein-forcement to provide further support for the differential reactivity to both stimuli and the retarded (i.e., delayed) conditioning of END stimuli. Overall, the results of the first study of this thesis were conceptually replicated as the association of a BEGIN stimulus with smoke intake resulted in the acquisition of appetitive and consummatory physiological responses. Importantly, the results revealed evidence for a retarded excitatory conditioning of END stimuli. Thus, pairing of an END stimulus with smoke intake failed to produce a conditioned discrimination in terms of motivational valence and autonomic arousal, as indicated by the activity of the M. corrugator supercilii and the skin conductance data. These results provide further support for the notion that END stimuli may be weak cues for smoking. Moreover, in light of the results of the first study of this thesis, the retarded excitatory conditioning of terminal stimuli may be suggestive of an inhibitory response component, which may be re-lated to their signaling of poor smoke availability. In sum, these results add to a growing body of data, which suggest that the expression of cue reactivity may be modulated by the temporal proximity and the availability of the drug effect. The aim of the third study of this thesis was to provide "proof of concept" for an inhibi-tory conditioning notion of terminal stimuli. In this analog study BEGIN and END stimuli were emulated as discriminative SD and S for monetary reward. During an acquisition phase conditioned inhibition was established to the S predictive of the non-availability of re-ward. Subsequently a retardation test was used to substantiate conditioned inhibition. In this test, excitatory conditioning of the previous S was compared to the excitatory condi-tioning of a novel control stimulus. Importantly, the results revealed evidence for reward conditioned inhibition as indicated by the retarded acquisition of subjective (pleasure and reward expectancy) and physiological (skin conductance and activity of the M. orbicularis oculi) responses. In sum, these results provide support for the notion that stimuli predictive for the non-availability of reward may acquire the capacity to oppose the responses of ex-citatory conditioned stimuli. Thus, future research may benefit from the consideration of inhibitory conditioning processes in drug addiction, which may be of theoretical, methodo-logical and clinical importance. In sum, the present thesis revealed evidence for 1) an appetitive nature of excitatory condi-tioned smoking cues, 2) the dependency of this learning process on the temporal position of the conditioned stimuli in the intake ritual and 3) the acquisition of conditioned inhibition by a stimulus predictive for the non-availability of reward, as evident in retarded excitatory conditioning. Overall, these studies made a novel contribution to the field of human drug addiction and incentive motivation and provided valuable suggestions for further research.}, subject = {Rauchen}, language = {en} } @phdthesis{Sander2014, author = {Sander, Bodo}, title = {Structural and biochemical characterization of gephyrin and various gephyrin-ligand complexes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-104212}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Efficient synaptic neurotransmission requires the exact apposition of presynaptic terminals and matching neurotransmitter receptor clusters on the postsynaptic side. The receptors are embedded in the postsynaptic density, which also contains scaffolding and regulatory proteins that ensure high local receptor concentrations. At inhibitory synapses the cytosolic scaffolding protein gephyrin assumes an essential organizing role within the postsynaptic density by the formation of self-oligomers which provide a high density of binding sites for certain -amino butyric acid type A (GABAA) and the large majority of glycine receptors (GlyR). Gephyrin contains two oligomerization domains: In isolation, the 20 kDa N-terminal G domain (GephG) and the 46 kDa E domain (GephE) trimerize and dimerize, respectively. In the full-length protein the domains are interconnected by a central ~150 amino acid linker, and only GephG trimerization is utilized, whereas GephE dimerization is prevented, thus suggesting the need for a trigger to release GephE autoinhibition, which would pave the way for the formation of higher oligomers and for efficient receptor clustering. The structural basis for this GephE autoinhibition has remained elusive so far, but the linker was reported to be sufficient for autoinhibition. This work dealt with the biochemical and structural characterization of apo-gephyrin and gephyrin in complexes with ligands which are known to promote the formation of synaptic gephyrin clusters (collybistin and neuroligin 2) and reorganize them (dynein light chain 1). For full-length gephyrin no structural information has been available so far. Atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS) analyses described in this thesis disclosed that the gephyrin trimer forms a highly flexible assembly, which, due to the long linker, can switch between compact and extended conformational states in solution, with a preference for compact states. This partial compaction and potentially GephE autoinhibition are achieved by interactions of parts of the linker with the G and E domains, as suggested by circular dichroism spectroscopy. However, the linker on its own cannot account for GephE blockage, as size exclusion chromatography experiments coupled with multi angle light scattering detection (SEC-MALS) and SAXS analyses revealed that a gephyrin variant only encompassing the linker and GephE (GephLE) forms dimers and not monomers as suggested by an earlier study. The oligomeric state of GephLE and the observation that several gephyrin variants, in which linker segments of varying length were deleted, predominantly formed trimers, suggested the presence of a linker independent mechanism of GephE dimerization blockade. Taken together, the data indicated that linker-dependent and linker-independent mechanisms mediate gephyrin autoinhibition. In the second project gephyrin's interaction with DYNLL1 (Dynein LC8 Light Chain 1) was characterized. DYNLL1 is a 25 kDa dimer incorporated into the dynein motor and provides two binding sites, each of which can accommodate an octapeptide derived from gephyrin's linker region (referred to as GephDB). Originally, DYNLL1 was regarded as a cargo adaptor, linking gephyrin-GlyR complexes to the dynein motor, thus driving their retrograde transport and leading to a decrease of synaptic gephyrin-GlyR complexes. Building on these studies, this thesis assessed the cargo hypothesis as well as the so far unclear stoichiometry of the gephyrin-DYNLL1 complex. The cargo scenario would require ternary complex formation between gephyrin, DYNLL1 and the dynein intermediate chain (DIC) of the dynein motor. However, such a complex could not be detected by analytical size exclusion chromatography (aSEC) experiments - presumably because gephyrin and DIC competed for a common binding site in DYNLL1. This finding was consistent with a single DYNLL1 dimer capturing two linker segments of a single gephyrin trimer as suggested by a 26 kDa mass increase of the gephyrin species in the presence of DYNLL1 in SEC-MALS experiments. aSEC experiments at even higher concentrations (~20 µM gephyrin and ~80 µM DYNLL1) indicated that the affinity of GephDB was significantly impaired in the context of full-length gephyrin but also in a variant that bears only GephG and the first 39 residues of the linker (GephGL220). Presumably due to avidity effects two linkers stably associated with a single DYNLL1 dimer, whereas the third DYNLL1 binding motif remained predominantly unoccupied unless high concentrations of GephGL220 (50 µM) and DYNLL1 (200 µM) were used. These findings indicate that an interplay between GephG and the N-terminal linker segment mediates the attenuation of GephDB affinity towards DYNLL1 and that preventing DYNLL1 from the induction of higher gephyrin oligomers is either advantageous for DYNLL1-mediated reorganization of gephyrin-GlyR clusters or that DYNLL1 exerts possibly two (concentration-dependent) actions on gephyrin. The gephyrin-collybistin-neuroligin 2 complex was the subject of the third project. Previously, collybistin and gephyrin were observed to mutually trigger their translocation to the postsynaptic membrane, where the disordered cytoplasmic tail of the postsynaptic cell adhesion molecule NL2 (NL2cyt) causes the anchoring of collybistin 2 (CB2) by binding to its SH3 domain, thereby releasing SH3 domain mediated autoinhibiton of CB2 binding to the membrane phospholipid phosphatidylinositol-3-phosphate. Critical for this event is the binding of gephyrin to both CB2 and NL2, presumably via GephE. Following up on these previous studies biochemical data presented in this thesis confirm the formation of the ternary complex. Unexpectedly, analyses by means of native polyacrylamide gel electrophoresis pointed to: (1) The existence of a complex containing NL2cyt and CB2 lacking the SH3 domain and consequently an additional NL2 binding site in CB2. (2) Attenuated gephyrin-collybistin complex formation in the presence of the SH3 domain. (3) A requirement for high NL2cyt concentrations (> 30 µM) during the formation of the ternary complex. This might allow for the regulation by other factors such as additional binding partners or posttranslational modifications. Although of preliminary character, these results provide a starting point for future studies, which will hopefully elucidate the interplay between gephyrin, collybistin, NL2 and certain GABAA receptors.}, subject = {Gephyrin}, language = {en} } @phdthesis{Riedinger2014, author = {Riedinger, Verena}, title = {Landscape-scale spillover of pollinators from oil-seed rape to crop and semi-natural habitats on different temporal scales}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96844}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Organisms use different resources in different habitat types during their life cycle. Thereby, they connect habitats and provide ecosystem services or disservices in several habitat types. In agricultural landscapes, the spillover of organisms, i.e. movement of an organism and its function from one habitat to another, especially from semi-natural to managed habitats, is one of the most important processes that influence population dynamics and community composition. Importantly, spillover connects habitats not only spatially, but also on different temporal scales, because availability of resources changes over time in agricultural landscapes, e.g. by mass-flowering events of crops, harvesting or crop rotation. Most often, semi-natural habitats are seen as beneficial source of organisms, but also managed habitats can provide valuable resources, and thereby initiate spillover to other habitats. Mass-flowering crops, like oil-seed rape, are such valuable feeding resources for pollinators, and pollinators might spillover from oil-seed rape to other habitats which provide alternative foraging resources. The focus of this dissertation was to evaluate the influence of oil-seed rape on pollinators in agricultural landscapes by studying effects (1) on different temporal scales (from effects during the flowering period of oil-seed rape, Chapter II \& IV, to intermediate effects on a second mass-flowering crop, Chapter III, to spillover effects to the flowering period in the next year, Chapter IV), (2) semi-natural (Chapter II) and crop (Chapter III, IV) habitats, and (3) on various pollinator groups which differ in their life cycle (Chapter II, III, IV). In this dissertation effects from oil-seed rape on all temporal scales - in the short term during mass-flowering and in the long term on a late-flowering crop and even in the next year on oil-seed rape fields ─ were found. These effects might be important for crop and wild plant pollination, and pollinator conservation. Importantly, the effects on different temporal scales depend on the considered habitat (managed or different semi-natural habitats) and on the investigated pollinator group. The more pollinators match the flowering period of oil-seed rape in their activity period and the more dependent they are on flowering resources in their life cycle, the more pronounced are their responses. Effects were found for wild bees, but not for hoverflies and honey bees. Moreover, the availability of semi-natural habitats in the landscape is important and may modulate effects from oil-seed rape. The longevity of effects of oil-seed rape shows the importance of including several temporal scales into ecosystem-service studies, not only for pollinators, but also for other ecosystem-service providing species groups.}, subject = {Raps}, language = {en} } @phdthesis{Rohleder2014, author = {Rohleder, Florian}, title = {The Intricate Network of Replication-dependent Interstrand Crosslink DNA Repair}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113121}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The Fanconi anemia (FA) pathway is a replication-dependent DNA repair mechanism which is essential for the removal of interstrand crosslink (ICL) DNA damages in higher eukaryotes (Moldovan and D'Andrea, 2009). Malfunctions in this highly regulated repair network lead to genome instability (Deans and West, 2011). Pathological phenotypes of the disease FA which is caused by mutations in the eponymous pathway are very heterogeneous, involving congenital abnormalities, bone-marrow failure, cancer predisposition and infertility (Auerbach, 2009). The FA pathway comprises a complex interaction network and to date 16 FA complementation groups and associated factors have been identified (Kottemann and Smogorzewska, 2013). Additionally, components of nucleotide excision repair (NER), homologous recombination repair (HRR), and translesion synthesis (TLS) are involved and coordinated by the FA proteins (Niedzwiedz et al., 2004; Knipscheer et al., 2009). One of the FA proteins is the DEAH helicase FANCM. In complex with its binding partners FAAP24 and MHF1/2 it binds the stalled replication fork and activates the FA damage response (Wang et al., 2013). However, the exact steps towards removal of the ICL damage still remain elusive. To decipher the underlying process of FA initiation by FANCM, this thesis mainly focuses on the archaeal FANCM homolog helicase-associated endonuclease for fork-structured DNA (Hef). Hef from the archaeal organism Thermoplasma acidophilum (taHef) differs from other archaeal Hef proteins and exclusively comprises an N-terminal helicase entity with two RecA and a thumb-like domain while others additionally contain a nuclease portion at the C-terminus. I solved the crystal structure of full-length taHef at a resolution of 2.43 {\AA}. In contrast to the crystal structure of the helicase domain of Hef from Pyrococcus furiosus (pfHef), taHef exhibits an extremely open conformation (Nishino et al., 2005b) which implies that a domain movement of the RecA-like helicase motor domains of 61° is possible thus highlighting the flexibility of helicases which is required to translocate along the DNA. However, small-angle x-ray scattering (SAXS) measurements confirm an intermediate conformation of taHef in solution indicating that both crystal structures represent rather edge states. Most importantly, proliferating cell nuclear antigen (PCNA) was identified as an interaction partner of Hef. This interaction is mediated by a highly conserved canonical PCNA interacting peptide (PIP) motif. Intriguingly, the presence of PCNA does not alter the ATPase nor the helicase activity of taHef, thus suggesting that the interaction is entirely dedicated to recruit taHef to the replication fork to fulfill its function. Due to a high level of flexibility the taHef-taPCNA complex could not be crystallized and therefore SAXS was utilized to determine a low-resolution model of this quaternary structure. This newly discovered PCNA interaction could also be validated for the eukaryotic FANCM homolog Mph1 from the thermophilic fungus Chaetomium thermophilum (ctMph1). As the first step towards the characterization of this interaction I solved the crystal structure of PCNA from Chaetomium thermophilum (ctPCNA). Furthermore, it was possible to achieve preliminary results on the putative interaction between the human proteins FANCM and PCNA (hsFANCM, hsPCNA). In collaboration with Detlev Schindler (Human Genetics, W{\"u}rzburg) and Weidong Wang (National Institute on Aging, Baltimore, USA) co-immunoprecipitation (CoIP) experiments were performed using hsFANCM and hsPCNA expressed in HEK293 cells. Although an interaction was reproducibly observed in hydroxyurea stimulated cells further experiments and optimization procedures are required and ongoing.}, subject = {DNS-Reparatur}, language = {en} } @phdthesis{Thierschmann2014, author = {Thierschmann, Holger}, title = {Heat Conversion in Quantum Dot Systems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133348}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {This thesis treats the thermopower and other thermal effects in single quantum dots (QD) and quantum dot systems. It contributes new experimental results to the broad and active field of research on thermoelectrics in low dimensional systems. The thermopower experiments discussed in this work focus on QDs which exhibit a net spin and on tunnel-coupled double QDs (DQD). Furthermore, experiments are presented which address the realization of a QD device which extracts thermal energy from a heat reservoir and converts it into a directed charge current in a novel way. The samples used for these investigations have been fabricated from GaAs/AlGaAs heterostructures which contain a two dimensional electron gas. Using optical and electron beam lithography, the devices have been realized by means of the top-gate technology. All experiments have been performed at low temperature. In order to create a controllable temperature difference in the samples the current heating technique has been used. These experimental basics as well as fundamentals of electric and thermoelectric transport are introduced in Part I of this thesis. The experiments on the thermopower of a single QD are described in Part II. Essentially, they deal with the problem of how a single spin situated on a QD influences the thermoelectric properties of the system. In this context, the Kondo-effect plays a crucial role. Generally, the Kondo effect is the result of a many-body state which arises from an antiferromagnetic coupling of a magnetic impurity with the surrounding conduction electrons. Here, the magnetic impurity is represented by a QD which is occupied with an odd number of electrons so that it exhibits a net spin. For the first time the thermopower of a Kondo-QD has been studied systematically as a function of two parameters, namely the QD coupling energy and the sample temperature. Both parameters are crucial quantities for Kondo-physics to be observed. Based on these data, it is shown that the thermopower line shape as a function of QD energy is mainly determined by two competing contributions: On the one hand by the enhanced density of states around the Fermi level due to Kondo-correlations and on the other hand by thermopower contributions from the Coulomb resonances. Furthermore, the experiments confirm theoretical predictions which claim that the spectral DOS arising from Kondo-correlations shifts away from the Fermi level for those QD level configurations which are not electron-hole symmetric. Comparison with model calculations by T. Costi and V. Zlatic [Phys. Rev. B 81, 235127 (2010)] shows qualitative and partly even quantitative agreement. A finite thermovoltage at the center of the Kondo-region, which occurred in previous investigations, is also observed in the experiments presented here. It is not covered by the current theory of the Kondo effect. The dependence of this signal on temperature, coupling energy and magnetic field, which differ from non-Kondo regions, is analyzed. In order to clarify the physics behind this phenomenon further studies are desirable. Furthermore, it is shown by variation of the QD coupling energy over a wide range that Kondo-correlations can be detected in the thermopower even in the regime of very weak coupling. In contrast, no Kondo signatures are visible in the conductance in this energy range. It is found that in the limit of weak coupling the Kondo effect causes the thermopower to exhibit a diminished amplitude in close vicinity of a conductance resonance. Subsequent filling of spin-degenerate states then leads to a thermopower amplitude modulation (odd-even-effect). Although this effect had been observed in previous studies, no connection to Kondo physics had been established in order to explain the observations. Hence, the experiments on a single QD presented in this thesis provide unique insight into the complex interplay of different transport mechanisms in a spin-correlated QD. Moreover, the results confirm the potential of thermopower measurements as a highly sensitive tool to probe Kondo-correlations. In Part III thermal effects are investigated in systems which contain two coupled QDs. Such QD-systems are particularly interesting with respect to thermoelectric applications: Many proposals utilize the extremely sharp energy filtering properties of such coupled QDs and also different kinds of inter dot coupling to construct novel and highly efficient thermoelectric devices. In the present work, thermopower characterizations are performed on a tunnel-coupled DQD for the first time. The key result of these investigations is the thermopower stability diagram. Here it is found, that in such a system maximal thermopower is generated in the vicinity of the so-called triple points (TP) at which three charge states of the DQD are degenerate. Along the axis of total energy, which connects two adjacent TP, a typical thermopower line shape is observed. It is explained and modeled within an intuitive picture that assumes two transport channels across the DQD, representing the TP. For those regions which are far away from the TP, the thermopower turns out to be very sensitive to the relative configuration of the QD energies. The conductance and thermopower data are well reproduced within a model that assumes transport via molecular states. Integration of both models into one then allows model calculations for a complete stability cell in conductance and thermopower to be done. Furthermore, experiments on two capacitively coupled QDs are presented. In these studies the focus lies on testing the feasibility of such systems for the manipulation and generation of charge currents from thermal energy. In a series of experiments it is shown that such a system of QDs can be utilized to increase or decrease a current flowing between two electron reservoirs by varying the temperature in a third reservoir. This effect is based on the cross-correlation of occupation fluctuations of the individual QDs. These are positive for certain QD energy level configurations and negative for others, which increases or decreases the charge current in the experiments, respectively. In the stability diagram this is manifested in a characteristic clover leaf shaped structure of positive and negative current changes in vicinity of the TP. All main experimental results are reproduced qualitatively in simple model calculations. Due to the close analogy between electrical and thermal conductance of a QD, this effect of thermal switching can, in principle, also be used to built a thermal transistor. Finally, it is shown that a system consisting of two Coulomb-coupled QDs, which couple a hot electron reservoir electrostatically to two cold electron reservoirs, can be utilized as a novel device which extracts heat from its environment and converts it into a directed charge current. The idea of this heat-to-current converter (HCC) was first proposed by R. S{\´a}nchez and M. B{\"u}ttiker [Phys. Rev. B 83, 085428 (2011)]. It is not only characterized by the novelty of its working principle but also by the fact, that it decouples the directions of charge current and energy flow. In the experiments presented here, such HCC-currents are identified unambiguously: For certain QD-level configurations an electric current between the two cold reservoirs is observed if the temperature in the third reservoir is increased. The direction of this current is shown to be independent of an external voltage. In contrast, the direction of the current exhibits a characteristic dependence on the tunneling coefficients of the QDs, as predicted by theory: By adjusting the thickness and the shape of the respective tunnel junctions, a charge current can be generated between two cold reservoirs, and it can even be inverted. The experimental observations are quantitatively reproduced by model calculations by R. S{\´a}nchez and B. Sothmann. Thus, the results represent direct evidence for the existence of HCC-currents. Due to the novelty of the working principle of the HCC and its relevance from a fundamental scientific point of view, the results presented here are an important step towards energy harvesting devices at the nano scale.}, subject = {Quantenpunkt}, language = {en} } @phdthesis{Voegtle2014, author = {V{\"o}gtle, Timo}, title = {Studies on receptor signaling and regulation in platelets and T cells from genetically modified mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97114}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Receptors with tyrosine-based signaling motifs control essential functions of hematopoietic cells, including lymphocytes and platelets. Downstream of the platelet receptor glycoprotein (GP) VI and the T cell receptor (TCR) the immunoreceptor tyrosine-based activation motif (ITAM) initiates a signaling cascade that involves kinases, adapter and effector proteins and finally leads to cellular activation. This thesis summarizes the results of three studies investigating different aspects of receptor signaling and regulation in platelets and T cells. In the first part, the impact of constitutive Ca2+ influx on TCR signaling and T cell physiology was investigated using a transgenic mouse line with a mutation in the Ca2+ sensor stromal interaction molecule 1 (STIM1). The elevated cytoplasmic Ca2+ level resulted in an altered phosphorylation pattern of the key enzyme phospholipase (PL) Cγ1 in response to TCR stimulation, but without affecting its enzymatic activity. Withdrawal of extracellular Ca2+ or inhibition of the phosphatase calcineurin restored the normal phosphorylation pattern. In addition, there was a decrease in the release of Th2-type cytokines interleukin 4, 5 and 13 upon stimulation in vitro. The second part of the thesis deals with the role of the adapter protein growth factor receptor-bound protein 2 (Grb2) in platelets using a megakaryocyte/platelet-specific knockout mouse line. Loss of Grb2 severely impaired signaling of GPVI and C-type lectin-like receptor 2 (CLEC-2), a related hemITAM receptor. This was attributed to defective stabilization of the linker for activation of T cells (LAT) signalosome and resulted in reduced adhesion, aggregation, Ca2+ mobilization and procoagulant activity downstream of (hem)ITAM-coupled receptors in vitro. In contrast, the signaling pathways of G protein-coupled receptors (GPCRs) and the integrin αIIbβ3, which do not utilize the LAT signalosome, were unaffected. In vivo, the defective (hem)ITAM signaling caused prolonged bleeding times, however, thrombus formation was only affected under conditions where GPCR signaling was impaired (upon acetylsalicylic acid treatment). These results establish Grb2 as an important adapter protein in the propagation of GPVI- and CLEC-2-induced signals. Finally, the proteolytic regulation of the immunoreceptor tyrosine-based switch motif (ITSM)-bearing receptor CD84 in platelets was investigated. This study demonstrated that in mice CD84 is cleaved by two distinct and independent proteolytic mechanisms upon platelet activation: shedding of the extracellular part, which is exclusively mediated by a disintegrin and metalloproteinase (ADAM) 10 and cleavage of the intracellular C-terminus by the protease calpain. Finally, the analysis of soluble CD84 levels in the plasma of transgenic mice revealed that shedding of CD84 by ADAM10 occurs constitutively in vivo.}, subject = {Thrombozyt}, language = {en} } @phdthesis{Wende2014, author = {Wende, Beate}, title = {Diversity of saproxylic beetles and host tree specialisation in differently managed forests across Germany}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-107049}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Chapter I The gradual turnover of dead organic material into mineral nutrients is a key ecological function, linking decomposition and primary production, the essential parts of the nutrient-energy cycle. However, disturbances in terms of species or resource losses might impair the equilibrium between production and decomposition. Humanity has converted large proportions of natural landscapes and intensified land-use activity for food production. Globally, only very few areas are totally unaffected by human activity today. To ensure the maintenance of both essential ecosystem services, knowledge about the interplay of biodiversity and ecosystem functioning as well as effects of intensified management on both is crucial. The vast majority of terrestrial biomass production as well as decomposition take place in forest ecosystems. Though forestry has a long sustainable history in Europe, its intensification during the last century has caused severe impacts on forest features and, consequently, on the associated biota, especially deadwood dependent organisms. Among these, saproxylic beetles are the most diverse group in terms of species numbers and functional diversity, but also most endangered due to habitat loss. These features classify them as ideal research organisms to study effects of intensified forestry on ecosystem services. The BELONGDEAD project located in Germany aimed to investigate deadwood decay and functional consequences of diversity changes in the associated fauna on the decomposition process from the initialisation of deadwood decay to complete degradation. As part of the BeLongDead project, this dissertation focussed on saproxylic beetle species, thereby evaluating (1) regionally effects of tree species identity of fresh deadwood and (2) forest management of varying intensities on the diversity, abundance and community composition of saproxylic beetles (chapter II); (3) the specialisation degree of different trophic guilds of saproxylic beetles, and thus the stability and robustness of their interaction networks against disturbances (chapter III); (4) the impact of environmental features of local to regional spatial scales on species richness of saproxylic beetles differing in their habitat niche in terms of deadwood decay stages (chapter IV). Chapter II The vast majority of European forest ecosystems have been anthropogenically affected, leaving less than 1\% of the about 1 milliard hectare as natural forests. A long history of forestry and especially the technological progress during the last century have caused massive habitat fragmentation as well as substantial loss of essential resources in European forest ecosystems. Due to this, the substrate-dependent group of saproxylic beetles has experienced severe species losses. Thus, investigations concerning saproxylic diversity and deadwood volume were badly needed. However, the importance of different deadwood in terms of tree species identity for the colonization by saproxylic beetles under different local and regional management regimes is poorly understood. Therefore, we studied possible regional differences in colonization patterns of saproxylic beetle species in a total of 688 fresh deadwood logs of 13 tree species in 9 sites of managed conifer and beech forests, and unmanaged beech forests, respectively. We found that tree species identity was an important driver in determining saproxylic species composition and abundance within fresh deadwood. However, saproxylic species showed different colonization patterns of deadwood items of the same tree species among the study regions. Regionally consistent, conifer forests were most diverse. We attribute the latter result to the historically adaption of saproxylic beetle species to semi-open forests, which conditions are actually best reflected by conifer forests. To preserve a diverse local species pool of early successional saproxylic beetles, we suggest an equal high degree of deadwood diversity in a tree species context in due consideration of regional differences. Chapter III The extinction risk of a particular species corresponds with its species-specific requirements on resources and habitat conditions, in other words with the width of the species` ecological niche. Species with a narrow ecological niche are defined as specialists. Members of this group experience higher extinction risk by resource limitation than generalists, which are able to utilize a variety of resources. For the classification of species as specialists or generalists, thus evaluating possible extinction risks, ecologists use the concept of interaction networks. This method has often been applied for mutualistic or antagonistic plant-animal interactions, but information for networks of detritivores is scarce. Therefore, saproxylic beetle species sampled as described in chapter II were categorised according to their larval diet; additionally their interaction networks (N=108) with 13 dead host tree species were analysed. Specialisation degree was highest for wood-digesting beetles and decreased with increasing trophic level. Also the network indices evaluating robustness and generality indicated a higher susceptibility to species extinctions for xylophagous than for mycetophagous and predatory beetles. The specialisation of xylophagous species on specific tree species might be an adaption to tree species specific ingredients stored for defence against pathogens and pests. However, we conclude that the high specialisation degree of xylophages and thus their higher extinction risk by resource loss harbours certain dangers for ecosystem function and stability as species diversity is positively linked to both. Chapter IV Populations depend on individual emigration and immigration events to ensure genetic exchange. For successful migration it is of utmost importance that spatially separated populations are obtainable by specimen. Migratory success depends on the one hand on the species dispersal abilities and on the other on the availability of suitable habitats in the surrounding landscape in which the distinct host populations exist. However, consequences of intensive forest management correspond not only to severe reduction of local deadwood amount, but, among others, also a change in tree species composition and high levels of fragmentation in the surrounding forest area. Saproxylic beetle species differ in their dispersal behaviour according to the temporal availability of their preferred habitat. Generally, early successional saproxylic beetles are able to disperse over large distances, whereas beetles inhabiting advanced decayed wood often remain close to their larval habitat. Due to this, environmental factors might affect saproxylic beetle guilds differently. We classified the saproxylic beetles sampled as described in chapter II according to their calculated habitat niche as early, intermediate or late successional saproxylic beetles. For the different guilds the effects of 14 environmental factors on different spatial scales (stand factors at 0.1 km radius, landscape composition at 2 km radius, and regionally differing abiotic factors in 400 km to 700 km distance) were investigated. Consistently for all guilds, species richness decreased with fragmentation at local and landscape scale, and increased in warmer climate. However, we found contradictory results between the guilds to some extent. We relate this to guild specific habitat requirements of the saproxylic beetles. Therefore, for the development of appropriate conservation practices guild-specific requirements saproxylic beetles have to be considered not only locally but on larger spatial scales. Chapter V In conclusion, this dissertation identified main drivers of early successional saproxylic beetle species richness on various spatial scales. Our results emphasize the importance to develop management schemes meeting species-specific and guild-specific habitat requirements of the saproxylic beetle fauna at relevant spatial and temporal scales. Therefore, short-term actions suggested for sustainable forest management should be the focus on a diverse tree species composition consisting of indigenous tree species with respect to regional differences. Moreover, senescent trees, fallen and standing deadwood should remain in the forests, and some tree individuals should be allowed to grow old. Long-term actions should involve the reduction of forest fragmentation and the connection of spatial widely separated forest fragments. Furthermore, to fully understand the effects of forest management long-term research should be conducted to compare habitat requirements of intermediate and late successional beetles with the results presented in this dissertation.}, subject = {Saproxylophage}, language = {en} } @phdthesis{Westermann2014, author = {Westermann, Alexander J.}, title = {Dual RNA-seq of pathogen and host}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112462}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The infection of a eukaryotic host cell by a bacterial pathogen is one of the most intimate examples of cross-kingdom interactions in biology. Infection processes are highly relevant from both a basic research as well as a clinical point of view. Sophisticated mechanisms have evolved in the pathogen to manipulate the host response and vice versa host cells have developed a wide range of anti-microbial defense strategies to combat bacterial invasion and clear infections. However, it is this diversity and complexity that makes infection research so challenging to technically address as common approaches have either been optimized for bacterial or eukaryotic organisms. Instead, methods are required that are able to deal with the often dramatic discrepancy between host and pathogen with respect to various cellular properties and processes. One class of cellular macromolecules that exemplify this host-pathogen heterogeneity is given by their transcriptomes: Bacterial transcripts differ from their eukaryotic counterparts in many aspects that involve both quantitative and qualitative traits. The entity of RNA transcripts present in a cell is of paramount interest as it reflects the cell's physiological state under the given condition. Genome-wide transcriptomic techniques such as RNA-seq have therefore been used for single-organism analyses for several years, but their applicability has been limited for infection studies. The present work describes the establishment of a novel transcriptomic approach for infection biology which we have termed "Dual RNA-seq". Using this technology, it was intended to shed light particularly on the contribution of non-protein-encoding transcripts to virulence, as these classes have mostly evaded previous infection studies due to the lack of suitable methods. The performance of Dual RNA-seq was evaluated in an in vitro infection model based on the important facultative intracellular pathogen Salmonella enterica serovar Typhimurium and different human cell lines. Dual RNA-seq was found to be capable of capturing all major bacterial and human transcript classes and proved reproducible. During the course of these experiments, a previously largely uncharacterized bacterial small non-coding RNA (sRNA), referred to as STnc440, was identified as one of the most strongly induced genes in intracellular Salmonella. Interestingly, while inhibition of STnc440 expression has been previously shown to cause a virulence defect in different animal models of Salmonellosis, the underlying molecular mechanisms have remained obscure. Here, classical genetics, transcriptomics and biochemical assays proposed a complex model of Salmonella gene expression control that is orchestrated by this sRNA. In particular, STnc440 was found to be involved in the regulation of multiple bacterial target mRNAs by direct base pair interaction with consequences for Salmonella virulence and implications for the host's immune response. These findings exemplify the scope of Dual RNA-seq for the identification and characterization of novel bacterial virulence factors during host infection.}, subject = {Transkriptomanalyse}, language = {en} } @phdthesis{LuiblneeHermann2014, author = {Luibl [n{\´e}e Hermann], Christiane}, title = {The role of the neuropeptides NPF, sNPF, ITP and PDF in the circadian clock of Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93796}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Organisms have evolved endogenous clocks which allow them to organize their behavior, metabolism and physiology according to the periodically changing environmental conditions on earth. Biological rhythms that are synchronized to daily changes in environment are governed by the so-called circadian clock. Since decades, chronobiologists have been investigating circadian clocks in various model organisms including the fruitfly Drosophila melanogaster, which was used in the present thesis. Anatomically, the circadian clock of the fruitfly consists of about 150 neurons in the lateral and dorsal protocerebrum, which are characterized by their position, morphology and neurochemistry. Some of these neurons had been previously shown to contain either one or several neuropeptides, which are thought to be the main signaling molecules used by the clock. The best investigated of these neuropeptides is the Pigment Dispersing Factor (PDF), which had been shown to constitute a synchronizing signal between clock neurons as well as an output factor of the clock. In collaboration with various coworkers, I investigated the roles of three other clock expressed neuropeptides for the generation of behavioral rhythms and the partly published, partly unpublished data are presented in this thesis. Thereby, I focused on the Neuropeptide F (NPF), short Neuropeptide F (sNPF) and the Ion Transport Peptide (ITP). We show that part of the neuropeptide composition within the clock network seems to be conserved among different Drosophila species. However, the PDF expression pattern in certain neurons varied in species deriving from lower latitudes compared to higher latitudes. Together with findings on the behavioral level provided by other people, these data suggest that different species may have altered certain properties of their clocks - like the neuropeptide expression in certain neurons - in order to adapt their behavior to different habitats. We then investigated locomotor rhythms in Drosophila melanogaster flies, in which neuropeptide circuits were genetically manipulated either by cell ablation or RNA interference (RNAi). We found that none of the investigated neuropeptides seems to be of equal importance for circadian locomotor rhythms as PDF. PDF had been previously shown to be necessary for rhythm maintenance in constant darkness (DD) as well as for the generation of morning (M) activity and for the right phasing of the evening (E) activity in entrained conditions. We now demonstrate that NPF and ITP seem to promote E activity in entrained conditions, but are clearly not the only factors doing so. In addition, ITP seems to reduce nighttime activity. Further, ITP and possibly also sNPF constitute weak period shortening components in DD, thereby opposing the effect of PDF. However, neither NPF or ITP, nor sNPF seem to be necessary in the clock neurons for maintaining rhythmicity in DD. It had been previously suggested that PDF is released rhythmically from the dorsal projection terminals. Now we discovered a rhythm in ITP immunostaining in the dorsal projection terminals of the ITP+ clock neurons in LD, suggesting a rhythm in peptide release also in the case of ITP. Rhythmic release of both ITP and PDF seems to be important to maintain rhythmic behavior in DD, since constantly high levels of PDF and ITP in the dorsal protocerebrum lead to behavioral arrhythmicity. Applying live-imaging techniques we further demonstrate that sNPF acts in an inhibitory way on few clock neurons, including some that are also activated by PDF, suggesting that it acts as signaling molecule within the clock network and has opposing effects to PDF. NPF did only evoke very little inhibitory responses in very few clock neurons, suggesting that it might rather be used as a clock output factor. We were not able to apply the same live-imaging approach for the investigation of the clock neuron responsiveness to ITP, but overexpression of ITP with various driver lines showed that the peptide most likely acts mainly in clock output pathways rather than inter-clock neuron communication. Taking together, I conclude that all investigated peptides contribute to the control of locomotor rhythms in the fruitfly Drosophila melanogaster. However, this control is in most aspects dominated by the actions of PDF and rather only fine-tuned or complemented by the other peptides. I assume that there is a high complexity in spatial and temporal action of the different neuropeptides in order to ensure correct signal processing within the clock network as well as clock output.}, subject = {Taufliege}, language = {en} } @phdthesis{Buechner2014, author = {B{\"u}chner, Claudia Nadine}, title = {Single molecule studies of DNA lesion search and recognition strategies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111886}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The integrity of our genome is continuously endangered by DNA damaging factors. Several cellular mechanisms have evolved to recognize and remove different types of DNA lesions. Despite the wealth of information on the three-dimensional structure and the catalytic mechanism of DNA repair enzymes, the essential process of target site search and identification remains more elusive. How can a small number of repair proteins find and detect the rare sites of damage rapidly and efficiently over an excess of millions of undamaged bases? To address this pivotal question in DNA repair, I focused on the central players from the two DNA damage excision repair pathways in my studies: nucleotide excision repair (NER) and base excision repair (BER). As examples for completely different approaches of damage search, recognition and verification, I compared the NER protein Xeroderma pigmentosum group D (XPD) with the BER proteins human thymine DNA glycosylase (hTDG) and human 8-oxoguanine glycosylase (hOgg1). In particular, the single molecule approach of atomic force microscopy (AFM) imaging and complementary biochemical and biophysical techniques were applied. I established a simple, optimized preparation approach, which yields homogeneous and pure samples of long (several hundreds to thousands of base pairs) DNA substrates suitable for the AFM studies with DNA repair proteins. Via this sample preparation, a single target site of interest can be introduced into DNA at a known position, which allows separate analysis of specific protein-DNA complexes bound to the lesion site and nonspecific complexes bound to non-damaged DNA. The first part of the thesis investigates the XPD protein involved in eukaryotic NER. In general, the NER mechanism removes helix-distorting lesions - carcinogenic UV light induced photoproducts, such as cyclobutane pyrimidine dimers (CPDs) as well as bulky DNA adducts. The 5'-3' helicase XPD has been proposed to be one of the key players in DNA damage verification in eukaryotic NER, which is still a matter of hot debate. In the studies, I focused on XPD from the archaeal species Thermoplasma acidophilum (taXPD), which shares a relatively high sequence homology with the sequence of the human protein and may serve as a good model for its eukaryotic counterpart. Based on AFM experiments and accompanying DNA binding affinity measurements with the biosensor technology Biolayer Interferometry (BLI), a clear role of XPD in damage verification was deciphered. Specifically, the data suggested that the ATP-dependent 5'-3' helicase activity of XPD was blocked by the presence of damage leading to stalled XPD-DNA damage verification complexes at the lesion sites. Successful damage verification led to ATP-dependent conformational changes visible by a significant transition in DNA bend angles from ~ 50° to ~ 65° at the site of the bound protein. Remarkably, this DNA bend angle shift was observed both in the presence of ATP and ATPγs (non-hydrolyzable ATP analog) indicating that ATP-binding instead of ATP hydrolysis was sufficient to induce repair competent conformational changes of XPD. Most importantly, detailed protein binding position and DNA bend angle analyses revealed for the first time that XPD preferably recognizes a bulky fluorescein lesion on the translocated strand, whereas a CPD lesion is preferentially detected on the opposite, non-translocated strand. Despite the different recognition strategies for both types of damages, they share a common verification complex conformation, which may serve as a signal for the recruitment of further NER factors. In the second part of the thesis, AFM imaging and a 2-Aminopurine fluorescence-based base-flipping assay were combined to investigate damage search and recognition by DNA glycosylases in BER. Exemplarily, I chose to study hTDG as a representative of the vast glycosylase family. hTDG excises thymine and uracil from mutagenic G:T and G:U mispairs contributing to cancer and genetic disease. The AFM data suggested that hTDG uses the intrinsic flexibility of G:T and G:U wobble pairs for initial damage sensing, while scanning DNA as a search complex (SC, slightly bent DNA). Remarkably, hTDG has been indicated to continuously switch between the search and interrogation conformation (IC, stronger bent DNA) during damage search. In the IC, target bases are interrogated by extrahelical base flipping, which is facilitated by protein-induced DNA bending and enhanced DNA flexibility at mismatches. AFM and fluorescence analyses revealed that the flipped base is stabilized via hTDG's arginine finger. Correct target bases are perfectly stabilized within the enzyme's catalytic pocket resulting in prolonged residence time and enhanced excision probability. To test for the generalizability of the proposed hTDG damage search model to BER glycosylases, identical studies were performed with a second glycosylase, hOgg1. The data on hOgg1, which removes structurally more stable 8-oxoguanine lesions, supported the hypothesis developed for lesion recognition by hTDG as a common strategy employed by BER glycosylases}, subject = {Rasterionenmikroskop}, language = {en} } @phdthesis{JakobRodamer2014, author = {Jakob-Rodamer, Verena}, title = {Development and validation of LC-MS/MS methods to determine PK/PD parameters of anti-infectives}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-109215}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In the present thesis the development and validation of bioanalytical LC-MS/MS methods for the quantification of erythromycin A, erythromycin ethylsuccinate, roxithromycin, clarithromycin, 14 hydroxy clarithromycin, flucloxacillin, piperacillin and moxifloxacin in human plasma and human urine (piperacillin) is introduced. All methods were applied to analyze human plasma and urine samples from clinical trials and therefore, have been validated according to international guidelines. The methods were reliable in these studies and fulfilled all regulatory requirements known at the time of the study conduct. Moreover, the validation data of the macrolides were compared on three different mass spectrometers (API III Plus, API 3000™, API 5000™). The new innovations in the ion source (horizontal versus vertical electrospray), the ionpath (skimmer, QJet) and the diameter of the orifice resulted in better sensitivity and a larger linearity range for the majority of the analytes. Sensitivity was improved up to a factor of 12 (for clarithromycin) between API III Plus to API 3000™ and up to a factor of 8 (for erythromycin and roxithromycin) between API 3000™ and API 5000™, keeping the accuracy and precision data at about the same level. The high sensitivity was a benefit for example for the flucloxacillin study, because concentrations from all subject samples were detectable up to approximately eight half-lives, i.e. no concentrations needed to be reported below the quantification limit. Also the linearity range were extended from two orders of magnitude to up to four orders of magnitude, which increases the likelihood to allow to analyze all samples from a pharmacokinetic study in the same run. This is especially useful if a large concentration range needs to be analysed, for example, if the method shall be applied in an ascending dose study. Then, all low concentrations from the beginning of the study can be determined, as well as all high concentrations, without the need to dilute and analyse single samples repeatedly. The pharmacokinetic data were compared to previously reported literature data and correlated graphically with MIC values of popular microorganisms which might be a starting point for further PK/PD investigations. The PK/PD theory is a very helpful tool for prediction of the efficacy of given drugs against certain micro-organisms. Depending on the pharmacodynamic processes, e. g. the mode of action, three classes of drugs have been identified. In the same way this applies to adverse effects, which need to be minimised by reducing plasma concentrations. These coherences are not well-investigated, yet, and are not discussed further in this thesis. Still, a lot of research has to be done in this interdisciplinary field to minimise uncertainty in single values, like an AUC/MIC. These include: Improve accuracy and precision of bioanalytical methods determining total and free concentration data in biological matrices for calculation of AUC and Cmax These parameters are related to the MIC in pharmacodynamic considerations. Since the determination of the MIC often underlies significant variations and also differences between microbiological laboratories, the determination of concentrations of anti-infectives is particular important, being achievable by scientific exact techniques. Finally, from the volume of distribution of antibiotics can be used to derive information about intracellular concentrations and effectivity of antiinfectives.}, subject = {Antimikrobieller Wirkstoff}, language = {en} } @phdthesis{Schulze2014, author = {Schulze, Markus}, title = {Role of Chronophin for glioma cell migration and invasion}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-109292}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Abstract Glioblastomas, primary brain tumors, represent a tumor entity with a dismal prognosis and a median survival of only about one year. Invasion into the healthy brain parenchyma contributes substantially to the malignancy of this type of brain tumor. Therefore, a better understanding of the mechanisms promoting the invasive behavior of these brain tumors is needed to identify new therapeutic targets. Cofilin, an actin regulatory protein, has been shown to be an important regulator of the invasive behavior of tumor cells in other types of cancer and the actin cytoskeleton is involved in the formation of a variety of cellular structures important for cell migration and invasion. Cofilin is regulated by phosphorylation on a single residue, serine 3. The aim of this thesis was to examine the role of the cofilin regulatory phosphatase chronophin for glioma cell migration and invasion. First, it was established that chronophin depletion in the cell line GBM6840 leads to an increase in the ratio of phosphorylated cofilin to total cofilin. Higher chronophin levels were correlated with a decrease in F-actin in the cell lines GBM6840 and U87 as measured in an actin spin down assay and in a flow cytometry based assay. Furthermore, it was shown that knockdown of chronophin in two different cell lines, GBM6840 and DBTRG-05-MG, strongly increased their invasiveness in vitro. Expression of human chronophin in the cell line U87 decreased its invasiveness substantially. There was no difference in cell proliferation between GBM6840 and DBTRG-05-MG cells expressing a chronophin targeting shRNA or a control shRNA and U87 cells transfected with an empty vector or a human chronophin encoding plasmid. The increase in invasiveness after chronophin depletion could be correlated with an increase in directionality in cell migration under 2D culture conditions in the cell lines U87 and GBM6840. Moreover, treatment with the ROCK inhibitor Y-27632 decreased directionality in GBM6840 cells under 2D culture conditions and reduced the invasiveness of GBM6840 chronophin shRNA cells back to control levels. Expression of a non-phosphorylatable cofilin mutant, the S3A mutant, was able to reduce invasiveness and to reduce directionality under 2D culture conditions back to control levels in GBM6840 chronophin shRNA cells. This provides important evidence for the involvement of cofilin phosphoregulation in the phenotypes described above. In vivo, when injected into NOD-SCID mice, chronophin depleted cells showed a dramatic growth reduction as compared to control and rescue cells. Transciptomic characterization of GBM6840 cells by microarray analysis and subsequent comparison of the data with microarray profiles of normal brain tissues and different glioma entities identified two specifically chronophin regulated transcripts potentially involved in tumor progression and invasion, MXI1 and EDIL3. Moreover, c-myc was identified as a significantly altered transcription factor after chronophin deregulation based on the number of c-myc target molecules in the microarray dataset. MXI1 is a potential negative regulator of c-myc dependent transcription, and was strongly downregulated after chronophin knockdown in GBM6840. In line with this, the activity of a c-myc reporter plasmid was increased after chronophin depletion in GBM6840 and reduced after chronophin expression in U87 cells. However, the protein level of the c-myc protein was reduced after chronophin depletion in GBM6840. Finally, anaylsis of the expression of proteases known to be important for glioblastoma pathogenesis revealed no major changes in protease expression between chronophin depleted and control cells. Therefore, a comprehensive analysis of chronophin in the context of glioma pathogenesis has been performed in this thesis. It has been shown that chronophin depletion strongly enhanced invasiveness of glioma cells and that it induced transcriptomic changes potentially involved in tumor progression. The proteins regulating cofilin phosphorylation are therefore valuable therapeutic targets for anti-invasive therapy in glioblastomas. Inhibitors for kinases upstream of cofilin, e.g. LIMKs and ROCKs, are available, and might be promising agents for anti-invasive therapy.}, subject = {Zellmigration}, language = {en} } @phdthesis{TranGia2014, author = {Tran-Gia, Johannes}, title = {Model-Based Reconstruction Methods for MR Relaxometry}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-109774}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In this work, a model-based acceleration of parameter mapping (MAP) for the determination of the tissue parameter T1 using magnetic resonance imaging (MRI) is introduced. The iterative reconstruction uses prior knowledge about the relaxation behavior of the longitudinal magnetization after a suitable magnetization preparation to generate a series of fully sampled k-spaces from a strongly undersampled acquisition. A Fourier transform results in a spatially resolved time course of the longitudinal relaxation process, or equivalently, a spatially resolved map of the longitudinal relaxation time T1. In its fastest implementation, the MAP algorithm enables the reconstruction of a T1 map from a radial gradient echo dataset acquired within only a few seconds after magnetization preparation, while the acquisition time of conventional T1 mapping techniques typically lies in the range of a few minutes. After validation of the MAP algorithm for two different types of magnetization preparation (saturation recovery \& inversion recovery), the developed algorithm was applied in different areas of preclinical and clinical MRI and possible advantages and disadvantages were evaluated.}, subject = {Kernspintomographie}, language = {en} } @phdthesis{Walz2014, author = {Walz, Yvonne}, title = {Remote sensing for disease risk profiling: a spatial analysis of schistosomiasis in West Africa}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108845}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Global environmental change leads to the emergence of new human health risks. As a consequence, transmission opportunities of environment-related diseases are transformed and human infection with new emerging pathogens increase. The main motivation for this study is the considerable demand for disease surveillance and monitoring in relation to dynamic environmental drivers. Remote sensing (RS) data belong to the key data sources for environmental modelling due to their capabilities to deliver spatially continuous information repeatedly for large areas with an ecologically adequate spatial resolution. A major research gap as identified by this study is the disregard of the spatial mismatch inherent in current modelling approaches of profiling disease risk using remote sensing data. Typically, epidemiological data are aggregated at school or village level. However, these point data do neither represent the spatial distribution of habitats, where disease-related species find their suitable environmental conditions, nor the place, where infection has occurred. As a consequence, the prevalence data and remotely sensed environmental variables, which aim to characterise the habitat of disease-related species, are spatially disjunct. The main objective of this study is to improve RS-based disease risk models by incorporating the ecological and spatial context of disease transmission. Exemplified by the analysis of the human schistosomiasis disease in West Africa, this objective includes the quantification of the impact of scales and ecological regions on model performance. In this study, the conditions that modify the transmission of schistosomiasis are reviewed in detail. A conceptual underpinning of the linkages between geographical RS measures, disease transmission ecology, and epidemiological survey data is developed. During a field-based analysis, environmental suitability for schistosomiasis transmission was assessed on the ground, which is then quantified by a habitat suitability index (HSI) and applied to RS data. This conceptual model of environmental suitability is refined by the development of a hierarchical model approach that statistically links school-based disease prevalence with the ecologically relevant measurements of RS data. The statistical models of schistosomiasis risk are derived from two different algorithms; the Random Forest and the partial least squares regression (PLSR). Scale impact is analysed based on different spatial resolutions of RS data. Furthermore, varying buffer extents are analysed around school-based measurements. Three distinctive sites of Burkina Faso and C{\^o}te d'Ivoire are specifically modelled to represent a gradient of ecozones from dry savannah to tropical rainforest including flat and mountainous regions. The model results reveal the applicability of RS data to spatially delineate and quantitatively evaluate environmental suitability for the transmission of schistosomiasis. In specific, the multi-temporal derivation of water bodies and the assessment of their riparian vegetation coverage based on high-resolution RapidEye and Landsat data proofed relevant. In contrast, elevation data and water surface temperature are constraint in their ability to characterise habitat conditions for disease-related parasites and freshwater snail species. With increasing buffer extent observed around the school location, the performance of statistical models increases, improving the prediction of transmission risk. The most important RS variables identified to model schistosomiasis risk are the measure of distance to water bodies, topographic variables, and land surface temperature (LST). However, each ecological region requires a different set of RS variables to optimise the modelling of schistosomiasis risk. A key result of the hierarchical model approach is its superior performance to explain the spatial risk of schistosomiasis. Overall, this study stresses the key importance of considering the ecological and spatial context for disease risk profiling and demonstrates the potential of RS data. The methodological approach of this study contributes substantially to provide more accurate and relevant geoinformation, which supports an efficient planning and decision-making within the public health sector.}, subject = {Westafrika}, language = {en} } @phdthesis{Siegl2014, author = {Siegl, Christine}, title = {Degradation of Tumour Suppressor p53 during Chlamydia trachomatis Infections}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108679}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The intracellular pathogen Chlamydia is the causative agent of millions of new infections per year transmitting diseases like trachoma, pelvic inflammatory disease or lymphogranuloma venereum. Undetected or recurrent infections caused by chlamydial persistence are especially likely to provoke severe pathologies. To ensure host cell survival and to facilitate long term infections Chlamydia induces anti-apoptotic pathways, mainly at the level of mitochondria, and restrains activity of pro-apoptotic proteins. Additionally, the pathogen seizes host energy, carbohydrates, amino acids, lipids and nucleotides to facilitate propagation of bacterial progeny and growth of the chlamydial inclusion. At the beginning of this study, Chlamydia-mediated apoptosis resistance to DNA damage induced by the topoisomerase inhibitor etoposide was investigated. In the course of this, a central cellular protein crucial for etoposide-mediated apoptosis, the tumour suppressor p53, was found to be downregulated during Chlamydia infections. Subsequently, different chlamydial strains and serovars were examined and p53 downregulation was ascertained to be a general feature during Chlamydia infections of human cells. Reduction of p53 protein level was established to be mediated by the PI3K-Akt signalling pathway, activation of the E3-ubiquitin ligase HDM2 and final degradation by the proteasome. Additionally, an intriguing discrepancy between infections of human and mouse cells was detected. Both activation of the PI3K-Akt pathway as well as degradation of p53 could not be observed in Chlamydia-infected mouse cells. Recently, production of reactive oxygen species (ROS) and damage to host cell DNA was reported to occur during Chlamydia infection. Thus, degradation of p53 strongly contributes to the anti-apoptotic environment crucial for chlamydial infection. To verify the importance of p53 degradation for chlamydial growth and development, p53 was stabilised and activated by the HDM2-inhibiting drug nutlin-3 and the DNA damage-inducing compound etoposide. Unexpectedly, chlamydial development was severely impaired and inclusion formation was defective. Completion of the chlamydial developmental cycle was prevented resulting in loss of infectivity. Intriguingly, removal of the p53 activating stimulus allowed formation of the bacterial inclusion and recovery of infectivity. A similar observation of growth recovery was made in infected cell lines deficient for p53. As bacterial growth and inclusion formation was strongly delayed in the presence of activated p53, p53-mediated inhibitory regulation of cellular metabolism was suspected to contribute to chlamydial growth defects. To verify this, glycolytic and pentose phosphate pathways were analysed revealing the importance of a functioning PPP for chlamydial growth. In addition, increased expression of glucose-6-phosphate dehydrogenase rescued chlamydial growth inhibition induced by activated p53. The rescuing effect was even more pronounced in p53-deficient cells treated with etoposide or nutlin-3 revealing additional p53-independent aspects of Chlamydia inhibition. Removal of ROS by anti-oxidant compounds was not sufficient to rescue chlamydial infectivity. Apparently, not only the anti-oxidant capacities of the PPP but also provision of precursors for nucleotide synthesis as well as contribution to DNA repair are important for successful chlamydial growth. Modulation of host cell signalling was previously reported for a number of pathogens. As formation of ROS and DNA damage are likely to occur during infections of intracellular bacteria, several strategies to manipulate the host and to inhibit induction of apoptosis were invented. Downregulation of the tumour suppressor p53 is a crucial point during development of Chlamydia, ensuring both host cell survival and metabolic support conducive to chlamydial growth.}, subject = {Chlamydia-trachomatis-Infektion}, language = {en} } @phdthesis{Proppert2014, author = {Proppert, Sven Martin}, title = {Design, implementation and characterization of a microscope capable of three-dimensional two color super-resolution fluorescence imaging}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-107905}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {This thesis reviews the fundamentals of three-dimensional super-resolution localization imaging. In order to infer the axial coordinate of the emission of single fluorophores, the point spread function is engineered following a technique usually referred to as astigmatic imaging by the introduction of a cylindrical lens to the detection path of a microscope. After giving a short introduction to optics and localization microscopy, I outline sources of aberrations as frequently encountered in 3D-localization microscopy and will discuss their respective impact on the precision and accuracy of the localization process. With the knowledge from these considerations, experiments were designed and conducted to verify the validity of the conclusions and to demonstrate the abilities of the proposed microscope to resolve biological structures in the three spatial dimensions. Additionally, it is demonstrated that measurements of huge volumes with virtually no aberrations is in principle feasible. During the course of this thesis, a new method was introduced for inferring axial coordinates. This interpolation method based on cubic B-splines shows superior performance in the calibration of a microscope and the evaluation of subsequent measurement and will therefore be used and explained in this work. Finally, this work is also meant to give future students some guidance for entering the field of 3D localization microscopy and therefore, detailed protocols are provided covering the specific aspects of two color 3D localization imaging.}, subject = {Dimension 3}, language = {en} } @phdthesis{Wittmann2014, author = {Wittmann, Katharina}, title = {Adipose Tissue Engineering - Development of Volume-Stable 3-Dimensional Constructs and Approaches Towards Effective Vascularization}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-107196}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Adipose tissue defects and related pathologies still represent major challenges in reconstructive surgery. Based on to the paradigm 'replace with alike', adipose tissue is considered the ideal substitute material for damaged soft tissue [1-3]. Yet the transfer of autologous fat, particularly larger volumes, is confined by deficient and unpredictable long term results, as well as considerable operative morbidity at the donor and recipient site [4-6], calling for innovative treatment options to improve patient care. With the aim to achieve complete regeneration of soft tissue defects, adipose tissue engineering holds great promise to provide functional, biologically active adipose tissue equivalents. Here, especially long-term maintenance of volume and shape, as well as sufficient vascularization of engineered adipose tissue represent critical and unresolved challenges [7-9]. For adipose tissue engineering approaches to be successful, it is thus essential to generate constructs that retain their initial volume in vivo, as well as to ensure their rapid vascularization to support cell survival and differentiation for full tissue regeneration [9,10]. Therefore, it was the ultimate goal of this thesis to develop volume-stable 3D adipose tissue constructs and to identify applicable strategies for sufficient vascularization of engineered constructs. The feasibility of the investigated approaches was verified by translation from in vitro to in vivo as a critical step for the advancement of potential regenerative therapies. For the development of volume-stable constructs, the combination of two biomaterials with complementary properties was successfully implemented. In contrast to previous approaches in the field using mainly non-degradable solid structures for mechanical protection of developing adipose tissue [11-13], the combination of a cell-instructive hydrogel component with a biodegradable porous support structure of adequate texture was shown advantageous for the generation of volume-stable adipose tissue. Specifically, stable fibrin hydrogels previously developed in our group [14] served as cell carrier and supported the adipogenic development of adipose-derived stem cells (ASCs) as reflected by lipid accumulation and leptin secretion. Stable fibrin gels were thereby shown to be equally supportive of adipogenesis compared to commercial TissuCol hydrogels in vitro. Using ASCs as a safe source of autologous cells [15,16] added substantial practicability to the approach. To enhance the mechanical strength of the engineered constructs, porous biodegradable poly(ε caprolactone)-based polyurethane (PU) scaffolds were introduced as support structures and shown to exhibit adequately sized pores to host adipocytes as well as interconnectivity to allow coherent tissue formation and vascularization. Low wettability and impaired cell attachment indicated that PU scaffolds alone were insufficient in retaining cells within the pores, yet cytocompatibility and differentiation of ASCs were adequately demonstrated, rendering the PU scaffolds suitable as support structures for the generation of stable fibrin/PU composite constructs (Chapter 3). Volume-stable adipose tissue constructs were generated by seeding the pre-established stable fibrin/PU composites with ASCs. Investigation of size and weight in vitro revealed that composite constructs featured enhanced stability relative to stable fibrin gels alone. Comparing stable fibrin gels and TissuCol as hydrogel components, it was found that TissuCol gels were less resilient to degradation and contraction. Composite constructs were fully characterized, showing good cell viability of ASCs and strong adipogenic development as indicated by functional analysis via histological Oil Red O staining of lipid vacuoles, qRT-PCR analysis of prominent adipogenic markers (PPARγ, C/EBPα, GLUT4, aP2) and quantification of leptin secretion. In a pilot study in vivo, investigating the suitability of the constructs for transplantation, stable fibrin/PU composites provided with a vascular pedicle gave rise to areas of well-vascularized adipose tissue, contrasted by insufficient capillary formation and adipogenesis in constructs implanted without pedicle. The biomaterial combination of stable fibrin gels and porous biodegradable PU scaffolds was thereby shown highly suitable for the generation of volume-stable adipose tissue constructs in vivo, and in addition, the effectiveness of immediate vascularization upon implantation to support adipose tissue formation was demonstrated (Chapter 4). Further pursuing the objective to investigate adequate vascularization strategies for engineered adipose tissue, hypoxic preconditioning was conducted as a possible approach for in vitro prevascularization. In 2D culture experiments, analysis on the cellular level illustrated that the adipogenic potential of ASCs was reduced under hypoxic conditions when applied in the differentiation phase, irrespective of the oxygen tension encountered by the cells during expansion. Hypoxic treatment of ASCs in 3D constructs prepared from stable fibrin gels similarly resulted in reduced adipogenesis, whereas endothelial CD31 expression as well as enhanced leptin and vascular endothelial growth factor (VEGF) secretion indicated that hypoxic treatment indeed resulted in a pro-angiogenic response of ASCs. Especially the observed profound regulation of leptin production by hypoxia and the dual role of leptin as adipokine and angiogenic modulator were considered an interesting connection advocating further study. Having confirmed the hypothesis that hypoxia may generate a pro-angiogenic milieu inside ASC-seeded constructs, faster vessel ingrowth and improved vascularization as well as an enhanced tolerance of hypoxia-treated ASCs towards ischemic conditions upon implanatation may be expected, but remain to be verified in rodent models in vivo (Chapter 5). Having previously been utilized for bone and cartilage engineering [17-19], as well as for revascularization and wound healing applications [20-22], stromal-vascular fraction (SVF) cells were investigated as a novel cell source for adipose tissue engineering. Providing cells with adipogenic differentiation as well as vascularization potential, the SVF was applied with the specific aim to promote adipogenesis and vascularization in engineered constructs in vivo. With only basic in vitro investigations by Lin et al. addressing the SVF for adipose repair to date [23], the present work thoroughly investigated SVF cells for adipose tissue construct generation in vitro, and in particular, pioneered the application of these cells for adipose tissue engineering in vivo. Initial in vitro experiments compared SVF- and ASC-seeded stable fibrin constructs in different medium compositions employing preadipocyte (PGM-2) and endothelial cell culture medium (EGM-2). It was found that a 1:1 mixture of PGM-2 and EGM-2, as previously established for co-culture models of adipogenesis [24], efficiently maintained cells with adipogenic and endothelial potential in SVF-seeded constructs in short and long-term culture setups. Observations on the cellular level were supported by analysis of mRNA expression of characteristic adipogenic and endothelial markers. In preparation of the evaluation of SVF-seeded constructs under in vivo conditions, a whole mount staining (WMS) method, facilitating the 3D visualization of adipocytes and blood vessels, was successfully established and optimized using native adipose tissue as template (Chapter 6). In a subcutaneous nude mouse model, SVF cells were, for the first time in vivo, elucidated for their potential to support the functional assembly of vascularized adipose tissue. Investigating the effect of adipogenic precultivation of SVF-seeded stable fibrin constructs in vitro prior to implantation on the in vivo outcome, hormonal induction was shown beneficial in terms of adipocyte development, whereas a strong vascularization potential was observed when no adipogenic inducers were added. Via histological analysis, it was proven that the developed structures were of human origin and derived from the implanted cells. Applying SVF cells without precultivation in vitro but comparing two different fibrin carriers, namely stable fibrin and TissuCol gels, revealed that TissuCol profoundly supported adipose formation by SVF cells in vivo. This was contrasted by only minor SVF cell development and a strong reduction of cell numbers in stable fibrin gels implanted without precultivation. Histomorphometric analysis of adipocytes and capillary structures was conducted to verify the qualitative results, concluding that particularly SVF cells in TissuCol were highly suited for adipose regeneration in vivo. Employing the established WMS technique, the close interaction of mature adipocytes and blood vessels in TissuCol constructs was impressively shown and via species-specific human vimentin staining, the expected strong involvement of implanted SVF cells in the formation of coherent adipose tissue was confirmed (Chapter 7). With the development of biodegradable volume-stable adipose tissue constructs, the application of ASCs and SVF cells as two promising cell sources for functional adipose regeneration, as well as the thorough evaluation of strategies for construct vascularization in vitro and in vivo, this thesis provides valuable solutions to current challenges in adipose tissue engineering. The presented findings further open up new perspectives for innovative treatments to cure soft tissue defects and serve as a basis for directed approaches towards the generation of clinically applicable soft tissue substitutes.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Post2014, author = {Post, Antonia}, title = {Snap25 heterozygous knockout mice as a potential model for attention deficit/hyperactivity disorder (ADHD)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122899}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {SNAP25 (Synaptosomal-Associated Protein of 25 kDa; part of the SNARE complex) is involved in the docking and fusion of synaptic vesicles in presynaptic neurons necessary for the regulation of neurotransmitter release, as well as in axonal growth and synaptic plasticity. In humans, different single nucleotide polymorphisms of SNAP25 have repeatedly been associated with attention deficit/hyperactivity disorder (ADHD). Thus, in this study heterozygous Snap25 knockout mice were investigated as a model of ADHD. Heterozygous (+/-) Snap25 knockout mice as well as their wild-type (+/+) littermates were reared under control conditions or underwent a Maternal Separation (MS) procedure. Starting at the age of 2 months, mice were tested for locomotor activity in a repeated long-term Open Field (OF) task, for attention deficits and impulsive behavior in the 5 Choice Serial Reaction Time Task (5CSRTT), for anxiety-like behavior in the Light-Dark Box (LDB) and for depression-like behavior in the Porsolt Forced Swim Test (FST). The brains of these mice were subsequently tested for the expression of several ADHD related genes in a quantitative Real-Time PCR (qRT-PCR) study. Another group of female mice (+/+; +/-) underwent a one hour OF test after oral administration of 45 mg/kg Methylphenidate (MPH) or placebo. To find an optimized dosage for this MPH challenge, a pilot study was performed. Wild-type C57BL/6 mice were tested in a long-term OF with several dosages of MPH both intraperitoneally (i.p.) and orally. The brains of these animals were afterwards investigated for neurotransmitter concentrations. In this pilot study the dosages of MPH that were similarly behaviorally effective without causing symptoms of overdosing were 7.5-15 mg/kg intraperitoneally and 30-60 mg/kg orally. However, even though it was possible to find intraperitoneal and oral doses that correlate behaviorally, the neurochemistry was mostly different. In the study on Snap25-deficient mice, unstressed controls showed a hyperactive phenotype in the second of two long-term OF sessions (60 min) spaced three weeks apart. Considering all groups, there was a significant interaction of stress and genotype in the second session, with animals subjected to MS being overall hyperactive with no genotype differences. In the training phase of the 5CSRTT only effects of stress were found, with MS animals finding and consuming fewer rewards. In the single test trial, several genotype effects became apparent, with tendencies for the number of correct nose pokes and the number of rewards eaten, and a significant effect for the number of rewards eaten directly after the correct response. In all of these variables +/- mice performed worse than their wild-type littermates. In the LDB +/- mice entered the lit compartment of the arena earlier than the controls, thus showing attenuated anxiety-like behavior. Regarding depressive-like behavior in the FST, male +/- mice spent significantly less time struggling than male +/+ mice. In the gene expression study, +/- mice had lower expression levels of Maoa and Comt, and higher expression levels of Nos1 than wild-types. Finally, the locomotor activity response to MPH was exaggerated in +/- mice as compared to controls. Heterozygous Snap25 knockout mice show some of the behavioral characteristics of ADHD, as for example a mild hyperactivity in a familiar environment, difficulties in the correct execution of a given task and even some behavior that can be interpreted as delay aversion. Additionally, expression levels of three ADHD related genes were changed in these animals. Although the exaggerated locomotor activity response to MPH is not to be expected of an ADHD model, the difference in the response between +/+ and +/- mice nonetheless implicates a potential dysfunction of the brain dopaminergic system.}, subject = {Aufmerksamkeitsdefizit-Syndrom}, language = {en} } @phdthesis{Oswald2014, author = {Oswald, Nicola}, title = {Hurwitz's Complex Continued Fractions - A Historical Approach and Modern Perspectives}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106040}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The thesis 'Hurwitz's Complex Continued Fractions - A Historical Approach and Modern Perspectives.' deals with two branches of mathematics: Number Theory and History of Mathematics. On the first glimpse this might be unexpected, however, on the second view this is a very fruitful combination. Doing research in mathematics, it turns out to be very helpful to be aware of the beginnings and development of the corresponding subject. In the case of Complex Continued Fractions the origins can easily be traced back to the end of the 19th century (see [Perron, 1954, vl. 1, Ch. 46]). One of their godfathers had been the famous mathematician Adolf Hurwitz. During the study of his transformation from real to complex continued fraction theory [Hurwitz, 1888], our attention was arrested by the article 'Ueber eine besondere Art der Kettenbruch-Entwicklung complexer Gr{\"o}ssen' [Hurwitz, 1895] from 1895 of an author called J. Hurwitz. We were not only surprised when we found out that he was the elder unknown brother Julius, furthermore, Julius Hurwitz introduced a complex continued fraction that also appeared (unmentioned) in an ergodic theoretical work from 1985 [Tanaka, 1985]. Those observations formed the Basis of our main research questions: What is the historical background of Adolf and Julius Hurwitz and their mathematical studies? and What modern perspectives are provided by their complex continued fraction expansions? In this work we examine complex continued fractions from various viewpoints. After a brief introduction on real continued fractions, we firstly devote ourselves to the lives of the brothers Adolf and Julius Hurwitz. Two excursions on selected historical aspects in respect to their work complete this historical chapter. In the sequel we shed light on Hurwitz's, Adolf's as well as Julius', approaches to complex continued fraction expansions. Correspondingly, in the following chapter we take a more modern perspective. Highlights are an ergodic theoretical result, namely a variation on the D{\"o}blin-Lenstra Conjecture [Bosma et al., 1983], as well as a result on transcendental numbers in tradition of Roth's theorem [Roth, 1955]. In two subsequent chapters we are concernced with arithmetical properties of complex continued fractions. Firstly, an analogue to Marshall Hall's Theorem from 1947 [Hall, 1947] on sums of continued fractions is derived. Secondly, a general approach on new types of continued fractions is presented building on the structural properties of lattices. Finally, in the last chapter we take up this approach and obtain an upper bound for the approximation quality of diophantine approximations by quotients of lattice points in the complex plane generalizing a method of Hermann Minkowski, improved by Hilde Gintner [Gintner, 1936], based on ideas from geometry of numbers.}, subject = {Kettenbruch}, language = {en} } @phdthesis{Murti2014, author = {Murti, Krisna}, title = {The Role of NFATc1 in Burkitt Lymphoma and in Eµ-Myc induced B cell Lymphoma}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106448}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Burkitt lymphoma (BL) is a highly aggressive B cell malignancy. Rituximab, a humanized antibody against CD20, in a combination with chemotherapy is a current treatment of choice for B-cell lymphomas including BL. However, certain group of BL patients are resistant to Rituximab therapy. Therefore, alternative treatments targeting survival pathways of BL are needed. In BL deregulation of MYC expression, together with additional mutations, inhibits differentiation of germinal centre (GC) B cells and drives proliferation of tumor cells. Pro-apoptotic properties of MYC are counteracted through the B-cell receptor (BCR) and phosphoinositide-3-kinase (PI3K) pathway to ensure survival of BL cells. In normal B-cells BCR triggering activates both NF-κB and NFAT-dependent survival signals. Since BL cells do not exhibit constitutive NF-κB activity, we hypothesized that anti-apoptotic NFATc1A isoform might provide a major survival signal for BL cells. We show that NFATc1 is constitutively expressed in nuclei of BL, in BL cell lines and in Eµ-Myc-induced B cell lymphoma (BCL) cells. Nuclear residence of NFATc1 in these entities depends on intracellular Ca2+ levels but is largely insensitive to cyclosporine A (CsA) treatment and therefore independent from calcineurine (CN) activity. The protein/protein interaction between the regulatory domain of NFATc1 and DNA binding domain of BCL6 likely contributes to sustained nuclear residence of NFATc1 and to the regulation of proposed NFATc1-MYC-BCL6-PRDM1 network in B-cell lymphomas. Our data revealed lack of strict correlation between the expression of six NFATc1 isoforms in different BL-related entities suggesting that both NFATc1/alphaA and -betaA isoforms provide survival functions and that NFATc1alpha/betaB and -alpha/betaC isoforms either do not possess pro-apoptotic properties in BL cells or these properties are counterbalanced. In addition, we show that in BL entities expression of NFATc1 protein is largely regulated at post-transcriptional level, including MYC dependent increase of protein stability. Functionally we show that conditional inactivation of Nfatc1 gene in Eµ-Myc mice prevents development of BCL tumors with mature B cell immunophenotype (IgD+). Loss of NFATc1 expression in BCL cells ex vivo results in apoptosis of tumor cells. Together our results identify NFATc1 as an important survival factor in BL cells and, hence, as a promising target for alternative therapeutic strategies for BL.}, subject = {Transkriptionsfaktor}, language = {en} } @phdthesis{Koziol2014, author = {Koziol, Uriel}, title = {Molecular and developmental characterization of the Echinococcus multilocularis stem cell system}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-105040}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The metacestode larva of Echinococcus multilocularis is the causative agent of alveolar echinococcosis (AE), one of the most dangerous zoonotic diseases in the Northern Hemisphere. Unlike "typical" metacestode larvae from other tapeworms, it grows as a mass of interconnected vesicles which infiltrates the liver of the intermediate host, continuously forming new vesicles in the periphery. From these vesicles, protoscoleces (the infective form for the definitive host) are generated by asexual budding. It is thought that in E. multilocularis, as in other flatworms, undifferentiated stem cells (so-called germinative cells in cestodes and neoblasts in free-living flatworms) are the sole source of new cells for growth and development. Therefore, this cell population should be of central importance for the progression of AE. In this work, I characterized the germinative cells of E. multilocularis, and demonstrate that they are indeed the only proliferating cells in metacestode vesicles. The germinative cells are a population of undifferentiated cells with similar morphology, and express high levels of transcripts of a novel non-autonomous retrotransposon family (ta-TRIMs). Experiments of recovery after hydroxyurea treatment suggest that individual germinative cells have extensive self-renewal capabilities. However, germinative cells also display heterogeneity at the molecular level, since only some of them express conserved homologs of fgfr, nanos and argonaute genes, suggesting the existence of several distinct sub-populations. Unlike free-living flatworms, cestode germinative cells lack chromatoid bodies. Furthermore, piwi and vasa orthologs are absent from the genomes of cestodes, and there is widespread expression of some conserved neoblast markers in E. multilocularis metacestode vesicles. All of these results suggest important differences between the stem cell systems of free-living flatworms and cestodes. Furthermore, I describe molecular markers for differentiated cell types, including the nervous system, which allow for the tracing of germinative cell differentiation. Using these molecular markers, a previously undescribed nerve net was discovered in metacestode vesicles. Because the metacestode vesicles are non-motile, and the nerve net of the vesicle is independent of the nervous system of the protoscolex, we propose that it could serve as a neuroendocrine system. By means of bioinformatic analyses, 22 neuropeptide genes were discovered in the E. multilocularis genome. Many of these genes are expressed in metacestode vesicles, as well as in primary cell preparations undergoing complete metacestode regeneration. This suggests a possible role for these genes in metacestode development. In line with this hypothesis, one putative neuropeptide (RGFI-amide) was able to stimulate the proliferation of primary cells at a concentration of 10-7 M, and the corresponding gene was upregulated during metacestode regeneration.}, subject = {Fuchsbandwurm}, language = {en} } @phdthesis{Werner2014, author = {Werner, Katharina Julia}, title = {Adipose Tissue Engineering - In vitro Development of a subcutaneous fat layer and a vascularized adipose tissue construct utilizing extracellular matrix structures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-104676}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Each year millions of plastic and reconstructive procedures are performed to regenerate soft tissue defects after, for example, traumata, deep burns or tumor resections. Tissue engineered adipose tissue grafts are a promising alternative to autologous fat transfer or synthetic implants to meet this demand for adipose tissue. Strategies of tissue engineering, especially the use of cell carriers, provide an environment for better cell survival, an easier positioning and supplemented with the appropriate conditions a faster vascularization in vivo. To successfully engineer an adipose tissue substitute for clinical use, it is crucial to know the actual intended application. In some areas, like the upper and lower extremities, only a thin subcutaneous fat layer is needed and in others, large volumes of vascularized fat grafts are more desirable. The use and interplay of stem cells and selected scaffolds were investigated and provide now a basis for the generation of fitted and suitable substitutes in two different application areas. Complex injuries of the upper and lower extremities, in many cases, lead to excessive scarring. Due to severe damage to the subcutaneous fat layer, a common sequela is adhesion formation to mobile structures like tendons, nerves, and blood vessels resulting in restricted motion and disabling pain [Moor 1996, McHugh 1997]. In order to generate a subcutaneous fat layer to cushion scarred tissue after substantial burns or injuries, different collagen matrices were tested for clinical handling and the ability to support adipogenesis. When testing five different collagen matrices, PermacolTM and StratticeTM showed promising characteristics; additionally both possess the clinical approval. Under culture conditions, only PermacolTM, a cross-linked collagen matrix, exhibited an excellent long-term stability. Ranking nearly on the same level was StratticeTM, a non-cross-linked dermal scaffold; it only exhibited a slight shrinkage. All other scaffolds tested were severely compromised in stability under culture conditions. Engineering a subcutaneous fat layer, a construct would be desirable with a thin layer of emerging fat for cushioning on one side, and a non-seeded other side for cell migration and host integration. With PermacolTM and StratticeTM, it was possible to produce constructs with ASC (adipose derived stem cells) seeded on one side, which could be adipogenically differentiated. Additionally, the thickness of the cell layer could be varied. Thereby, it becomes possible to adjust the thickness of the construct to the surrounding tissue. In order to reduce the pre-implantation time ex vivo and the costs, the culture time was varied by testing different induction protocols. An adipogenic induction period of only four days was demonstrated to be sufficient to obtain a substantial adipogenic differentiation of the applied ASC. Thus, seeded with ASC, PermacolTM and StratticeTM are suitable scaffolds to engineer subcutaneous fat layers for reconstruction of the upper and lower extremities, as they support adipogenesis and are appropriately thin, and therefore would not compromise the cosmesis. For the engineering of large-volume adipose tissue, adequate vascularization still represents a major challenge. With the objective to engineer vascularized fat pads, it is important to consider the slow kinetics of revascularization in vivo. Therefore, a decellularized porcine jejunum with pre-existing vascular structures and pedicles to connect to the host vasculature or the circulation of a bioreactor system was used. In a first step, the ability of a small decellularized jejunal section was tested for cell adhesion and for supporting adipogenic differentiation of hASC mono-cultures. Cell adhesion and adipogenic maturation of ASC seeded on the jejunal material was verified through histological and molecular analysis. After the successful mono-culture, the goal was to establish a MVEC (microvascular endothelial cells) and ASC co-culture; suitable culture conditions had to be found, which support the viability of both cell types and do not interfere with the adipogenic differentiation. After the elimination of EGF (epidermal growth factor) from the co-culture medium, substantial adipogenic maturation was observed. In the next step, a large jejunal segment (length 8 cm), with its pre-existing vascular structures and arterial/venous pedicles, was connected to the supply system of a custom-made bioreactor. After successful reseeding the vascular structure with endothelial cells, the lumen was seeded with ASC which were then adipogenically induced. Histological and molecular examinations confirmed adipogenic maturation and the existence of seeded vessels within the engineered construct. Noteworthily, a co-localization of adipogenically differentiating ASC and endothelial cells in vascular networks could be observed. So, for the first time a vascularized fat construct was developed in vitro, based on the use of a decellularized porcine jejunum. As this engineered construct can be connected to a supply system or even to a patient vasculature, it is versatile in use, for example, as transplant in plastic and reconstruction surgery, as model in basic research or as an in vitro drug testing system. To summarize, in this work a promising substitute for subcutaneous fat layer reconstruction, in the upper and lower extremities, was developed, and the first, as far as reported, in vitro generated adipose tissue construct with integrated vascular networks was successfully engineered.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Chen2014, author = {Chen, Wenchun}, title = {Studies on the role of calcium channels and the kinase domain of transient receptor potential melastatin-like 7 (TRPM7) in platelet function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103719}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Platelet activation and aggregation are essential processes for the sealing of injured vessel walls and preventing blood loss. Under pathological conditions, however, platelet aggregation can lead to uncontrolled thrombus formation, resulting in irreversible vessel occlusion. Therefore, precise regulation of platelet activation is required to ensure efficient platelet plug formation and wound sealing but also to prevent uncontrolled thrombus formation. Rapid elevations in the intracellular levels of cations are a core signaling event during platelet activation. In this thesis, the roles of Ca2+ and Mg2+ channels in the regulation of platelet function were investigated. Orai1, the major store-operated calcium (SOC) channel in platelets, is not only vital for diverse signaling pathways, but may also regulate receptor-operated calcium entry (ROCE). The coupling between the Orai1 signalosome and canonical transient receptor potential channel (TRPC) isoforms has been suggested as an essential step in the activation of store-operated calcium entry (SOCE) and ROCE in human platelets. However, the functional significance of the biochemical interaction between Orai and TRPC isoforms still remains to be answered. In the first part of this thesis, the functional crosstalk between Orai1 and TRPC6 was addressed. Orai1-mediated SOCE was found to enhance the activity of phospholipases (PL) C and D, to increase diacylglycerol (DAG) production and finally to regulate TRPC6-mediated ROCE via DAG, indicating that the regulation of TRPC6 channel activity seems to be independent of the physical interaction with Orai1. Furthermore, Orai1 and TRPC6 double deficiency led to a reduced Ca2+ store content and basal cytoplasmic Ca2+ concentrations, but surprisingly also enhanced ATP secretion, which may enhance Ca2+ influx via P2X1 and compensate for the severe Ca2+ deficits seen in double mutant platelets. In addition, Orai1 and TRPC6 were not essential for G protein-coupled receptor (GPCR)-mediated platelet activation, aggregation and thrombus formation. Transient receptor potential melastatin-like 7 (TRPM7) contains a cytosolic serine/threonine protein kinase. To date, a few in vitro substrates of the TRPM7 kinase have been identified, however, the physiological role of the kinase remains unknown. In the second part of this thesis, mice with a point mutation which blocks the catalytic activity of the TRPM7 kinase (Trpm7KI) were used to study the role of the TRPM7 kinase in platelet function. In Trpm7KI platelets phosphatidylinositol-4,5-bisphosphate (PIP2) metabolism and Ca2+ mobilization were severely impaired upon glycoprotein (GP) VI activation, indicating that the TRPM7 kinase regulates PLC function. This signaling defect in Trpm7KI platelets resulted in impaired aggregate formation under flow and protected animals from arterial thrombosis and ischemic brain infarction. Altogether, these results highlight the kinase domain of TRPM7 as a pivotal signaling moiety implicated in the pathogenesis of thrombosis and cerebrovascular events.}, subject = {Thrombozyt}, language = {en} } @phdthesis{Xian2014, author = {Xian, Yibo}, title = {Identification of essential genes and novel virulence factors of Neisseria gonorrhoeae by transposon mutagenesis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-102659}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Neisseria gonorrhoeae is a human-specific pathogen that causes gonorrhea. It is defined as a super bacterium by the WHO due to the emergence of gonococci that are resistant to a variety of antibiotics and a rapidly increasing infection incidence. Genome-wide investigation of neisserial gene essentiality and novel virulence factors is urgently required in order to identify new targets for anti-neisserial therapeutics. To identify essential genes and new virulence factors, a high-density mutant library in N. gonorrhoeae MS11 was generated by in vitro transposon mutagenesis. The transposon library harbors more than 100,000 individual mutants, a density that is unprecedented in gonococcal research. Essential genes in N. gonorrhoeae were determined by enumerating frequencies of transposon insertion sites (TIS) with Illumina deep sequencing (Tn-seq). Tn-seq indicated an average distance between adjacent TIS of 25 bp. Statistical analysis unequivocally demonstrated 781 genes that were significantly depleted in TIS and thus are essential for Neisseria survival. A subset of the genes was experimentally verified to comprise essential genes and thus support the outcome of the study. The hereby identified candidate essential genes thus may constitute excellent targets for the development of new antibiotics or vaccines. In a second study, the transposon mutant library was applied in a genome-scale "negative-selection strategy" to identify genes that are involved in low phosphate-dependent invasion (LPDI). LPDI is dependent on the Neisseria porin subtype PorBIA which acts as an epithelial cell invasin in absence of phosphate and is associated with severe pathogenicity in disseminated gonococcal infections (DGI). Tn-seq demonstrated 98 genes, which were involved in adherence to host cells and 43 genes involved in host cell invasion. E.g. the hypothetical protein NGFG_00506, an ABC transporter ATP-binding protein NGFG_01643, as well as NGFG_04218 encoding a homolog of mafI in N. gonorrhoeae FA1090 were experimentally verified as new invasive factors in LPDI. NGFG_01605, a predicted protease, was identified to be a common factor involved in PorBIA, Opa50 and Opa57-mediated neisserial engulfment by the epithelial cells. Thus, this first systematic Tn-seq application in N. gonorrhoeae identified a set of previously unknown N. gonorrhoeae invasive factors which demonstrate molecular mechanisms of DGI.}, subject = {Neisseria gonorrhoeae}, language = {en} } @phdthesis{Zusan2014, author = {Zusan, Andreas}, title = {The Effect of Morphology on the Photocurrent Generation in Organic Solar Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117852}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Organic solar cells have great potential to become a low-cost and clean alternative to conventional photovoltaic technologies based on the inorganic bulk material silicon. As a highly promising concept in the field of organic photovoltaics, bulk heterojunction (BHJ) solar cells consist of a mixture of an electron donating and an electron withdrawing component. Their degree of intermixing crucially affects the generation of photocurrent. In this work, the effect of an altered blend morphology on polaron pair dissociation, charge carrier transport, and nongeminate recombination is analyzed by the charge extraction techniques time delayed collection field (TDCF) and open circuit corrected transient charge extraction (OTRACE). Different comparative studies cover a broad range of material systems, including polymer and small-molecule donors in combination with different fullerene acceptors. The field dependence of polaron pair dissociation is analyzed in blends based on the polymer pBTTT-C16, allowing a systematic tuning of the blend morphology by varying the acceptor type and fraction. The effect of both excess photon energy and intercalated phases are minor compared to the influence of excess fullerene, which reduces the field dependence of photogeneration. The study demonstrates that the presence of neat fullerene domains is the major driving force for efficient polaron pair dissociation that is linked to the delocalization of charge carriers. Furthermore, the influence of the processing additive diiodooctane (DIO) is analyzed using the photovoltaic blends PBDTTT-C:PC71BM and PTB7:PC71BM. The study reveals amulti-tiered alteration of the blend morphology of PBDTTT-C based blends upon a systematic increase of the amount of DIO. Domains on the hundred nanometers length scale in the DIO-free blend are identified as neat fullerene agglomerates embedded in an intermixed matrix. With the addition of the additive, 0.6\% and 1\% DIO already substantially reduces the size of these domains until reaching the optimum 3\% DIO mixture, where a 7.1\% power conversion efficiency is obtained. It is brought into connection with the formation of interpenetrating polymer and fullerene phases. Similar to PBDTTT-C, the morphology of DIO-free PTB7:PC71BM blends is characterized by large fullerene domains being decreased in size upon the addition of 3\% DIO. OTRACE measurements reveal a reduced Langevin-type, super-second order recombination in both blends. It is demonstrated that the deviation from bimolecular recombination kinetics cannot be fully attributed to the carrier density dependence of the mobility but is rather related to trapping in segregated PC71BM domains. Finally, with regard to small-molecule donors, a higher yield of photogeneration and balanced transport properties are identified as the dominant factors enhancing the efficiency of vacuum deposited MD376:C60 relative to its solution processed counterpart MD376:PC61BM. The finding is explained by a higher degree of dimerization of the merocyanine dye MD376 and a stronger donor-acceptor interaction at the interface in the case of the vacuum deposited blend.}, subject = {Organische Solarzelle}, language = {en} } @phdthesis{Vogt2014, author = {Vogt, Gernot}, title = {Future changes and signal analyses of climate means and extremes in the Mediterranean Area deduced from a CMIP3 multi-model ensemble}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117369}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Considering its social, economic and natural conditions the Mediterranean Area is a highly vulnerable region by designated affections of climate change. Furthermore, its climatic characteristics are subordinated to high natural variability and are steered by various elements, leading to strong seasonal alterations. Additionally, General Circulation Models project compelling trends in specific climate variables within this region. These circumstances recommend this region for the scientific analyses conducted within this study. Based on the data of the CMIP3 database, the fundamental aim of this study is a detailed investigation of the total variability and the accompanied uncertainty, which superpose these trends, in the projections of temperature, precipitation and sea-level pressure by GCMs and their specific realizations. Special focus in the whole study is dedicated to the German model ECHAM5/MPI-OM. Following this ambition detailed trends and mean values are calculated and displayed for meaningful time periods and compared to reanalysis data of ERA40 and NCEP. To provide quantitative comparison the mentioned data are interpolated to a common 3x3° grid. The total amount of variability is separated in its contributors by the application of an Analysis of Variance (ANOVA). For individual GCMs and their ensemble-members this is done with the application of a 1-way ANOVA, separating a treatment common to all ensemble-members and variability perturbating the signal given by different initial conditions. With the 2-way ANOVA the projections of numerous models and their realizations are analysed and the total amount of variability is separated into a common treatment effect, a linear bias between the models, an interaction coefficient and the residuals. By doing this, the study is fulfilled in a very detailed approach, by considering yearly and seasonal variations in various reasonable time periods of 1961-2000 to match up with the reanalysis data, from 1961-2050 to provide a transient time period, 2001-2098 with exclusive regard on future simulations and 1901-2098 to comprise a time period of maximum length. The statistical analyses are conducted for regional-averages on the one hand and with respect to individual grid-cells on the other hand. For each of these applications the SRES scenarios of A1B, A2 and B1 are utilized. Furthermore, the spatial approach of the ANOVA is substituted by a temporal approach detecting the temporal development of individual variables. Additionally, an attempt is made to enlarge the signal by applying selected statistical methods. In the detailed investigation it becomes evident, that the different parameters (i.e. length of temporal period, geographic location, climate variable, season, scenarios, models, etc…) have compelling impact on the results, either in enforcing or weakening them by different combinations. This holds on the one hand for the means and trends but also on the other hand for the contributions of the variabilities affecting the uncertainty and the signal. While temperature is a climate variable showing strong signals across these parameters, for precipitation mainly the noise comes to the fore, while for sea-level pressure a more differentiated result manifests. In turn, this recommends the distinguished consideration of the individual parameters in climate impact studies and processes in model generation, as the affecting parameters also provide information about the linkage within the system. Finally, an investigation of extreme precipitation is conducted, implementing the variables of the total amount of heavy precipitation, the frequency of heavy-precipitation events, the percentage of this heavy precipitation to overall precipitation and the mean daily intensity from events of heavy precipitation. Each time heavy precipitation is defined to exceed the 95th percentile of overall precipitation. Consecutively mean values of these variables are displayed for ECHAM5/MPI-OM and the multi-model mean and climate sensitivities, by means of their difference between their average of the past period of 1981-2000 and the average of one of the future periods of 2046-2065 or 2081-2100. Following this investigation again an ANOVA is conducted providing a quantitative measurement of the severity of change of trends in heavy precipitation across several GCMs. Besides it is a difficult task to account for extreme precipitation by GCMs, it is noteworthy that the investigated models differ highly in their projections, resulting partially in a more smoothed and meaningful multi-model mean. Seasonal alterations of the strength of this behaviour are quantitatively supported by the ANOVA.}, subject = {Klimaschwankung}, language = {en} } @phdthesis{Weber2014, author = {Weber, David}, title = {Hey target gene regulation in embryonic stem cells and cardiomyocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101663}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The Notch signaling pathway is crucial for mammalian heart development. It controls cell-fate decisions, coordinates patterning processes and regulates proliferation and differentiation. Critical Notch effectors are Hey bHLH transcription factors (TF) that are expressed in atrial (Hey1) and ventricular (Hey2) cardiomyocytes (CM) and in the developing endocardium (Hey1/2/L). The importance of Hey proteins for cardiac development is demonstrated by knockout (KO) mice, which suffer from lethal cardiac defects, such as ventricular septum defects (VSD), valve defects and cardiomyopathy. Despite this clear functional relevance, little is known about Hey downstream targets in the heart and the molecular mechanism by which they are regulated. Here, I use a cell culture system with inducible Hey1, Hey2 or HeyL expression to study Hey target gene regulation in HEK293 cells, in murine embryonic stem cells (ESC) and in ESC derived CM. In HEK293 cells, I could show that genome wide binding sites largely overlap between all three Hey proteins, but HeyL has many additional binding sites that are not bound by Hey1 or Hey2. Shared binding sites are located close to transcription start sites (TSS) where Hey proteins preferentially bind to canonical E boxes, although more loosely defined modes of binding exist. Additional sites only bound by HeyL are more scattered across the genome. The ability of HeyL to bind these sites depends on the C-terminal part of the protein. Although there are genes which are differently regulated by HeyL, it is unclear whether this regulation results from binding of additional sites by HeyL. Additionally, Hey target gene regulation was studied in ESC and differentiated CM, which are more relevant for the observed cardiac phenotypes. ESC derived CM contract in culture and are positive for typical cardiac markers by qRT PCR and staining. According to these markers differentiation is unaffected by prolonged Hey1 or Hey2 overexpression. Regulated genes are largely redundant between Hey1 and Hey2. These are mainly other TF involved in e.g. developmental processes, apoptosis, cell migration and cell cycle. Many target genes are cell type specifically regulated causing a shift in Hey repression of genes involved in cell migration in ESC to repression of genes involved in cell cycle in CM. The number of Hey binding sites is reduced in CM and HEK293 cells compared to ESC, most likely due to more regions of dense chromatin in differentiated cells. Binding sites are enriched at the proximal promoters of down-regulated genes, compared to up-or non-regulated genes. This indicates that up-regulation primarily results from indirect effects, while down-regulation is the direct results of Hey binding to target promoters. The extent of repression generally correlates with the amount of Hey binding and subsequent recruitment of histone deacetylases (Hdac) to target promoters resulting in histone H3 deacetylation. However, in CM the repressive effect of Hey binding on a subset of genes can be annulled, likely due to binding of cardiac specific activators like Srf, Nkx2-5 and Gata4. These factors seem not to interfere with Hey binding in CM, but they recruit histone acetylases such as p300 that may counteract Hey mediated histone H3 deacetylation. Such a scenario explains differential regulation of Hey target genes between ESC and CM resulting in gene and cell-type specific regulation.}, subject = {Transkriptionsfaktor}, language = {en} } @phdthesis{Alkonyi2014, author = {Alkonyi, Balint}, title = {Differential imaging characteristics and dissemination potential of pilomyxoid astrocytomas versus pilocytic astrocytomas}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116062}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Background and Aims: PMA is a recently described rare tumor entity occuring most often in young children. Due the worse outcome of PMA-patients as compared to children with pilocytic astrocytoma (PA), it has received a grade II assignment in the latest WHO classification. Nevertheless, increasing evidence suggests that the two tumor types are indeed pathologically and genetically related. The radiological differentiation of PMAs from PAs is challenging and the limited available data could not yet provide unequivocal distinguishing imaging features. Furthermore, it is not completely clarified whether PMA cases are associated with a higher rate of CSF dissemination compared to similarly young patients with PA. The aim of our study was firstly to compare MR/CT imaging features of these tumors, and secondly, to evaluate the occurrence of CSF dissemination. Material and Methods: The study population included 15 children with PMA and 32 children with PA. A third group consisted of eight children with PAs with focal pilomyxoid features. All cases had been registered in the German multicenter SIOP/HIT-LGG trials. The initial MRIs (and CT scans, if available) at establishing the diagnosis were retrospectively analyzed according to standardized criteria and the findings compared between PMAs and PAs. Furthermore, we compared the occurrence of imaging evidences of CSF tumor dissemination between children with PMA and PA, respectively. Results: The imaging appearance of PMAs and PAs was very similar. However, PAs tended to show more frequently cystic components (p=0.03). As opposed to PAs, PMAs did not have large tumor cysts. We did not find differences with respect to tumor size and tumor margin. Gadolinium enhancement of PMAs was significantly more frequently homogeneous (p=0.006). PMAs appeared to show more often intratumoral hemorrhages (p=0.047). Furthermore, suprasellar PMAs tended to have a more homogeneus texture on T2-weighted MR images (p=0.026). Within the subgroup < 6 years of age the PMA histology tended to have a larger effect on the occurrence of CSF dissemination than the age (p=0.05 vs.0.12). Conclusions: Although the radiological appearance of PMAs and PAs is similar, some imaging features, like enhancement pattern or presence of cysts or hemorrhage may help differentiating these low-grade gliomas. Our results corroborate previous scarce data suggesting higher rate of CSF dissemination in PMAs, even in the youngest patient population. Thus, in young children with a chiasmatic-hypothalamic tumor suggestive of a PMA, an intensive search for CSF dissemination along the entire neuraxis should be performed.}, subject = {Astrozytom}, language = {en} } @phdthesis{Gorenflot2014, author = {Gorenflot, Julien Fran{\c{c}}ois}, title = {Optical study of the excited states in the semiconducting polymer poly(3-hexylthiophene) for photovoltaic applications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116730}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In the course of this dissertation, we have presented the interest of using spectroscopic methods to unravel the physics of polymer semiconductors in photovoltaic applications. Applying photoluminescence and photoinduced absorption spectroscopy to the reference system P3HT:PCBM has enabled us to study the major steps of photocurrent generation in organic bulk heterojunctions, from excitons generation to charges extraction and loss mechanisms and thus to improve the understanding of those mechanisms. The exciton binding energy, is the first obstacle to overcome for photocurrent generation in organic solar cell and the reason for the use of two materials, whose heterojunction act as a driving force for charge separation. We developed an original photoluminescence-detected field-induced exciton quenching method to investigate this energy. Absorption and photoluminescence spectra of pure P3HT show that, while both amorphous and crystalline domains participate in absorption, the energy is then transferred to the crystalline domains, from where the photoluminescence is exclusively originating. The field dependence of this photoluminescence showed that an energy of no less than 420 meV is necessary to split excitons into non photon-emitting species. Comparing those results with energy levels obtained by absorption and photoelectron spectroscopies, confirmed that the formation of those species is only a first step toward dissociation into free charges. Indeed, photoemission spectroscopy and the onset of photocurrent upon increasing the photon energy in a pure P3HT solar cell, concomitantly show that the energy level of a pair of free polarons is located 0.7 eV above the one of the exciton. The comprehensive analysis of those results originating from those different method enable us to draw a global picture of the states and energies involved in free polarons generation in pure material. This work has been widely acknowledged by the scientific community, published in Physical Review B in 2010 [1] and presented in national [2] and international [3] conferences. The spectroscopy of excited states is used to detect the presence of wanted species (charges) and potentially unwanted neutral species upon photoexcitation. As such, it offers us the possibility to qualify the efficiency of charge generation and, if any, identify the competing processes and the generation of unwanted species. In the frame of the European Marie Curie Research Network SolarNType,[4] this possibility was used - in combination with morphological, charge transport and devices characterizationsn - to study a number of new donor:acceptor blends. Thanks to those techniques, we were able to not only quantify the potential of those blends, but also to provide the chemist laboratories with a precious and detailed feedback on the strengths and weakness of the molecules, regarding charge generation, transport and extraction. The detailed study of terrylene-3,4:11,12-bis(dicarboximide) as electron acceptor for solar cells application was published in the peer review journal Synthetic Metals and was chosen to illustrate the cover page of the issue [5]. Finally, in the last chapter, we have used time resolved photoinduced absorption to improve the understanding of the charge carrier loss mechanisms in P3HT:PCBM active layers. This comprehension is of prime importance because, the fact that this recombination is far weaker than expected from the Langevin theory, enable polarons to travel further without recombining and thus to build thicker and more efficient devices. A comprehensive analysis of steady-state PIA spectra of pure P3HT, indicates that probing at 980 nm at a temperature between 140 and 250 K enables to monitor specifically polaron densities in both neat P3HT and P3HT:PCBM. Applying this finding to transient absorption enabled us to monitor, for the first time, the bimolecular recombination in pure P3HT, and to discover that - in sharp contrast with the blend - this recombination was in agreement with the Langevin theory. Moreover, it enables us to pinpoint the important role played by the existence of two materials and of energetical traps in the slow recombination and high recombination orders observed in the blend. This work has been published in the Journal of Applied Physics.[6] Those new insights in the photophysics of polymer:fullerene photoactive layers could have a strong impact on the future developement of those materials. Consistent measurements of the binding energy of excitons and intermediate species, would enable to clarify the role played by excess thermal energy in interfacial states dissociation. Better understanding of blends morphology and its influence on solar cells parameters and in particular on recombination could enable to reproduce the conditions of limited recombination on material systems offering some promising performances but with only limited active layer thicknesses. However, due to the number of parameters involved, further experimentation is required, before we can reach a quantitative modeling of bimolecular recombination. [1] Deibel et al., Phys. Rev. B, 81:085202, 2010 [2] Gorenflot et al., Deutsche Physikalische Gesellschaft Fr{\"u}hjahrstagung 2010, CPP20:10, Regensburg, Germany, 2010 [3] Gorenflot et al., International Conference of Synthetic Metals, 7Ax:05, Kyoto, Japan, 2010 [4] Marie-Curie RTN "SolarNTyp" Contract No. MRTN-CT-2006-035533 [5] Gorenflot et al., Synth. Met., 161(23{24):2669-2676, 2012 [6] Gorenflot et al., J. Appl. Phys., 115(14):144502, 2014}, subject = {Organische Solarzelle}, language = {en} } @phdthesis{Bercx2014, author = {Bercx, Martin Helmut}, title = {Numerical studies of heavy-fermion systems and correlated topological insulators}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116138}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In this thesis, we investigate aspects of the physics of heavy-fermion systems and correlated topological insulators. We numerically solve the interacting Hamiltonians that model the physical systems using quantum Monte Carlo algorithms to access both ground-state and finite-temperature observables. Initially, we focus on the metamagnetic transition in the Kondo lattice model for heavy fermions. On the basis of the dynamical mean-field theory and the dynamical cluster approximation, our calculations point towards a continuous transition, where the signatures of metamagnetism are linked to a Lifshitz transition of heavy-fermion bands. In the second part of the thesis, we study various aspects of magnetic pi fluxes in the Kane-Mele-Hubbard model of a correlated topological insulator. We describe a numerical measurement of the topological index, based on the localized mid-gap states that are provided by pi flux insertions. Furthermore, we take advantage of the intrinsic spin degree of freedom of a pi flux to devise instances of interacting quantum spin systems. In the third part of the thesis, we introduce and characterize the Kane-Mele-Hubbard model on the pi flux honeycomb lattice. We place particular emphasis on the correlations effects along the one-dimensional boundary of the lattice and compare results from a bosonization study with finite-size quantum Monte Carlo simulations.}, subject = {Schwere-Fermionen-System}, language = {en} } @phdthesis{JordanGarrote2014, author = {Jordan Garrote, Ana-Laura}, title = {The role of host dendritic cells during the effector phase of intestinal graft-versus-host disease}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-102130}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Monocytes can be functionally divided in two subsets, both capable to differentiate into dendritic cells (DCs): CX3CR1loCCR2+ classical monocytes, actively recruited to the sites of inflammation and direct precursors of inflammatory DCs; and CX3CR1hiCCR2- non-classical monocytes, characterized by CX3CR1-dependent recruitment to non-inflamed tissues. Yet, the function of non-classical monocyte-derived DCs (nc-mo-DCs), and the factors, which trigger their recruitment and DC differentiation, have not been clearly defined to date. Here we show that in situ differentiated nc-moDCs mediate immunosuppression in the context of intestinal graft-versus-host disease (GVHD). Employing multi-color confocal microscopy we observed a dramatic loss of steady state host-type CD103+ DC subset immediately after transplantation, followed by an enrichment of immune-regulatory CD11b+ nc-moDCs. Parabiosis experiments revealed that tissue-resident non-classical CX3CR1+ monocytes differentiated in situ into intestinal CD11b+ nc-moDCs after allogeneic hematopoietic cell transplantation (allo-HCT). Differentiation of this intestinal DC subset depended on CSF-1 but not on Flt3L, thus defining the precursors as monocytes and not pre-DCs. Importantly, CX3CR1 but not CCR2 was required for this DC subset differentiation, hence defining the precursors as non-classical monocytes. In addition, we identify PD-L1 expression by CX3CR1+ nc-moDCs as the major mechanism they employ to suppress alloreactive T cells during acute intestinal GVHD. All together, we demonstrate that host nc-moDCs surprisingly mediate immunosuppression in the context of murine intestinal GVHD - as opposed to classical "inflammatory" monocyte-derived dendritic cells (mo-DCs) - via coinhibitory signaling. This thorough study unravels for the first time a biological function of a - so far only in vitro and phenotypically described - DC subset. Our identification of this beneficial immunoregulatory DC subset points towards alternate future strategies in underpinning molecular pathways to foster their function. We describe an unexpected mechanism of nc-moDCs in allo-HCT and intestinal GVHD, which might also be important for autoimmune disorders or infections of the gastrointestinal tract.}, subject = {Knochenmarktransplantation}, language = {en} } @phdthesis{KarabegneeLee2014, author = {Karabeg, n{\´e}e Lee, Margherita Maria}, title = {Differences and Similarities in the Impact of Different Types of Stress on Hippocampal Neuroplasticity in Serotonin Transporter Deficient Mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115831}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Stress has been shown to influence neuroplasticity and is suspected to increase the risk for psychiatric disorders such as major depression and anxiety disorders. Additionally, the short variant of the human serotonin transporter (5-HTT) length polymorphism (5-HTTLPR) is suggested to increase the risk for the development of such disorders. While stress as well as serotonergic signaling are not only discussed to be involved in the development of psychiatric disorders, they are also known to influence hippocampal adult neurogenesis (aN). Therefore, it has long been suspected that aN is involved in the etiology of these illnesses. The exact role of aN in this context however, still remains to be clarified. In the present doctoral thesis, I am introducing two different studies, which had been carried out to assess possible changes in neuroplasticity and behavior as a result of 5-HTT genotype by stress interactions. In both studies, animals of the 5-HTT knock-out (5-HTT-/-) mouse line were used, which have been found to exhibit increased anxiety- and depression-related behavior, an altered stress response and decreased aggressive behavior. The aim of the first study, the so-called Spatial Learning study, had been to evaluate whether mice with altered levels of brain 5-HT as a consequence of lifelong 5-HTT deficiency perform differently in two spatial memory tests, the Morris Water Maze (WM) and the Barnes Maze (BM) test prospectively differing in aversiveness. Mice of the Spatial Learning study were of male sex and six months of age, and where subjected to a total of 10 (BM) or 15 (WM) trials. My particular interest was to elucidate if there are genotype by treatment interactions regarding blood plasma corticosterone levels and, if neurobiological equivalents in the brain to the found behavioral differences exist. For this purpose I carried out a quantitative immunohistochemistry study, investigating stem cell proliferation (via the marker Ki67) and aN (via the immature neuron marker NeuroD), as well as expression of the two immediate early genes (IEGs) Arc and cFos as a markers for neuronal activity in the hippocampus. The aim of the second study, the chronic mild stress (CMS) study had been to evaluate whether the innate divergent depression-like and anxiety-like behavior of mice with altered levels of brain 5-HT as a consequence of 5-HTT-deficiency is altered any further after being subjected to a CMS paradigm. Two cohorts of one-year-old female mice had been subjected to a variety of unpredictable stressors. In order to exclude possible interfering influences of behavioral testing on corticosterone levels and the outcome of the quantitative immunohistochemistry study the first cohort had been behaviorally tested after CMS while the second one had remained behaviorally untested. The objective of my part of the study was to find out about possible genotype by treatment interactions regarding blood plasma corticosterone as well as regarding aN in the hippocampus of the mice that had been subjected to CMS. For this purpose I performed a quantitative immunohistochemistry study in order to investigate the phenomenon of adult neurogenesis (via Ki67, NeuroD and the immature neuron marker DCX). Both studies led to interesting results. In the CMS study, we could not replicate the increased innate anxiety- and depression-like behavior in 5-HTT-/- mice known from the literature. However, with regard to the also well documented reduced locomotor activity, as well as the increased body weight of 5-HTT-/- mice compared to their 5-HTT+/- and 5-HTT+/+ littermates, we could demonstrate that CMS leads to increased explorative behavior in the Open Field Test and the Light/Dark Box primarily in 5-HTT+/- und 5-HTT+/+ mice. The Spatial learning study revealed that increased stress sensitivity of 5-HTT-/- mice leads to a poorer performance in the WM test in relation to their 5-HTT+/+ and 5-HTT+/- littermates. As the performance of 5-HTT-/- mice in the less aversive BM was undistinguishable from both other genotypes, we concluded that the spatial learning ability of 5-HTT-/- mice is comparable to that of both other genotypes. As far as stress reactivity is concerned, the experience of a single trial of either the WM or the BM resulted in increased plasma corticosterone levels, irrespective of the 5-HTT genotype. After several trials 5-HTT-/- mice exhibited higher corticosterone concentrations compared with both other genotypes in both tests. Blood plasma corticosterone levels were highest in 5-HTT-/- mice tested in the WM indicating greater aversiveness of the WM and a greater stress sensitivity of 5-HTT deficient mice. In the CMS study, the corticosterone assessment of mice of cohort 1, which had undergone behavioral testing before sacrifice, resulted in significantly elevated corticosterone levels in 5-HTT-/- mice in relation to their 5-HTT+/+ controls. Contrary, corticosterone levels in mice of cohort 1, which had remained behaviorally untested, were shown to be elevated / increased after CMS experience regardless of the 5-HTT genotype. Regarding neuroplasticity, the Spatial Learning study revealed higher baseline levels of cFos- and Arc-ir cells as well as more proliferation (Ki67-ir cells) and higher numbers of neuronal progenitor cells (NeuroD-ir cells) in 5-HTT-/- compared to 5-HTT+/+ mice. Moreover, in 5-HTT-/- mice we could demonstrate that learning performance in the WM correlates with the extent of aN. The CMS study, in which aN (DCX-ir cells), has also been found to be increased in 5-HTT-/- mice compared to their 5-HTT+/+ littermates, yet only in control animals, did show hampered proliferation (Ki67-ir cells) in the hippocampus of all 5-HTT genotypes following CMS experience. Interestingly, the number of immature neurons (DCX-ir cells) was diminished exclusively in 5-HTT-/- mice in response to CMS. From the Spatial Learning study we concluded, that increased IEG expression and aN levels observed in the hippocampus of 5-HTT deficient mice can be the neurobiological correlate of emotion circuit dysfunction and heightened anxiety of these mice and that 5-HTT-/- animals per se display a "stressed" phenotype as a consequence of long-life 5-HTT deficiency. Due to the different age and sex of the mice in the two studies, they cannot be compared easily. However, although the results of the CMS study seem to contradict the results of the Spatial Learning study at the first glance, they do support the conclusion of the Spatial Learning study by demonstrating that although CMS does have an impact on 5-HTT-/- mice on the neurobiological level (e.g. manifesting in a decrease of DXC-ir cells following CMS) CMS experience cannot add onto their heightened inborn stress-level and is almost ineffective regarding further changes of the behavior of 5-HTT-deficient mice. I thus propose, that 5-HTT-/- mice as a result of lifelong altered 5-HT signaling display a stressed phenotype which resembles a state of lethargy and is paralleled by baseline heightened IEG expression and aN. It cannot be altered or increased by CMS, but it becomes most visible in stressful situations such as repeated spatial learning tests like the WM in which locomotor activity is required.}, subject = {Serotonin}, language = {en} } @phdthesis{Kern2014, author = {Kern, Johannes}, title = {Optical and electrical excitation of nanoantennas with atomic-scale gaps}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115492}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Nano-antennas are an emerging concept for the manipulation and control of optical fields at the sub-wavelength scale. In analogy to their radio- and micro-wave counterparts they provide an efficient link between propagating and localized fields. Antennas operating at optical frequencies are typically on the order of a few hundred nanometer in size and are fabricated from noble metals. Upon excitation with an external field the electron gas inside the antenna can respond resonantly, if the dimensions of the antenna are chosen appropriate. Consequently, the resonance wavelength depends on the antenna dimensions. The electron-density oscillation is a hybrid state of electron and photon and is called a localized plasmon resonance. The oscillating currents within the antenna constitute a source for enhanced optical near-fields, which are strongly localized at the metal surface. A particular interesting type of antennas are pairs of metal particles separated by a small insulating gap. For anti-symmetric gap modes charges of opposite sign reside across the gap. The dominating field-components are normal to the metal surface and due to the boundary conditions they are sizable only inside the gap. The attractive Coulomb interaction increases the surface-charge accumulation at the gap and enhanced optical fields occur within the insulating gap. The Coulomb interaction increases with decreasing gap size and extreme localization and strongest intensity enhancement is expected for small gap sizes. In this thesis optical antennas with extremely small gaps, just slightly larger than inter-atomic distances, are investigated by means of optical and electrical excitation. In the case of electrical excitation electron tunneling across the antenna gap is exploited. At the beginning of this thesis little was known about the optical properties of antennas with atomic scale gaps. Standard measurement techniques of field confinement and enhancement involving well-separated source, sample and detector are not applicable at atomic length-scales due to the interaction of the respective elements. Here, an elegant approach has been found. It is based on the fact that for closely-spaced metallic particles the energy splitting of a hybridized mode pair, consisting of symmetric and anti-symmetric mode, provides a direct measure for the Coulomb interaction over the gap. Gap antennas therefore possess an internal ruler which sensitively reports the size of the gap. Upon self-assembly side-by-side aligned nanorods with gap sizes ranging from 2 to 0.5nm could be obtained. These antennas exhibit various symmetric and anti-symmetric modes in the visible range. In order to reveal optical modes of all symmetries a novel scattering setup has been developed and is successfully applied. Careful analysis of the optical spectra and comparison to numerical simulations suggests that extreme field confinement and localization can occur in gaps down to 0.5 nm. This is possibly the limit of plasmonic enhancement since for smaller gaps electron tunneling as well as non-locality of the dielectric function affect plasmonic resonances. The strongly confined and intense optical fields provided by atomic-scale gaps are ideally suited for enhanced light-matter interaction. The interplay of intense optical-frequency fields and static electric fields or currents is of great interest for opto-electronic applications. In this thesis a concept has been developed, which allows for the electrical connection of optical antennas. By means of numerical simulations the concept was first verified for antennas with gap sizes on the order of 25 nm. It could be shown, that by attaching the leads at positions of a field minimum the resonant properties are nearly undisturbed. The resonance wavelengths shift only by a small amount with respect to isolated antennas and the numerically calculated near-field intensity enhancement is about 1000, which is just slightly lower than for an unconnected antenna. The antennas are fabricated from single-crystalline gold and exhibit superior optical and electrical properties. In particular, the conductivity is a factor of 4 larger with respect to multi-crystalline material, the resistance of the gap is as large as 1 TOhm and electric fields of at least 10^8 V/m can be continuously applied without damage. Optical scattering spectra reveal well-pronounced and tunable antenna resonances, which demonstrates the concept of electrically-connected antennas also experimentally. By combining atomic-scale gaps and electrically-connected optical antennas a novel sub-wavelength photon source has been realized. To this end an antenna featuring an atomic scale gap is electrically driven by quantum tunneling across the antenna gap. The optical frequency components of this fluctuating current are efficiently converted to photons by the antenna. Consequently, light generation and control are integrated into a planar single-material nano-structure. Tunneling junctions are realized by positioning gold nanoparticles into the antenna gap, using an atomic force microscope. The presence of a stable tunneling junction between antenna and particle is demonstrated by measuring its distinct current-voltage characteristic. A DC voltage is applied to the junction and photons are generated by inelastically tunneling electrons via the enhanced local density of photonic states provided by the antenna resonance. The polarization of the emitted light is found to be along the antenna axis and the directivity is given by the dipolar antenna mode. By comparing electroluminescence and scattering spectra of different antennas, it has been shown that the spectrum of the generated light is determined by the geometry of the antenna. Moreover, the light generation process is enhanced by two orders of magnitude with respect to a non-resonant structure. The controlled fabrication of the presented single-crystalline structures has not only pushed the frontiers of nano-technology, but the extreme confinement and enhancement of optical fields as well as the light generation by tunneling electrons lays a groundwork for a variety of fundamental studies and applications. Field localization down to the (sub-)nanometer scale is a prerequisite for optical spectroscopy with near-atomic resolution. Indeed, recently first pioneering experiments have achieved molecular resolution exploiting plasmon-enhanced Raman scattering. The small modal volume of antennas with atomic-scale gaps can lead to light-matter interaction in the strong coupling regime. Quantum electro-dynamical effects such as Rabi splitting or oscillations are likely when a single emitter is placed into resonant structures with atomic-scale gaps. The concept of electrically-connected optical antennas is expected to be widely applied within the emerging field of electro-plasmonics. The sub-wavelength photon source developed during this thesis will likely gain attention for future plasmonic nanocircuits. It is envisioned that in such a circuit the optical signal provided by the source is processed at ultrafast speed and nanometer-scales on the chip and is finally converted back into an electronic signal. An integrated optical transistor could be realized by means of photon-assisted tunneling. Moreover, it would be interesting to investigate, if it is possible to imprint the fermionic nature of electrons onto photons in order to realize an electrically-driven source of single photons. Non-classical light sources with the potential for on-chip integration could be built from electrically-connected antennas and are of great interest for quantum communication. To this end single emitters could be placed in the antenna gap or single electron tunneling could be achieved by means of a single-channel quantum point contact or the Coulomb-blockade effect.}, subject = {Nanooptik}, language = {en} } @phdthesis{Patil2014, author = {Patil, Sandeep S.}, title = {Oncolytic virotherapy and modulation of tumor microenvironment with vaccinia virus strains}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-99514}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Oncolytic viral therapies have shown great promise pre-clinically and in human clinical trials for the treatment of various cancers. Oncolytic viruses selectively infect and replicate in cancer cells, destroying tumor tissue via cell lysis, while leaving noncancerous tissues unharmed. Vaccinia virus (VACV) is arguably one of the safest viruses, which has been intensively studied in molecular biology and pathogenesis as a vaccine for the eradication of smallpox in more than 200 million people. It has fast and efficient replication, and cytoplasmic replication of the virus lessens the chance of recombination or integration of viral DNA into the genome of host cells. Anti-tumor therapeutic efficacy of VACV has been demonstrated for human cancers in xenograft models with a variety of tumor types. In addition recombinant oncolytic VACVs carrying imaging genes represent an advance in treatment strategy that combines tumor-specific therapeutics as well as diagnostics. As for other targeted therapies, a number of challenges remain for the clinical translation of oncolytic virotherapy. These challenges include the potential safety risk of replication of oncolytic virus in non-tumor tissue, the relatively poor virus spread throughout solid tumor tissue and the disadvantageous ratio between anti-viral and anti-tumoral immunity. However, manipulation of components of the tumor microenvironment may help oncolytic virus infection in killing the tumor tissue and thereby increasing the anti-tumor efficacy. Furthermore, dogs with natural cancer are considered as one of the best animal models to develop new drugs for cancer therapy. Traditionally, rodent cancer models have been used for development of cancer therapeutics. However, they do not adequately represent several features that define cancer in humans, including biology of initiation of tumor, the complexity of cancer recurrence and metastasis and outcomes to novel therapies. However, the tumor microenvironment, histopathology, molecular and genomics data from dog tumors has significant similarities with corresponding human tumors. These advantages of pet dog cancers provide a unique opportunity to integrate canine cancer patients in the studies designed for the development of new cancer drugs targeted against both human and canine cancers. This dissertation centers on the use of VACV strains in canine cancer xenografts with the aim of understanding the effects of modulation of tumor microenvironment on VACV-mediated tumor therapy. In the first studies, wild-type VACV strain LIVP6.1.1 was tested for its oncolytic efficiency in canine soft tissue sarcoma (STSA-1) and canine prostate carcinoma (DT08/40) cells in culture and xenografts models. LIVP6.1.1 infected, replicated within, and killed both STSA-1 and DT08/40 cells in cell culture. The replication of virus was more efficient in STSA-1 cells compared to DT08/40 cells. In xenograft mouse models, LIVP6.1.1 was safe and effective in regressing both STSA-1 and DT08/40 xenografts. However, tumor regression was faster in STSA-1 xenografts compared to DT08/40 xenografts presumably due to more efficient replication of virus in STSA-1 cells. Biodistribution profiles revealed persistence of virus in tumors 5 and 7 weeks post virus injection in STSA-1 and DT08/40 xenografts, respectively, with the virus mainly cleared from all other major organs. Immunofluorescence staining detected successful colonization of VACV in the tumor. Consequently, LIVP6.1.1 colonization in the tumor showed infiltration of innate immune cells mainly granulocytes and macrophages in STSA-1 tumor xenografts. These findings suggest that virotherapy-mediated anti-tumor mechanism in xenografts could be a combination of direct viral oncolysis of tumor cells and virus-dependent infiltration of tumor-associated host immune cells. In further studies, the effects of modulation of tumor angiogenesis of VACV therapy were analyzed in canine cancer xenografts. GLV-1h109 VACV strain (derived from prototype virus GLV-1h68) encoding the anti-VEGF single chain antibody GLAF-1 was characterized for its oncolytic efficacy in STSA-1 and DT08/40 cancer cells in culture and tumor xenografts. Concomitantly, the effects of locally expressed GLAF- 1 in tumors on virus replication, host immune infiltration, tumor vascularization and tumor growth were also evaluated. GLV-1h109 was shown to be similar to the parental virus GLV-1h68 in expression of the two marker genes that both virus strains have in common (Ruc-GFP and gusA) in cell cultures. Additionally, the anti-VEGF single-chain antibody GLAF-1 was expressed by GLV-1h109 in both cell cultures and tumor xenografts. The insertion of GLAF-1 did not significantly affect the replication and cytotoxicity of GLV-1h109 in the STSA-1 and DT08/40 cell lines, although at early time points (24-48 hpi), the replication of GLV-1h109 was higher in STSA-1 cells compared to DT08/40 cells. In addition, STSA-1 cells were more susceptible to lysis with GLV-1h109 than DT08/40 cells. GLV-1h109 achieved a significant inhibition of tumor growth in both STSA-1 and DT08/40 canine xenografts models. Consequently, the significant regression of tumor growth was initiated earlier in STSA-1 tumor xenografts compared to regression in DT08/40 xenografts. The reason for the higher efficacy of GLV-1h109 in STSA-1 xenografts than DT08/40 xenografts was attributed to more efficient replication of virus in STSA-1 cells. In addition, tumor-specific virus infection led to a continued presence of GLAF-1 in peripheral blood, which could be useful as a pharmacokinetic marker to monitor virus colonization and persistence in GLV-1h109- injected xenograft mice. GLAF-1 is a single-chain antibody targeting human and murine VEGF. It was demonstrated that GLAF-1 was functional and recognized both canine and human VEGF with equal efficiency. Histological analysis of tumor sections 7 days after GLV-1h109 injection confirmed that colonization of VACV and intratumoral expression of GLAF-1 translated into a significant decrease in blood vessel number compared to GLV-1h68 or PBS-treated control tumors. Subsequently, reduction in blood vessel density significantly improved the spread and replication of VACV as observed by FACS analysis and standard plaque assay, respectively. Inhibition of tumor angiogenesis and increased replication of virus further improved the infiltration of innate immune cells mainly granulocytes and macrophages in STSA-1 tumor xenografts. Both the results, i.e. improved virus spread and increased infiltration of innate immune cells in tumor, were explained by a phenomenon called "vascular normalization", where anti-VEGF therapy normalizes the heterogeneous tumor vasculature thereby improving delivery and spread of VACV. In summary, the effects of inhibition of tumor angiogenesis on virus spread and replication were demonstrated using a vaccinia virus caring an anti- angiogenic payload targeting vascular endothelial growth factor (VEGF) in canine cancer xenografts. In the final studies, the effects of VACV therapy on modulation of the immune system were analyzed in canine cancer patients enrolled in a phase I clinical trial. V-VET1 (clinical grade LIVP6.1.1 VACV) injection significantly increased the percentages of CD3+CD8+ T lymphocytes at 21 days after initiation of treatment. CD3+CD8+ T lymphocytes are mainly cytotoxic T lymphocytes that have potential to lyse cancer cells. Subsequently, the frequency of immune suppressor cells, mainly MDSCs and Treg was also analyzed in peripheral blood of canine cancer patients. Increase in the MDSC population and decreased CD8/Treg ratio is known to have inhibitory effects on the functions of cytotoxic T cells. We demonstrated that injection of V-VET1 in canine cancer patients significantly reduced the percentages of MDSCs at 21 days post initiation of treatment. Additionally, CD8/Treg ratio was increased 21 days after initiation of V-VET1 treatment. We also showed that changes in the frequency of immune cells neither depends on dose of virus nor depends on tumor type according to the data observed from this clinical trial with eleven analyzed patients. This preclinical and clinical data have important clinical implications of how VACV therapy can be used for the treatment of canine cancers. Moreover, dogs with natural cancers can be used as an ideal animal model to improve the oncolytic virotherapy for human cancers. Furthermore, modulation of tumor microenvironment mainly tumor angiogenesis and tumor immunity has significant impact on the success of oncolytic virotherapy.}, subject = {Onkolyse}, language = {en} } @phdthesis{Kern2014, author = {Kern, Selina Melanie}, title = {Functional characterization of splicing-associated kinases in the blood stages of the malaria parasite Plasmodium falciparum}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115219}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Besides HIV and tuberculosis, malaria still is one of the most devastating infectious diseases especially in developing countries, with Plasmodium falciparum being responsible for the frequently lethal form of malaria tropica. It is a major cause of mortality as well as morbidity, whereby pregnant women and children under the age of five years are most severely affected. Rapidly emerging drug resistances and the lack of an effective and safe vaccine hamper the combat against malaria by chemical and pharmacological regimens, and moreover the poor socio-economic and healthcare conditions in malaria-endemic countries are compromising the extermination of this deadly tropical disease to a large extent. Malaria research is still questing for druggable targets in the parasitic protozoan which pledge to be refractory against evolving resistance-mediating mutations and yet constitute affordable and compliant antimalarial chemotherapeutics. The parasite kinome consists of members that represent most eukaryotic protein kinase groups, but also contains several groups that can not be assigned to conservative ePK groups. Moreover, given the remarkable divergence of plasmodial kinases in respect to the human host kinome and the fact that several plasmodial kinases have been identified that are essential for the intraerythrocytic developmental cycle, these parasite enzymes represent auspicious targets for antimalarial regimens. Despite elaborate investigations on several other ePK groups, merely scant research has been conducted regarding the four identified members of the cyclin-dependent kinase-like kinase (CLK) family, PfCLK-1-4. In other eukaryotes, CLKs are involved in mRNA processing and splicing by means of phosphorylation of serine/arginine-rich (SR) proteins, which are crucial components of the splicing machinery in the alternative splicing pathway. All four PfCLKs are abundantly expressed in asexual parasites and gametocytes, and stage-specific expression profiles of PfCLK-1 and PfCLK-2 exhibited nucleus-associated localization and an association with phosphorylation activity. In the course of this study, PfCLK-3 and PfCLK-4 were functionally characterized by indirect immunofluorescence, Western blot analysis and kinase activity assays. These data confirm that the two kinases are primarily expressed in the nucleus of trophozoites and both kinases possess in vitro phosphorylation activity on physiological substrates. Likewise PfCLK-1 and PfCLK-2, reverse genetic studies exhibited the indispensability of both PfCLKs on the asexual life cycle of P. falciparum, rendering them as potential candidates for antiplasmodial strategies. Moreover, this study was conducted to identify putative SR proteins as substrates of all four PfCLKs. Previous alignments revealed a significant homology of the parasite CLKs to yeast SR protein kinase Sky1p. Kinase activity assays showed in vitro phosphorylation of the yeast Sky1p substrate and SR protein Npl3p by precipitated PfCLKs. In addition, four homologous plasmodial SR proteins were identified that are phosphorylated by PfCLKs in vitro: PfASF-1, PFSRSF12, PfSFRS4 and PfSR-1. All four parasite SR splicing factors are predominantly expressed in the nuclei of trophozoites. For PfCLK-1, a co-localization with the SR proteins was verified. Finally, a library of human and microbial CLK inhibitors and the antiseptic chlorhexidine (CHX) was screened to determine their inhibitory effect on different parasite life cycle stages and on the PfCLKs specifically. Five inhibitors out of 63 compounds from the investigated library were selected that show a moderate inhibition on asexual life cycle stages with IC50 values ranging between approximately 4 and 8 µM. Noteworthy, these inhibitors belong to the substance classes of aminopyrimidines or oxo-β-carbolines. Actually, the antibiotic compound CHX demonstrated an IC50 in the low nanomolar range. Stage-of-inhibition assays revealed that CHX severely affects the formation of schizonts. All of the selected CLKs inhibitors also affect gametocytogenesis as well as gametogenesis, as scrutinized in gametocyte toxicity assays and exflagellation assays, respectively. Kinase activity assays confirm a specific inhibition of CLK-mediated phosphorylation of all four kinases, when the CLK inhibitors are applied on immunoprecipitated PfCLKs. These findings on PfCLK-inhibiting compounds are initial attempts to determine putative antimalarial compounds targeting the PfCLKs. Moreover, these results provide an effective means to generate chemical kinase KOs in order to phenotypically study the role of the PfCLKs especially in splicing events and mRNA metabolism. This approach of functionally characterizing the CLKs in P. falciparum is of particular interest since the malarial spliceosome is still poorly understood and will gain further insight into the parasite splicing machinery.}, subject = {Plasmodium falciparum}, language = {en} } @phdthesis{Sibilski2014, author = {Sibilski, Claudia}, title = {Identification and characterization of the novel mKSR1 phosphorylation site Tyr728 and its role in MAPK signaling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114672}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In mammals, KSR1 functions as an essential scaffold that coordinates the assembly of RAF/MEK/ERK complexes and regulates intracellular signal transduction upon extracellular stimulation. Aberrant activation of the equivalent MAPK signaling pathway has been implicated in multiple human cancers and some developmental disorders. The mechanism of KSR1 regulation is highly complex and involves several phosphorylation/dephosphorylation steps. In the present study, a number of novel in vivo phosphorylation sites were detected in mKSR1 by use of mass spectrometry analysis. Among others, Tyr728 was identified as a unique regulatory residue phosphorylated by LCK, a Src kinase family member. To understand how phosphorylation of Tyr728 may regulate the function of KSR1 in signal transduction and cellular processes, structural modeling and biochemical studies were integrated in this work. Computational modeling of the mKSR1(KD) protein structure revealed strong hydrogen bonding between phospho-Tyr728 and the residues surrounding Arg649. Remarkably, this pattern was altered when Tyr728 was non-phosphorylated or substituted. As confirmed by biochemical analysis, Arg649 may serve as a major anchor point for phospho-Tyr728 in order to stabilize internal structures of KSR1. In line with the protein modeling results, mutational studies revealed that substitution of Tyr728 by phenylalanine leads to a less compact interaction between KSR1 and MEK, a facilitated KSR1/B-RAF binding and an increased phosphorylation of MEK in complex with KSR1. From these findings it can be concluded that phospho-Tyr728 is involved in tightening the KSR1/MEK interaction interface and in regulating the phosphorylation of KSR1-bound MEK by either RAF or KSR1 kinases. Beside the Tyr728, Ser722 was identified as a novel regulatory phosphorylation site. Amino acid exchanges at the relevant position demonstrated that Ser722 regulates KSR1-bound MEK phosphorylation without affecting KSR1/MEK binding per se. Due to its localization, Ser722 might consequently control the catalytic activity of KSR1 by interfering with the access of substrate (possibly MEK) to the active site of KSR1 kinase. Together with Ser722, phosphorylated Tyr728 may further positively affect the kinase activity of KSR1 as a consequence of its vicinity to the activation and catalytic loop in the KSR1(KD). As revealed by structural modeling, phospho-Tyr728 builds a hydrogen bond with the highly conserved Lys685. Consequently, phospho-Tyr728 has a stabilizing effect on internal structures involved in the catalytic reaction and possibly enhances the phosphate transfer within the catalytic cleft in KSR1. Considering these facts, it seems very likely that the LCK-dependent phosphorylation of Tyr728 plays a crucial role in the regulation of KSR1 catalytic activity. Results of fractionation and morphology analyses revealed that KSR1 recruits LCK to cytoskeleton for its phosphorylation at Tyr728 suggesting that this residue may regulate cytoskeleton dynamics and, consequently, cell motility. Beside that, phosphorylation of Tyr728 is involved in the regulation of cell proliferation, as shown by a significantly reduced population doubling time of KSR1-Y728F cells compared to cells expressing wild type KSR1. Taken together, tyrosine phosphorylation in KSR1 uncovers a new link between Src family kinases and MAPK signaling. Tyr728, the novel regulatory phosphorylation site in murine KSR1, may coordinate the transition between the scaffolding and the catalytic function of KSR1 serving as a control point used to fine-tune cellular responses.}, subject = {MAP-Kinase}, language = {en} } @phdthesis{Wenzel2014, author = {Wenzel, Jens}, title = {Regulation of TLR-induced macrophage responses by cytoskeleton-associated phosphoproteins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-98843}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Toll-like receptors (TLR) are pattern recognition receptors (PRR) by which macrophages (M{\O}) sense pathogen-associated molecular patterns (PAMPs). The recognition of lipopolysaccharide (LPS), the PAMP of gram negative bacteria, by TLR4 triggers signaling cascades and leads to the pro-inflammatory activation of the cells. A recent quantitative and kinetic analysis of the phosphoproteome of LPS-activated primary macrophages highlighted the cytoskeleton as a cell compartment with an enriched protein phosphorylation. In total 44 cytoskeleton-associated proteins were regulated by this post-translational modification and thus might be involved in the control and regulation of key macrophage functions like spreading, motility and phagocytosis. To investigate the control of cytoskeleton-associated cell functions by TLR4 activation, we first developed a method to quantitatively measure the spreading response of bone marrow M{\O} after stimulation with LPS. Fluorescence microscopy was used for cell imaging and visualisation of the M{\O} contact area. In collaboration with the Fraunhofer Institute Erlangen, we developed and validated a software tool for the semi-automated segmentation and quantitation of M{\O} fluorescence microscopy data, which allowed fast, robust and objective image analysis. Using this method, we observed that LPS caused time-dependent spreading, which was detectable after 1-2 h and maximal after 24 h. Next, the impact of genetic or pharmacological inhibition of known TLR signaling components was investigated. Deficiency in the adapter protein MYD88 strongly reduced spreading activity at the late time points, but had no impact early after LPS-stimulation. A similar effect was observed upon pharmacological inhibition of ERK1/2 signaling, indicating that ERK1/2 mediates MYD88-dependent M{\O} spreading. In contrast, M{\O} lacking the MAPK p38 were impaired in the initial spreading response but responded normally 8-24 h after stimulation. The genetic deletion of the MAPK phosphatases DUSP1 and DUSP16 resulted in impaired late spreading, corroborating the essential role for functional MAPK signaling in TLR4-driven M{\O} spreading. To identify the contribution of other cytoskeletal phosphoproteins to M{\O} spreading, siRNA knockdown of selected candidate genes in primary murine M{\O} was employed and combined with automated quantitative image analysis. These experiments revealed a functional role for the Myosins MYO1e and MYO1f in M{\O} spreading. These motor proteins are strongly phosphorylated in LPS-activated M{\O}. Because of their ability to simultaneously bind to actin filaments and cell membrane or other proteins, we investigated their role in phagocytosis, cytokine production and antigen presentation. Phagocytosis and killing of bacteria were not affected in Myo1e-/- macrophages. However, MYO1e plays a role in chemokine secretion and antigen presentation processes. MCP1 (CCL2) release was selectively increased in Myo1e-deficient M{\O} and dendritic cells (DC), while cytokine secretion was unaffected. Furthermore, macrophages and DCs lacking MYO1e showed lower levels of MHC-II on the cell surface. However, mRNA levels of CCL2 and of MHC-II were unaltered. These data suggest a role for MYO1e in the transport of selected chemokines and of MHC-II molecules to the cell surface. MHC-II-restricted antigen presentation assays revealed an impaired capacity of macrophages and DC lacking MYO1e to stimulate antigen-specific T cells, suggesting that the reduced MHC-II expression is functionally relevant. Taken together, in this study first a quantitative image analysis method was developed which allows the unbiased, robust and efficient investigation of the macrophage spreading response. Combination of this method with siRNA knockdown of selected cytoskeleton-associated phosphoproteins led to the identification of MYO1e and MYO1f as regulators of macrophage spreading. Furthermore, we identified MYO1e in M{\O} and DC to be essential for the intracellular transport of CCL2 and MHC-II to the cell surface and for optimal stimulation of antigen-specific CD4 T cells.}, subject = {Toll-like-Rezeptoren}, language = {en} } @phdthesis{Gjorgjevikj2014, author = {Gjorgjevikj, Maja}, title = {IL-4 analogues with site-specific chemical modification as screening tools for foldamers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113531}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The cytokine Interleukin-4 (IL-4) plays a crucial role in the pathophysiology and progression of asthma and other atopic diseases. Its activities are signaled into the cells upon binding to and signaling through a shared receptor complex composed of the subunits IL-4Rα and common γc. Another cytokine, Interleukin-13 shares many functions with IL-4. This can be explained by the fact that both, IL-4 and IL-13, can signal via a shared receptor complex comprising the IL-4R and the IL-13R1 subunit. Therefore, the IL-4Rα receptor subunit has become a highly promising drug target, since it mediates IL-4 and IL-13 responses and blocking IL-4Rα will abrogate IL-4 as well as IL-13 effector functions. Currently, an IL-4 based mutein (Pitrakinra), acting as a dual IL-4/IL-13 receptor antagonist is in clinical development. This work describes the generation and production of biologically active IL-4 muteins, which contain a single additional engineered cysteine. The introduction of a free thiol group allows site-specific chemical modification. The muteins were expressed in E. coli in insoluble form, refolded and purified. The thiol group of the mutein was protected as mixed disulfide with the tripeptide glutathione. A first attempt to chemically reduce the engineered cysteine residue failed, because the three native disulfide bonds of IL-4 exhibit a similar reactivity and chemical reduction of the native disulfide resulted in full deactivation and precipitation of the IL-4 protein. Therefore, an enzymatic approach was developed which specifically reduces the mixed disulfide bonds with an attached glutathion moiety and thus leaves the native structurally essential disulfide bonds unaltered. For optimization, four different IL-4 cysteine muteins with four cysteine residues introduced at positions close to the IL-4Rα binding site were tested and their reduction rates by glutaredoxin was determined. The enzymatic reduction occured at different rates for all four muteins indicating that accessibility is an important influence and must be determined individually for each mutant protein. After optimization of the pH value and particularly the reaction time, all muteins could be prepared with the engineered thiol group being released in reasonable yield. The proteins exhibiting the free thiol group were then modified by N-ethylmaleimide (NEM) or maleimido-PEG. The effects of these modifications at different positions on binding to IL-4R were measured employing SPR biosensor technology. In the second project of this study, foldamers, which represent a new class of stable, compactly folded biomolecules and can specifically interact with proteins and nucleic acids, were examined to identify their potential as new drugs to interfere with IL-4 activities. Fragment-based drug discovery offers great promise for providing new starting points for drug discovery and facilitates the lead optimization. As foldamers equipped with a thiol-group for tethering could not to be produced; only the effect of foldamers present in a synthesized foldamer library on the binding to IL-4R could be tested. Two libraries containing different foldamers based on aromatic amide were synthesized by Michael Grotz and Dr. Michael Deligny and tested in our lab for their capability to disrupt the ligand-receptor interaction of IL-4 and its receptor IL-4Rα [ECD] using surface plasmon resonance technology. None of the studied foldamers could specifically inhibit the IL-4/IL-4Rα interaction. Some foldamers showed non-specific binding. The study presented here shows the design and production of a potentially new type of IL-4 antagonists, which employ site-specific chemical modification to exert their antagonistic function.}, subject = {Il 4}, language = {en} } @phdthesis{ElKareh2014, author = {El-Kareh, Lydia}, title = {Rashba-type spin-split surface states: Heavy post transition metals on Ag(111)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112722}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In the framework of this thesis, the structural and electronic properties of bismuth and lead deposited on Ag(111) have been investigated by means of low-temperature scanning tunneling microscopy (LT-STM) and spectroscopy (STS). Prior to spectroscopic investigations the growth characteristics have been investigated by means of STM and low energy electron diffraction (LEED) measurements. Submonolayer coverages as well as thick films have been investigated for both systems. Subsequently the quantum well characteristics of thick Pb films on Ag(111) have been analyzed and the quantum well character could be proved up to layer thicknesses of N ≈ 100 ML. The observed characteristics in STS spectra were explained by a simple cosine Taylor expansion and an in-plane energy dispersion could be detected by means of quasi-particle interferences. The main part of this work investigates the giant Rashba-type spin-split surface alloys of (√3 × √3)Pb/Ag(111)R30◦ and (√3 × √3)Bi/Ag(111)R30◦. With STS experiments the band positions and splitting strengths of the unoccupied (√3 × √3)Pb/Ag(111)R30◦ band dispersions could be resolved, which were unclear so far. The investigation by means of quasi-particle interferences resulted in the observation of several scattering events, which could be assigned as intra- and inter-band transitions. The analysis of scattering channels within a simple spin-conservation-approach turned out to be incomplete and led to contradictions between experiment and theory. In this framework more sophisticated DFT calculations could resolve the apparent deviations by a complete treatment of scattering in spin-orbit-coupled materials, which allows for constructive interferences in spin-flip scattering processes as long as the total momentum J_ is conserved. In a similar way the band dispersion of (√3 × √3)Bi/Ag(111)R30◦ was investigated. The STS spectra confirmed a hybridization gap opening between both Rashba-split bands and several intra- and inter-band scattering events could be observed in the complete energy range. The analysis within a spin-conservation-approach again turned out to be insufficient for explaining the observed scattering events in spin-orbit-coupled materials, which was confi by DFT calculations. Within these calculations an inter-band scattering event that has been identified as spin-conserving in the simple model could be assigned as a spin-flip scattering channel. This illustrates evidently how an incomplete description can lead to completely different indications. The present work shows that different spectroscopic STM modes are able to shed light on Rashba-split surface states. Whereas STS allowed to determine band onsets and splitting strengths, quasi-particle interferences could shed light on the band dispersions. A very important finding of this work is that spin-flip scattering events may result in constructive interferences, an eff which has so far been overlooked in related publications. Additionally it has been found that STM measurements can not distinguish between spin-conserving scattering events or spin-flip scattering events, which prevents to give a definite conclusion on the spin polarization for systems with mixed orbital symmetries just from the observed scattering events.}, subject = {Silber}, language = {en} }