@article{BurySoundararajanBhartietal.2018, author = {Bury, Susanne and Soundararajan, Manonmani and Bharti, Richa and von B{\"u}nau, Rudolf and F{\"o}rstner, Konrad U. and Oelschlaeger, Tobias A.}, title = {The probiotic escherichia coli strain Nissle 1917 combats lambdoid bacteriophages stx and lambda}, series = {Frontiers in Microbiology}, volume = {9}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2018.00929}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221960}, year = {2018}, abstract = {Shiga toxin (Stx) producing E. coli (STEC) such as Enterohemorrhagic E. coli (EHEC) are the major cause of foodborne illness in humans. In vitro studies showed the probiotic Escherichia coil strain Nissle 1917 (EcN) to efficiently inhibit the production of Stx. Life threatening EHEC strains as for example the serotype 0104:H4, responsible for the great outbreak in 2011 in Germany, evolutionary developed from certain E. coll strains which got infected by stx2-encoding lambdoid phages turning the E. coil into lysogenic and subsequently Stx producing strains. Since antibiotics induce stx genes and Stx production, EHEC infected persons are not recommended to be treated with antibiotics. Therefore, EcN might be an alternative medication. However, because even commensal E. coli strains might be converted into Stx-producers after becoming host to a stx encoding prophage, we tested EcN for stx-phage genome integration. Our experiments revealed the resistance of EcN toward not only stx-phages but also against lambda-phages. This resistance was not based on the lack of or by mutated phage receptors. Rather it involved the expression of a phage repressor (pr) gene of a defective prophage in EcN which was able to partially protect E. coli K-12 strain MG1655 against stx and lambda phage infection. Furthermore, we observed EcN to inactivate phages and thereby to protect E. coli K-12 strains against infection by stx- as well as lambda-phages. Inactivation of lambda-phages was due to binding of lambda-phages to LamB of EcN whereas inactivation of stx-phages was caused by a thermostable protein of EcN. These properties together with its ability to inhibit Stx production make EcN a good candidate for the prevention of illness caused by EHEC and probably for the treatment of already infected people.}, language = {en} } @article{BalasubramanianSkafHolzgrabeetal.2018, author = {Balasubramanian, Srikkanth and Skaf, Joseph and Holzgrabe, Ulrike and Bharti, Richa and F{\"o}rstner, Konrad U. and Ziebuhr, Wilma and Humeida, Ute H. and Abdelmohsen, Usama R. and Oelschlaeger, Tobias A.}, title = {A new bioactive compound from the marine sponge-derived Streptomyces sp. SBT348 inhibits staphylococcal growth and biofilm formation}, series = {Frontiers in Microbiology}, volume = {9}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2018.01473}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221408}, year = {2018}, abstract = {Staphylococcus epidermidis, the common inhabitant of human skin and mucosal surfaces has emerged as an important pathogen in patients carrying surgical implants and medical devices. Entering the body via surgical sites and colonizing the medical devices through formation of multi-layered biofilms leads to refractory and persistent device-related infections (DRIs). Staphylococci organized in biofilms are more tolerant to antibiotics and immune responses, and thus are difficult-to-treat. The consequent morbidity and mortality, and economic losses in health care systems has strongly necessitated the need for development of new anti-bacterial and anti-biofilm-based therapeutics. In this study, we describe the biological activity of a marine sponge-derived Streptomyces sp. SBT348 extract in restraining staphylococcal growth and biofilm formation on polystyrene, glass, medically relevant titan metal, and silicone surfaces. A bioassay-guided fractionation was performed to isolate the active compound (SKC3) from the crude SBT348 extract. Our results demonstrated that SKC3 effectively inhibits the growth (MIC: 31.25 \(\mu\)g/ml) and biofilm formation (sub-MIC range: 1.95-<31.25 \(\mu\)g/ml) of S. epidermidis RP62A in vitro. Chemical characterization of SKC3 by heat and enzyme treatments, and mass spectrometry (HRMS) revealed its heat-stable and non-proteinaceous nature, and high molecular weight (1258.3 Da). Cytotoxicity profiling of SKC3 in vitro on mouse fibroblast (NIH/3T3) and macrophage (J774.1) cell lines, and in vivo on the greater wax moth larvae Galleria mellonella revealed its non-toxic nature at the effective dose. Transcriptome analysis of SKC3 treated S. epidermidis RP62A has further unmasked its negative effect on central metabolism such as carbon flux as well as, amino acid, lipid, and energy metabolism. Taken together, these findings suggest a potential of SKC3 as a putative drug to prevent staphylococcal DRIs.}, language = {en} } @article{KrausBrinkSiegel2019, author = {Kraus, Amelie J. and Brink, Benedikt G. and Siegel, T. Nicolai}, title = {Efficient and specific oligo-based depletion of rRNA}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-48692-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224829}, year = {2019}, abstract = {In most organisms, ribosomal RNA (rRNA) contributes to >85\% of total RNA. Thus, to obtain useful information from RNA-sequencing (RNA-seq) analyses at reasonable sequencing depth, typically, mature polyadenylated transcripts are enriched or rRNA molecules are depleted. Targeted depletion of rRNA is particularly useful when studying transcripts lacking a poly(A) tail, such as some non-coding RNAs (ncRNAs), most bacterial RNAs and partially degraded or immature transcripts. While several commercially available kits allow effective rRNA depletion, their efficiency relies on a high degree of sequence homology between oligonucleotide probes and the target RNA. This restricts the use of such kits to a limited number of organisms with conserved rRNA sequences. In this study we describe the use of biotinylated oligos and streptavidin-coated paramagnetic beads for the efficient and specific depletion of trypanosomal rRNA. Our approach reduces the levels of the most abundant rRNA transcripts to less than 5\% with minimal off-target effects. By adjusting the sequence of the oligonucleotide probes, our approach can be used to deplete rRNAs or other abundant transcripts independent of species. Thus, our protocol provides a useful alternative for rRNA removal where enrichment of polyadenylated transcripts is not an option and commercial kits for rRNA are not available.}, language = {en} } @article{AllertFoersterSvenssonetal.2018, author = {Allert, Stefanie and F{\"o}rster, Toni M. and Svensson, Carl-Magnus and Richardson, Jonathan P. and Pawlik, Tony and Hebecker, Betty and Rudolphi, Sven and Juraschitz, Marc and Schaller, Martin and Blagojevic, Mariana and Morschh{\"a}user, Joachim and Figge, Marc Thilo and Jacobsen, Ilse D. and Naglik, Julian R. and Kasper, Lydia and Mogavero, Selene and Hube, Bernhard}, title = {\(Candida\) \(albicans\)-Induced Epithelial Damage Mediates Translocation through Intestinal Barriers}, series = {mBio}, volume = {9}, journal = {mBio}, number = {3}, doi = {10.1128/mBio.00915-18}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221084}, pages = {1-20}, year = {2018}, abstract = {Life-threatening systemic infections often occur due to the translocation of pathogens across the gut barrier and into the bloodstream. While the microbial and host mechanisms permitting bacterial gut translocation are well characterized, these mechanisms are still unclear for fungal pathogens such as Candida albicans, a leading cause of nosocomial fungal bloodstream infections. In this study, we dissected the cellular mechanisms of translocation of C. albicans across intestinal epithelia in vitro and identified fungal genes associated with this process. We show that fungal translocation is a dynamic process initiated by invasion and followed by cellular damage and loss of epithelial integrity. A screen of >2,000 C. albicans deletion mutants identified genes required for cellular damage of and translocation across enterocytes. Correlation analysis suggests that hypha formation, barrier damage above a minimum threshold level, and a decreased epithelial integrity are required for efficient fungal translocation. Translocation occurs predominantly via a transcellular route, which is associated with fungus-induced necrotic epithelial damage, but not apoptotic cell death. The cytolytic peptide toxin of C. albicans, candidalysin, was found to be essential for damage of enterocytes and was a key factor in subsequent fungal translocation, suggesting that transcellular translocation of C. albicans through intestinal layers is mediated by candidalysin. However, fungal invasion and low-level translocation can also occur via non-transcellular routes in a candidalysin-independent manner. This is the first study showing translocation of a human-pathogenic fungus across the intestinal barrier being mediated by a peptide toxin. IMPORTANCE Candida albicans, usually a harmless fungus colonizing human mucosae, can cause lethal bloodstream infections when it manages to translocate across the intestinal epithelium. This can result from antibiotic treatment, immune dysfunction, or intestinal damage (e.g., during surgery). However, fungal processes may also contribute. In this study, we investigated the translocation process of C. albicans using in vitro cell culture models. Translocation occurs as a stepwise process starting with invasion, followed by epithelial damage and loss of epithelial integrity. The ability to secrete candidalysin, a peptide toxin deriving from the hyphal protein Ece1, is key: C. albicans hyphae, secreting candidalysin, take advantage of a necrotic weakened epithelium to translocate through the intestinal layer.}, language = {en} } @article{FanEbnerReichertetal.2019, author = {Fan, Sook-Ha and Ebner, Patrick and Reichert, Sebstian and Hertlein, Tobias and Zabel, Susanne and Lankapalli, Aditya Kumar and Nieselt, Kay and Ohlsen, Knut and G{\"o}tz, Friedrich}, title = {MpsAB is important for Staphylococcus aureus virulence and growth at atmospheric CO2 levels}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-11547-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227624}, year = {2019}, abstract = {The mechanisms behind carbon dioxide (CO2) dependency in non-autotrophic bacterial isolates are unclear. Here we show that the Staphylococcus aureus mpsAB operon, known to play a role in membrane potential generation, is crucial for growth at atmospheric CO2 levels. The genes mpsAB can complement an Escherichia coli carbonic anhydrase (CA) mutant, and CA from E. coli can complement the S. aureus delta-mpsABC mutant. In comparison with the wild type, S. aureus mps mutants produce less hemolytic toxin and are less virulent in animal models of infection. Homologs of mpsA and mpsB are widespread among bacteria and are often found adjacent to each other on the genome. We propose that MpsAB represents a dissolved inorganic carbon transporter, or bicarbonate concentrating system, possibly acting as a sodium bicarbonate cotransporter.}, language = {en} } @article{OsmanogluGuptaAlmasietal.2023, author = {Osmanoglu, {\"O}zge and Gupta, Shishir K. and Almasi, Anna and Yagci, Seray and Srivastava, Mugdha and Araujo, Gabriel H. M. and Nagy, Zoltan and Balkenhol, Johannes and Dandekar, Thomas}, title = {Signaling network analysis reveals fostamatinib as a potential drug to control platelet hyperactivation during SARS-CoV-2 infection}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1285345}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354158}, year = {2023}, abstract = {Introduction Pro-thrombotic events are one of the prevalent causes of intensive care unit (ICU) admissions among COVID-19 patients, although the signaling events in the stimulated platelets are still unclear. Methods We conducted a comparative analysis of platelet transcriptome data from healthy donors, ICU, and non-ICU COVID-19 patients to elucidate these mechanisms. To surpass previous analyses, we constructed models of involved networks and control cascades by integrating a global human signaling network with transcriptome data. We investigated the control of platelet hyperactivation and the specific proteins involved. Results Our study revealed that control of the platelet network in ICU patients is significantly higher than in non-ICU patients. Non-ICU patients require control over fewer proteins for managing platelet hyperactivity compared to ICU patients. Identification of indispensable proteins highlighted key subnetworks, that are targetable for system control in COVID-19-related platelet hyperactivity. We scrutinized FDA-approved drugs targeting indispensable proteins and identified fostamatinib as a potent candidate for preventing thrombosis in COVID-19 patients. Discussion Our findings shed light on how SARS-CoV-2 efficiently affects host platelets by targeting indispensable and critical proteins involved in the control of platelet activity. We evaluated several drugs for specific control of platelet hyperactivity in ICU patients suffering from platelet hyperactivation. The focus of our approach is repurposing existing drugs for optimal control over the signaling network responsible for platelet hyperactivity in COVID-19 patients. Our study offers specific pharmacological recommendations, with drug prioritization tailored to the distinct network states observed in each patient condition. Interactive networks and detailed results can be accessed at https://fostamatinib.bioinfo-wuerz.eu/.}, language = {en} } @article{HungKasperkowitzKurzetal.2023, author = {Hung, Sophia and Kasperkowitz, Amelie and Kurz, Florian and Dreher, Liane and Diessner, Joachim and Ibrahim, Eslam S. and Schwarz, Stefan and Ohlsen, Knut and Hertlein, Tobias}, title = {Next-generation humanized NSG-SGM3 mice are highly susceptible to Staphylococcus aureus infection}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1127709}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-306966}, year = {2023}, abstract = {Humanized hemato-lymphoid system mice, or humanized mice, emerged in recent years as a promising model to study the course of infection of human-adapted or human-specific pathogens. Though Staphylococcus aureus infects and colonizes a variety of species, it has nonetheless become one of the most successful human pathogens of our time with a wide armory of human-adapted virulence factors. Humanized mice showed increased vulnerability to S. aureus compared to wild type mice in a variety of clinically relevant disease models. Most of these studies employed humanized NSG (NOD-scid IL2Rgnull) mice which are widely used in the scientific community, but show poor human myeloid cell reconstitution. Since this immune cell compartment plays a decisive role in the defense of the human immune system against S. aureus, we asked whether next-generation humanized mice, like NSG-SGM3 (NOD-scid IL2Rgnull-3/GM/SF) with improved myeloid reconstitution, would prove to be more resistant to infection. To our surprise, we found the contrary when we infected humanized NSG-SGM3 (huSGM3) mice with S. aureus: although they had stronger human immune cell engraftment than humanized NSG mice, particularly in the myeloid compartment, they displayed even more pronounced vulnerability to S. aureus infection. HuSGM3 mice had overall higher numbers of human T cells, B cells, neutrophils and monocytes in the blood and the spleen. This was accompanied by elevated levels of pro-inflammatory human cytokines in the blood of huSGM3 mice. We further identified that the impaired survival of huSGM3 mice was not linked to higher bacterial burden nor to differences in the murine immune cell repertoire. Conversely, we could demonstrate a correlation of the rate of humanization and the severity of infection. Collectively, this study suggests a detrimental effect of the human immune system in humanized mice upon encounter with S. aureus which might help to guide future therapy approaches and analysis of virulence mechanisms.}, language = {en} } @article{BruchhagenJarickMewisetal.2018, author = {Bruchhagen, Christin and Jarick, Marcel and Mewis, Carolin and Hertlein, Tobias and Niemann, Silke and Ohlsen, Knut and Peters, Georg and Planz, Oliver and Ludwig, Stephan and Ehrhardt, Christina}, title = {Metabolic conversion of CI-1040 turns a cellular MEK-inhibitor into an antibacterial compound}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, doi = {10.1038/s41598-018-27445-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221648}, year = {2018}, abstract = {Influenza virus (IV) infections cause severe respiratory illnesses that can be complicated by bacterial super-infections. Previously, we identified the cellular Raf-MEK-ERK cascade as a promising antiviral target. Inhibitors of MEK, such as CI-1040, showed potent antiviral activity. However, it remained unclear if this inhibitor and its active form, ATR-002, might sensitize host cells to either IV or secondary bacterial infections. To address these questions, we studied the anti-pathogen activity of ATR-002 in comparison to CI-1040, particularly, its impact on Staphylococcus aureus (S. aureus), which is a major cause of IV super-infections. We analysed IV and S. aureus titres in vitro during super-infection in the presence and absence of the drugs and characterized the direct impact of ATR-002 on bacterial growth and phenotypic changes. Importantly, neither CI-1040 nor ATR-002 treatment led to increased bacterial titres during super-infection, indicating that the drug does not sensitize cells for bacterial infection. In contrast, we rather observed reduced bacterial titres in presence of ATR-002. Surprisingly, ATR-002 also led to reduced bacterial growth in suspension cultures, reduced stress- and antibiotic tolerance without resistance induction. Our data identified for the first time that a particular MEK-inhibitor metabolite exhibits direct antibacterial activity, which is likely due to interference with the bacterial PknB kinase/Stp phosphatase signalling system.}, language = {en} } @article{ReuterHaufImdahletal.2023, author = {Reuter, Christian and Hauf, Laura and Imdahl, Fabian and Sen, Rituparno and Vafadarnejad, Ehsan and Fey, Philipp and Finger, Tamara and Jones, Nicola G. and Walles, Heike and Barquist, Lars and Saliba, Antoine-Emmanuel and Groeber-Becker, Florian and Engstler, Markus}, title = {Vector-borne Trypanosoma brucei parasites develop in artificial human skin and persist as skin tissue forms}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-43437-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358142}, year = {2023}, abstract = {Transmission of Trypanosoma brucei by tsetse flies involves the deposition of the cell cycle-arrested metacyclic life cycle stage into mammalian skin at the site of the fly's bite. We introduce an advanced human skin equivalent and use tsetse flies to naturally infect the skin with trypanosomes. We detail the chronological order of the parasites' development in the skin by single-cell RNA sequencing and find a rapid activation of metacyclic trypanosomes and differentiation to proliferative parasites. Here we show that after the establishment of a proliferative population, the parasites enter a reversible quiescent state characterized by slow replication and a strongly reduced metabolism. We term these quiescent trypanosomes skin tissue forms, a parasite population that may play an important role in maintaining the infection over long time periods and in asymptomatic infected individuals.}, language = {en} } @article{GrohAbdelwahabKattimanietal.2023, author = {Groh, Janos and Abdelwahab, Tassnim and Kattimani, Yogita and H{\"o}rner, Michaela and Loserth, Silke and Gudi, Viktoria and Adalbert, Robert and Imdahl, Fabian and Saliba, Antoine-Emmanuel and Coleman, Michael and Stangel, Martin and Simons, Mikael and Martini, Rudolf}, title = {Microglia-mediated demyelination protects against CD8\(^+\) T cell-driven axon degeneration in mice carrying PLP defects}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-42570-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357641}, year = {2023}, abstract = {Axon degeneration and functional decline in myelin diseases are often attributed to loss of myelin but their relation is not fully understood. Perturbed myelinating glia can instigate chronic neuroinflammation and contribute to demyelination and axonal damage. Here we study mice with distinct defects in the proteolipid protein 1 gene that develop axonal damage which is driven by cytotoxic T cells targeting myelinating oligodendrocytes. We show that persistent ensheathment with perturbed myelin poses a risk for axon degeneration, neuron loss, and behavioral decline. We demonstrate that CD8\(^+\) T cell-driven axonal damage is less likely to progress towards degeneration when axons are efficiently demyelinated by activated microglia. Mechanistically, we show that cytotoxic T cell effector molecules induce cytoskeletal alterations within myelinating glia and aberrant actomyosin constriction of axons at paranodal domains. Our study identifies detrimental axon-glia-immune interactions which promote neurodegeneration and possible therapeutic targets for disorders associated with myelin defects and neuroinflammation.}, language = {en} } @article{McFlederMakhotkinaGrohetal.2023, author = {McFleder, Rhonda L. and Makhotkina, Anastasiia and Groh, Janos and Keber, Ursula and Imdahl, Fabian and Pe{\~n}a Mosca, Josefina and Peteranderl, Alina and Wu, Jingjing and Tabuchi, Sawako and Hoffmann, Jan and Karl, Ann-Kathrin and Pagenstecher, Axel and Vogel, J{\"o}rg and Beilhack, Andreas and Koprich, James B. and Brotchie, Jonathan M. and Saliba, Antoine-Emmanuel and Volkmann, Jens and Ip, Chi Wang}, title = {Brain-to-gut trafficking of alpha-synuclein by CD11c\(^+\) cells in a mouse model of Parkinson's disease}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-43224-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357696}, year = {2023}, abstract = {Inflammation in the brain and gut is a critical component of several neurological diseases, such as Parkinson's disease (PD). One trigger of the immune system in PD is aggregation of the pre-synaptic protein, α-synuclein (αSyn). Understanding the mechanism of propagation of αSyn aggregates is essential to developing disease-modifying therapeutics. Using a brain-first mouse model of PD, we demonstrate αSyn trafficking from the brain to the ileum of male mice. Immunohistochemistry revealed that the ileal αSyn aggregations are contained within CD11c+ cells. Using single-cell RNA sequencing, we demonstrate that ileal CD11c\(^+\) cells are microglia-like and the same subtype of cells is activated in the brain and ileum of PD mice. Moreover, by utilizing mice expressing the photo-convertible protein, Dendra2, we show that CD11c\(^+\) cells traffic from the brain to the ileum. Together these data provide a mechanism of αSyn trafficking between the brain and gut.}, language = {en} } @article{MaichlKirnerBecketal.2023, author = {Maichl, Daniela Simone and Kirner, Julius Arthur and Beck, Susanne and Cheng, Wen-Hui and Krug, Melanie and Kuric, Martin and Ade, Carsten Patrick and Bischler, Thorsten and Jakob, Franz and Hose, Dirk and Seckinger, Anja and Ebert, Regina and Jundt, Franziska}, title = {Identification of NOTCH-driven matrisome-associated genes as prognostic indicators of multiple myeloma patient survival}, series = {Blood Cancer Journal}, volume = {13}, journal = {Blood Cancer Journal}, doi = {10.1038/s41408-023-00907-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357598}, year = {2023}, abstract = {No abstract available.}, language = {en} } @article{LavyshSokolovaSlashchevaetal.2017, author = {Lavysh, Daria and Sokolova, Maria and Slashcheva, Marina and F{\"o}rstner, Konrad U. and Severinov, Konstantin}, title = {Transcription profiling of "bacillus subtilis" cells infected with AR9, a giant phage encoding two multisubunit RNA polymerases}, series = {mBio}, volume = {8}, journal = {mBio}, number = {1}, doi = {10.1128/mBio.02041-16}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181810}, year = {2017}, abstract = {Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis. Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5′ ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases.}, language = {en} } @article{RamirezZavalaBetsovaSchwanfelderetal.2023, author = {Ram{\´i}rez-Zavala, Bernardo and Betsova, Darina and Schwanfelder, Sonja and Kr{\"u}ger, Ines and Mottola, Austin and Kr{\"u}ger, Thomas and Kniemeyer, Olaf and Brakhage, Axel A. and Morschh{\"a}user, Joachim}, title = {Multiple phosphorylation sites regulate the activity of the repressor Mig1 in \(Candida\) \(albicans\)}, series = {mSphere}, volume = {8}, journal = {mSphere}, number = {6}, doi = {10.1128/msphere.00546-23}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350060}, year = {2023}, abstract = {ABSTRACT The highly conserved heterotrimeric protein kinase SNF1 is important for metabolic adaptations in the pathogenic yeast Candida albicans. A key function of SNF1 is to inactivate the repressor protein Mig1 and thereby allow the expression of genes that are required for the utilization of alternative carbon sources when the preferred carbon source, glucose, is absent or becomes limiting. However, how SNF1 controls Mig1 activity in C. albicans has remained elusive. Using a phosphoproteomics approach, we found that Mig1 is phosphorylated at multiple serine residues. Replacement of these serine residues by nonphosphorylatable alanine residues strongly increased the repressor activity of Mig1 in cells lacking a functional SNF1 complex, indicating that additional protein kinases are involved in the regulation of Mig1. Unlike wild-type Mig1, whose levels strongly decreased when the cells were grown on sucrose or glycerol instead of glucose, the levels of a mutant Mig1 protein lacking nine phosphorylation sites remained high under these conditions. Despite the increased protein levels and the absence of multiple phosphorylation sites, cells with a functional SNF1 complex could still sufficiently inhibit the hyperactive Mig1 to enable wild-type growth on alternative carbon sources. In line with this, phosphorylated forms of the mutant Mig1 were still detected in the presence and absence of a functional SNF1, demonstrating that Mig1 contains additional, unidentified phosphorylation sites and that downstream protein kinases are involved in the control of Mig1 activity by SNF1. IMPORTANCE The SNF1 protein kinase signaling pathway, which is highly conserved in eukaryotic cells, is important for metabolic adaptations in the pathogenic yeast Candida albicans. However, so far, it has remained elusive how SNF1 controls the activity of one of its main effectors, the repressor protein Mig1 that inhibits the expression of genes required for the utilization of alternative carbon sources when glucose is available. In this study, we have identified multiple phosphorylation sites in Mig1 that contribute to its inactivation. Mutation of these sites strongly increased Mig1 repressor activity in the absence of SNF1, but SNF1 could still sufficiently inhibit the hyperactive Mig1 to enable growth on alternative carbon sources. These findings reveal features of Mig1 that are important for controlling its repressor activity. Furthermore, they demonstrate that both SNF1 and additional protein kinases regulate Mig1 in this pathogenic yeast.}, language = {en} } @article{RamirezZavalaKruegerWollneretal.2023, author = {Ram{\´i}rez-Zavala, Bernardo and Kr{\"u}ger, Ines and Wollner, Andreas and Schwanfelder, Sonja and Morschh{\"a}user, Joachim}, title = {The Ypk1 protein kinase signaling pathway is rewired and not essential for viability in \(Candida\) \(albicans\)}, series = {PLoS Genetics}, volume = {19}, journal = {PLoS Genetics}, number = {8}, doi = {10.1371/journal.pgen.1010890}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350076}, year = {2023}, abstract = {Abstract Protein kinases are central components of almost all signaling pathways that control cellular activities. In the model organism Saccharomyces cerevisiae, the paralogous protein kinases Ypk1 and Ypk2, which control membrane lipid homeostasis, are essential for viability, and previous studies strongly indicated that this is also the case for their single ortholog Ypk1 in the pathogenic yeast Candida albicans. Here, using FLP-mediated inducible gene deletion, we reveal that C. albicans ypk1Δ mutants are viable but slow-growing, explaining prior failures to obtain null mutants. Phenotypic analyses of the mutants showed that the functions of Ypk1 in regulating sphingolipid biosynthesis and cell membrane lipid asymmetry are conserved, but the consequences of YPK1 deletion are milder than in S. cerevisiae. Mutational studies demonstrated that the highly conserved PDK1 phosphorylation site T548 in its activation loop is essential for Ypk1 function, whereas the TORC2 phosphorylation sites S687 and T705 at the C-terminus are important for Ypk1-dependent resistance to membrane stress. Unexpectedly, Pkh1, the single C. albicans orthologue of Pkh1/Pkh2, which mediate Ypk1 phosphorylation at the PDK1 site in S. cerevisiae, was not required for normal growth of C. albicans under nonstressed conditions, and Ypk1 phosphorylation at T548 was only slightly reduced in pkh1Δ mutants. We found that another protein kinase, Pkh3, whose ortholog in S. cerevisiae cannot substitute Pkh1/2, acts redundantly with Pkh1 to activate Ypk1 in C. albicans. No phenotypic effects were observed in cells lacking Pkh3 alone, but pkh1Δ pkh3Δ double mutants had a severe growth defect and Ypk1 phosphorylation at T548 was completely abolished. These results establish that Ypk1 is not essential for viability in C. albicans and that, despite its generally conserved function, the Ypk1 signaling pathway is rewired in this pathogenic yeast and includes a novel upstream kinase to activate Ypk1 by phosphorylation at the PDK1 site. Author summary Protein kinases are key components of cellular signaling pathways, and elucidating the specific roles of individual kinases is important to understand how organisms adapt to changes in their environment. The protein kinase Ypk1 is highly conserved in eukaryotic organisms and crucial for the maintenance of cell membrane homeostasis. It was previously thought that Ypk1 is essential for viability in the pathogenic yeast Candida albicans, as in the model organism Saccharomyces cerevisiae. Here, by using forced, inducible gene deletion, we reveal that C. albicans mutants lacking Ypk1 are viable but have a strong growth defect. The phenotypes of the mutants indicate that the known functions of Ypk1 are conserved in C. albicans, but loss of this kinase has less severe consequences than in S. cerevisiae. We also unravel the puzzling previous observation that C. albicans mutants lacking the Ypk1-activating kinase Pkh1, which is essential in S. cerevisiae, have no obvious growth defects. We show that the protein kinase Pkh3, which has not previously been implicated in the Ypk1 signaling pathway, can substitute Pkh1 and activate Ypk1 in C. albicans. These findings provide novel insights into this conserved signaling pathway and how it is rewired in a human-pathogenic fungus.}, language = {en} } @article{HombergerHaywardBarquistetal.2023, author = {Homberger, Christina and Hayward, Regan J. and Barquist, Lars and Vogel, J{\"o}rg}, title = {Improved bacterial single-cell RNA-seq through automated MATQ-seq and Cas9-based removal of rRNA reads}, series = {mBio}, volume = {14}, journal = {mBio}, number = {2}, doi = {10.1128/mbio.03557-22}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350059}, year = {2023}, abstract = {Bulk RNA sequencing technologies have provided invaluable insights into host and bacterial gene expression and associated regulatory networks. Nevertheless, the majority of these approaches report average expression across cell populations, hiding the true underlying expression patterns that are often heterogeneous in nature. Due to technical advances, single-cell transcriptomics in bacteria has recently become reality, allowing exploration of these heterogeneous populations, which are often the result of environmental changes and stressors. In this work, we have improved our previously published bacterial single-cell RNA sequencing (scRNA-seq) protocol that is based on multiple annealing and deoxycytidine (dC) tailing-based quantitative scRNA-seq (MATQ-seq), achieving a higher throughput through the integration of automation. We also selected a more efficient reverse transcriptase, which led to reduced cell loss and higher workflow robustness. Moreover, we successfully implemented a Cas9-based rRNA depletion protocol into the MATQ-seq workflow. Applying our improved protocol on a large set of single Salmonella cells sampled over different growth conditions revealed improved gene coverage and a higher gene detection limit compared to our original protocol and allowed us to detect the expression of small regulatory RNAs, such as GcvB or CsrB at a single-cell level. In addition, we confirmed previously described phenotypic heterogeneity in Salmonella in regard to expression of pathogenicity-associated genes. Overall, the low percentage of cell loss and high gene detection limit makes the improved MATQ-seq protocol particularly well suited for studies with limited input material, such as analysis of small bacterial populations in host niches or intracellular bacteria. IMPORTANCE: Gene expression heterogeneity among isogenic bacteria is linked to clinically relevant scenarios, like biofilm formation and antibiotic tolerance. The recent development of bacterial single-cell RNA sequencing (scRNA-seq) enables the study of cell-to-cell variability in bacterial populations and the mechanisms underlying these phenomena. Here, we report a scRNA-seq workflow based on MATQ-seq with increased robustness, reduced cell loss, and improved transcript capture rate and gene coverage. Use of a more efficient reverse transcriptase and the integration of an rRNA depletion step, which can be adapted to other bacterial single-cell workflows, was instrumental for these improvements. Applying the protocol to the foodborne pathogen Salmonella, we confirmed transcriptional heterogeneity across and within different growth phases and demonstrated that our workflow captures small regulatory RNAs at a single-cell level. Due to low cell loss and high transcript capture rates, this protocol is uniquely suited for experimental settings in which the starting material is limited, such as infected tissues.}, language = {en} } @article{DaeullaryImdahlDietrichetal.2023, author = {D{\"a}ullary, Thomas and Imdahl, Fabian and Dietrich, Oliver and Hepp, Laura and Krammer, Tobias and Fey, Christina and Neuhaus, Winfried and Metzger, Marco and Vogel, J{\"o}rg and Westermann, Alexander J. and Saliba, Antoine-Emmanuel and Zdzieblo, Daniela}, title = {A primary cell-based in vitro model of the human small intestine reveals host olfactomedin 4 induction in response to Salmonella Typhimurium infection}, series = {Gut Microbes}, volume = {15}, journal = {Gut Microbes}, number = {1}, doi = {10.1080/19490976.2023.2186109}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350451}, year = {2023}, abstract = {Infection research largely relies on classical cell culture or mouse models. Despite having delivered invaluable insights into host-pathogen interactions, both have limitations in translating mechanistic principles to human pathologies. Alternatives can be derived from modern Tissue Engineering approaches, allowing the reconstruction of functional tissue models in vitro. Here, we combined a biological extracellular matrix with primary tissue-derived enteroids to establish an in vitro model of the human small intestinal epithelium exhibiting in vivo-like characteristics. Using the foodborne pathogen Salmonella enterica serovar Typhimurium, we demonstrated the applicability of our model to enteric infection research in the human context. Infection assays coupled to spatio-temporal readouts recapitulated the established key steps of epithelial infection by this pathogen in our model. Besides, we detected the upregulation of olfactomedin 4 in infected cells, a hitherto unrecognized aspect of the host response to Salmonella infection. Together, this primary human small intestinal tissue model fills the gap between simplistic cell culture and animal models of infection, and shall prove valuable in uncovering human-specific features of host-pathogen interplay.}, language = {en} } @phdthesis{Masota2023, author = {Masota, Nelson Enos}, title = {The Search for Novel Effective Agents Against Multidrug-Resistant Enterobacteriaceae}, doi = {10.25972/OPUS-30263}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302632}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This thesis aimed at searching for new effective agents against Multidrug-Resistant Enterobacteriaceae. This is necessitated by the urgent need for new and innovative antibacterial agents addressing the critical priority pathogens prescribed by the World Health Organization (WHO). Among the available means for antibiotics discovery and development, nature has long remained a proven, innovative, and highly reliable gateway to successful antibacterial agents. Nevertheless, numerous challenges surrounding this valuable source of antibiotics among other drugs are limiting the complete realization of its potential. These include the availability of good quality data on the highly potential natural sources, limitations in methods to prepare and screen crude extracts, bottlenecks in reproducing biological potentials observed in natural sources, as well as hurdles in isolation, purification, and characterization of natural compounds with diverse structural complexities. Through an extensive review of the literature, it was possible to prepare libraries of plant species and phytochemicals with reported high potentials against Escherichia coli and Klebsiella pneumnoniae. The libraries were profiled to highlight the existing patterns and relationships between the reported antibacterial activities and studied plants' families and parts, the type of the extracting solvent, as well as phytochemicals' classes, drug-likeness and selected parameters for enhanced accumulation within the Gram-negative bacteria. In addition, motivations, objectives, the role of traditional practices and other crucial experimental aspects in the screening of plant extracts for antibacterial activities were identified and discussed. Based on the implemented strict inclusion criteria, the created libraries grant speedy access to well-evaluated plant species and phytochemicals with potential antibacterial activities. This way, further studies in yet unexplored directions can be pursued from the indicated or related species and compounds. Moreover, the availability of compound libraries focusing on related bacterial species serves a great role in the ongoing efforts to develop the rules of antibiotics penetrability and accumulation, particularly among Gram-negative bacteria. Here, in addition to hunting for potential scaffolds from such libraries, detailed evaluations of large pool compounds with related antibacterial potential can grant a better understanding of structural features crucial for their penetration and accumulation. Based on the scarcity of compounds with broad structural diversity and activity against Gram-negative bacteria, the creation and updating of such libraries remain a laborious but important undertaking. A Pressurized Microwave Assisted Extraction (PMAE) method over a short duration and low-temperature conditions was developed and compared to the conventional cold maceration over a prolonged duration. This method aimed at addressing the key challenges associated with conventional extraction methods which require long extraction durations, and use more energy and solvents, in addition to larger quantities of plant materials. Furthermore, the method was intended to replace the common use of high temperatures in most of the current MAE applications. Interestingly, the yields of 16 of 18 plant samples under PMAE over 30 minutes were found to be within 91-139\% of those obtained from the 24h extraction by maceration. Additionally, different levels of selectivity were observed upon an analytical comparison of the extracts obtained from the two methods. Although each method indicated selective extraction of higher quantities or additional types of certain phytochemicals, a slightly larger number of additional compounds were observed under maceration. The use of this method allows efficient extraction of a large number of samples while sparing heat-sensitive compounds and minimizing chances for cross-reactions between phytochemicals. Moreover, findings from another investigation highlighted the low likelihood of reproducing antibacterial activities previously reported among various plant species, identified the key drivers of poor reproducibility, and proposed possible measures to mitigate the challenge. The majority of extracts showed no activities up to the highest tested concentration of 1024 µg/mL. In the case of identical plant species, some activities were observed only in 15\% of the extracts, in which the Minimum Inhibitory Concentrations (MICs) were 4 - 16-fold higher than those in previous reports. Evaluation of related plant species indicated better outcomes, whereby about 18\% of the extracts showed activities in a range of 128-512 μg/mL, some of the activities being superior to those previously reported in related species. Furthermore, solubilizing plant crude extracts during the preparation of test solutions for Antibacterial Susceptibility Testing (AST) assays was outlined as a key challenge. In trying to address this challenge, some studies have used bacteria-toxic solvents or generally unacceptable concentrations of common solubilizing agents. Both approaches are liable to give false positive results. In line with this challenge, this study has underscored the suitability of acetone in the solubilization of crude plant extracts. Using acetone, better solubility profiles of crude plant extracts were observed compared to dimethyl sulfoxide (DMSO) at up to 10 \%v/v. Based on lacking toxicity against many bacteria species at up to 25 \%v/v, its use in the solubilization of poorly water-soluble extracts, particularly those from less polar solvents is advocated. In a subsequent study, four galloylglucoses were isolated from the leaves of Paeonia officinalis L., whereby the isolation of three of them from this source was reported for the first time. The isolation and characterization of these compounds were driven by the crucial need to continually fill the pre-clinical antibiotics pipeline using all available means. Application of the bioautography-guided isolation and a matrix of extractive, chromatographic, spectroscopic, and spectrometric techniques enabled the isolation of the compounds at high purity levels and the ascertainment of their chemical structures. Further, the compounds exhibited the Minimum Inhibitory Concentrations (MIC) in a range of 2-256 µg/mL against Multidrug-Resistant (MDR) strains of E. coli and K. pneumonia exhibiting diverse MDR phenotypes. In that, the antibacterial activities of three of the isolated compounds were reported for the first time. The observed in vitro activities of the compounds resonated with their in vivo potentials as determined using the Galleria mellonella larvae model. Additionally, the susceptibility of the MDR bacteria to the galloylglucoses was noted to vary depending on the nature of the resistance enzymes expressed by the MDR bacteria. In that, the bacteria expressing enzymes with higher content of aromatic amino acids and zero or positive net charges were generally more susceptible. Following these findings, a plausible hypothesis for the observed patterns was put forward. The generally challenging pharmacokinetic properties of galloylglucoses limit their further development into therapeutic agents. However, the compounds can replace or reduce the use of antibiotics in livestock keeping as well as in the treatment of septic wounds and topical or oral cavity infections, among other potential uses. Using nature-inspired approaches, a series of glucovanillin derivatives were prepared following feasible synthetic pathways which in most cases ensured good yields and high purity levels. Some of the prepared compounds showed MIC values in a range of 128 - 512 μg/mL against susceptible and MDR strains of Klebsiella pneumoniae, Methicillin-Resistant Staphylococcus aureus (MRSA) and Vancomycin-Resistant Enterococcus faecium (VRE). These findings emphasize the previously reported essence of small molecular size, the presence of protonatable amino groups and halogen atoms, as well as an amphiphilic character, as crucial features for potential antibacterial agents. Due to the experienced limited success in the search for new antibacterial agents using purely synthetic means, pursuing semi-synthetic approaches as employed in this study are highly encouraged. This way, it is possible to explore broader chemical spaces around natural scaffolds while addressing their inherent limitations such as solubility, toxicity, and poor pharmacokinetic profiles.}, subject = {Enterobacteriaceae}, language = {en} } @phdthesis{Alzheimer2023, author = {Alzheimer, Mona}, title = {Development of tissue-engineered three-dimensional infection models to study pathogenesis of \(Campylobacter\) \(jejuni\)}, doi = {10.25972/OPUS-19344}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193440}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Infectious diseases caused by pathogenic microorganisms are one of the largest socioeconomic burdens today. Although infectious diseases have been studied for decades, in numerous cases, the precise mechanisms involved in the multifaceted interaction between pathogen and host continue to be elusive. Thus, it still remains a challenge for researchers worldwide to develop novel strategies to investigate the molecular context of infectious diseases in order to devise preventive or at least anti-infective measures. One of the major drawbacks in trying to obtain in-depth knowledge of how bacterial pathogens elicit disease is the lack of suitable infection models to authentically mimic the disease progression in humans. Numerous studies rely on animal models to emulate the complex temporal interactions between host and pathogen occurring in humans. While they have greatly contributed to shed light on these interactions, they require high maintenance costs, are afflicted with ethical drawbacks, and are not always predictive for the infection outcome in human patients. Alternatively, in-vitro two-dimensional (2D) cell culture systems have served for decades as representatives of human host environments to study infectious diseases. These cell line-based models have been essential in uncovering virulence-determining factors of diverse pathogens as well as host defense mechanisms upon infection. However, they lack the morphological and cellular complexity of intact human tissues, limiting the insights than can be gained from studying host-pathogen interactions in these systems. The focus of this thesis was to establish and innovate intestinal human cell culture models to obtain in-vitro reconstructed three-dimensional (3D) tissue that can faithfully mimic pathogenesis-determining processes of the zoonotic bacterium Campylobacter jejuni (C. jejuni). Generally employed for reconstructive medicine, the field of tissue engineering provides excellent tools to generate organ-specific cell culture models in vitro, realistically recapitulating the distinctive architecture of human tissues. The models employed in this thesis are based on decellularized extracellular matrix (ECM) scaffolds of porcine intestinal origin. Reseeded with intestinal human cells, application of dynamic culture conditions promoted the formation of a highly polarized mucosal epithelium maintained by functional tight and adherens junctions. While most other in-vitro infection systems are limited to a flat monolayer, the tissue models developed in this thesis can display the characteristic 3D villi and crypt structure of human small intestine. First, experimental conditions were established for infection of a previously developed, statically cultivated intestinal tissue model with C. jejuni. This included successful isolation of bacterial colony forming units (CFUs), measurement of epithelial barrier function, as well as immunohistochemical and histological staining techniques. In this way, it became possible to follow the number of viable bacteria during the infection process as well as their translocation over the polarized epithelium of the tissue model. Upon infection with C. jejuni, disruption of tight and adherens junctions could be observed via confocal microscopy and permeability measurements of the epithelial barrier. Moreover, C. jejuni wildtype-specific colonization and barrier disruption became apparent in addition to niche-dependent bacterial localization within the 3D microarchitecture of the tissue model. Pathogenesis-related phenotypes of C. jejuni mutant strains in the 3D host environment deviated from those obtained with conventional in-vitro 2D monolayers but mimicked observations made in vivo. Furthermore, a genome-wide screen of a C. jejuni mutant library revealed significant differences for bacterial factors required or dispensable for interactions with unpolarized host cells or the highly prismatic epithelium provided by the intestinal tissue model. Elucidating the role of several previously uncharacterized factors specifically important for efficient colonization of a 3D human environment, promises to be an intriguing task for future research. At the frontline of the defense against invading pathogens is the protective, viscoelastic mucus layer overlying mucosal surfaces along the human gastrointestinal tract (GIT). The development of a mucus-producing 3D tissue model in this thesis was a vital step towards gaining a deeper understanding of the interdependency between bacterial pathogens and host-site specific mucins. The presence of a mucus layer conferred C. jejuni wildtype-specific protection against epithelial barrier disruption by the pathogen and prevented a high bacterial burden during the course of infection. Moreover, results obtained in this thesis provide evidence in vitro that the characteristic corkscrew morphology of C. jejuni indeed grants a distinct advantage in colonizing mucous surfaces. Overall, the results obtained within this thesis highlight the strength of the tissue models to combine crucial features of native human intestine into accessible in-vitro infection models. Translation of these systems into infection research demonstrated their ability to expose in-vivo like infection outcomes. While displaying complex organotypic architecture and highly prismatic cellular morphology, these tissue models still represent an imperfect reflection of human tissue. Future advancements towards inclusion of human primary and immune cells will strive for even more comprehensive model systems exhibiting intricate multicellular networks of in-vivo tissue. Nevertheless, the work presented in this thesis emphasizes the necessity to investigate host-pathogen interactions in infection models authentically mimicking the natural host environment, as they remain among the most vital parts in understanding and counteracting infectious diseases.}, subject = {Campylobacter jejuni}, language = {en} } @article{OkudaLenzSeitzetal.2023, author = {Okuda, Takumi and Lenz, Ann-Kathrin and Seitz, Florian and Vogel, J{\"o}rg and H{\"o}bartner, Claudia}, title = {A SAM analogue-utilizing ribozyme for site-specific RNA alkylation in living cells}, series = {Nature Chemistry}, journal = {Nature Chemistry}, doi = {10.1038/s41557-023-01320-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-328762}, year = {2023}, abstract = {Post-transcriptional RNA modification methods are in high demand for site-specific RNA labelling and analysis of RNA functions. In vitro-selected ribozymes are attractive tools for RNA research and have the potential to overcome some of the limitations of chemoenzymatic approaches with repurposed methyltransferases. Here we report an alkyltransferase ribozyme that uses a synthetic, stabilized S-adenosylmethionine (SAM) analogue and catalyses the transfer of a propargyl group to a specific adenosine in the target RNA. Almost quantitative conversion was achieved within 1 h under a wide range of reaction conditions in vitro, including physiological magnesium ion concentrations. A genetically encoded version of the SAM analogue-utilizing ribozyme (SAMURI) was expressed in HEK293T cells, and intracellular propargylation of the target adenosine was confirmed by specific fluorescent labelling. SAMURI is a general tool for the site-specific installation of the smallest tag for azide-alkyne click chemistry, which can be further functionalized with fluorophores, affinity tags or other functional probes.}, language = {en} } @article{SeethalerHertleinHopkeetal.2022, author = {Seethaler, Marius and Hertlein, Tobias and Hopke, Elisa and K{\"o}hling, Paul and Ohlsen, Knut and Lalk, Michael and Hilgeroth, Andreas}, title = {Novel effective fluorinated benzothiophene-indole hybrid antibacterials against S. aureus and MRSA strains}, series = {Pharmaceuticals}, volume = {15}, journal = {Pharmaceuticals}, number = {9}, issn = {1424-8247}, doi = {10.3390/ph15091138}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288253}, year = {2022}, abstract = {Increasing antibacterial drug resistance threatens global health, unfortunately, however, efforts to find novel antibacterial agents have been scaled back by the pharmaceutical industry due to concerns about a poor return on investment. Nevertheless, there is an urgent need to find novel antibacterial compounds to combat antibacterial drug resistance. The synthesis of novel drugs from natural sources is mostly cost-intensive due to those drugs' complicated structures. Therefore, it is necessary to find novel antibacterials by simple synthesis to become more attractive for industrial production. We succeeded in the discovery of four antibacterial compound (sub)classes accessible in a simple one-pot reaction based on fluorinated benzothiophene-indole hybrids. They have been evaluated against various S. aureus and MRSA strains. Structure- and substituent-dependent activities have been found within the (sub)classes and promising lead compounds have been identified. In addition, bacterial pyruvate kinase was found to be the molecular target of the active compounds. In conclusion, simple one-pot synthesis of benzothiophene-indoles represents a promising strategy for the search of novel antimicrobial compounds.}, language = {en} } @article{MasotaOhlsenSchollmayeretal.2022, author = {Masota, Nelson E. and Ohlsen, Knut and Schollmayer, Curd and Meinel, Lorenz and Holzgrabe, Ulrike}, title = {Isolation and characterization of galloylglucoses effective against multidrug-resistant strains of Escherichia coli and Klebsiella pneumoniae}, series = {Molecules}, volume = {27}, journal = {Molecules}, number = {15}, issn = {1420-3049}, doi = {10.3390/molecules27155045}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286179}, year = {2022}, abstract = {The search for new antibiotics against multidrug-resistant (MDR), Gram-negative bacteria is crucial with respect to filling the antibiotics development pipeline, which is subject to a critical shortage of novel molecules. Screening of natural products is a promising approach for identifying antimicrobial compounds hosting a higher degree of novelty. Here, we report the isolation and characterization of four galloylglucoses active against different MDR strains of Escherichia coli and Klebsiella pneumoniae. A crude acetone extract was prepared from Paeonia officinalis Linnaeus leaves, and bioautography-guided isolation of active compounds from the extract was performed by liquid-liquid extraction, as well as open column, flash, and preparative chromatographic methods. Isolated active compounds were characterized and elucidated by a combination of spectroscopic and spectrometric techniques. In vitro antimicrobial susceptibility testing was carried out on E. coli and K. pneumoniae using 2 reference strains and 13 strains hosting a wide range of MDR phenotypes. Furthermore, in vivo antibacterial activities were assessed using Galleria mellonella larvae, and compounds 1,2,3,4,6-penta-O-galloyl-β-d-glucose, 3-O-digalloyl-1,2,4,6-tetra-O-galloyl-β-d-glucose, 6-O-digalloyl-1,2,3,4-tetra-O-galloyl-β-d-glucose, and 3,6-bis-O-digalloyl-1,2,4-tri-O-galloyl-β-d-glucose were isolated and characterized. They showed minimum inhibitory concentration (MIC) values in the range of 2-256 µg/mL across tested bacterial strains. These findings have added to the number of known galloylglucoses from P. officinalis and highlight their potential against MDR Gram-negative bacteria.}, language = {en} } @article{GuptaSrivastavaMinochaetal.2021, author = {Gupta, Shishir K. and Srivastava, Mugdha and Minocha, Rashmi and Akash, Aman and Dangwal, Seema and Dandekar, Thomas}, title = {Alveolar regeneration in COVID-19 patients: a network perspective}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {20}, issn = {1422-0067}, doi = {10.3390/ijms222011279}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284307}, year = {2021}, abstract = {A viral infection involves entry and replication of viral nucleic acid in a host organism, subsequently leading to biochemical and structural alterations in the host cell. In the case of SARS-CoV-2 viral infection, over-activation of the host immune system may lead to lung damage. Albeit the regeneration and fibrotic repair processes being the two protective host responses, prolonged injury may lead to excessive fibrosis, a pathological state that can result in lung collapse. In this review, we discuss regeneration and fibrosis processes in response to SARS-CoV-2 and provide our viewpoint on the triggering of alveolar regeneration in coronavirus disease 2019 (COVID-19) patients.}, language = {en} } @article{RaschigRamirez‐ZavalaWiestetal.2023, author = {Raschig, Martina and Ram{\´i}rez-Zavala, Bernardo and Wiest, Johannes and Saedtler, Marco and Gutmann, Marcus and Holzgrabe, Ulrike and Morschh{\"a}user, Joachim and Meinel, Lorenz}, title = {Azobenzene derivatives with activity against drug-resistant Candida albicans and Candida auris}, series = {Archiv der Pharmazie}, volume = {356}, journal = {Archiv der Pharmazie}, number = {2}, doi = {10.1002/ardp.202200463}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312295}, year = {2023}, abstract = {Increasing resistance against antimycotic drugs challenges anti-infective therapies today and contributes to the mortality of infections by drug-resistant Candida species and strains. Therefore, novel antifungal agents are needed. A promising approach in developing new drugs is using naturally occurring molecules as lead structures. In this work, 4,4'-dihydroxyazobenzene, a compound structurally related to antifungal stilbene derivatives and present in Agaricus xanthodermus (yellow stainer), served as a starting point for the synthesis of five azobenzene derivatives. These compounds prevented the growth of both fluconazole-susceptible and fluconazole-resistant Candida albicans and Candida auris strains. Further in vivo studies are required to confirm the potential therapeutic value of these compounds.}, language = {en} } @article{UmstaetterWernerZerlinetal.2022, author = {Umst{\"a}tter, Florian and Werner, Julia and Zerlin, Leah and M{\"u}hlberg, Eric and Kleist, Christian and Klika, Karel D. and Hertlein, Tobias and Beijer, Barbro and Domhan, Cornelius and Zimmermann, Stefan and Ohlsen, Knut and Haberkorn, Uwe and Mier, Walter and Uhl, Philipp}, title = {Impact of linker modification and PEGylation of vancomycin conjugates on structure-activity relationships and pharmacokinetics}, series = {Pharmaceuticals}, volume = {15}, journal = {Pharmaceuticals}, number = {2}, issn = {1424-8247}, doi = {10.3390/ph15020159}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-255197}, year = {2022}, abstract = {As multidrug-resistant bacteria represent a concerning burden, experts insist on the need for a dramatic rethinking on antibiotic use and development in order to avoid a post-antibiotic era. New and rapidly developable strategies for antimicrobial substances, in particular substances highly potent against multidrug-resistant bacteria, are urgently required. Some of the treatment options currently available for multidrug-resistant bacteria are considerably limited by side effects and unfavorable pharmacokinetics. The glycopeptide vancomycin is considered an antibiotic of last resort. Its use is challenged by bacterial strains exhibiting various types of resistance. Therefore, in this study, highly active polycationic peptide-vancomycin conjugates with varying linker characteristics or the addition of PEG moieties were synthesized to optimize pharmacokinetics while retaining or even increasing antimicrobial activity in comparison to vancomycin. The antimicrobial activity of the novel conjugates was determined by microdilution assays on susceptible and vancomycin-resistant bacterial strains. VAN1 and VAN2, the most promising linker-modified derivatives, were further characterized in vivo with molecular imaging and biodistribution studies in rodents, showing that the linker moiety influences both antimicrobial activity and pharmacokinetics. Encouragingly, VAN2 was able to undercut the resistance breakpoint in microdilution assays on vanB and vanC vancomycin-resistant enterococci. Out of all PEGylated derivatives, VAN:PEG1 and VAN:PEG3 were able to overcome vanC resistance. Biodistribution studies of the novel derivatives revealed significant changes in pharmacokinetics when compared with vancomycin. In conclusion, linker modification of vancomycin-polycationic peptide conjugates represents a promising strategy for the modulation of pharmacokinetic behavior while providing potent antimicrobial activity.}, language = {en} } @article{DischingerHeckelBischleretal.2021, author = {Dischinger, Ulrich and Heckel, Tobias and Bischler, Thorsten and Hasinger, Julia and K{\"o}nigsrainer, Malina and Schmitt-B{\"o}hrer, Angelika and Otto, Christoph and Fassnacht, Martin and Seyfried, Florian and Hankir, Mohammed Khair}, title = {Roux-en-Y gastric bypass and caloric restriction but not gut hormone-based treatments profoundly impact the hypothalamic transcriptome in obese rats}, series = {Nutrients}, volume = {14}, journal = {Nutrients}, number = {1}, issn = {2072-6643}, doi = {10.3390/nu14010116}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252392}, year = {2021}, abstract = {Background: The hypothalamus is an important brain region for the regulation of energy balance. Roux-en-Y gastric bypass (RYGB) surgery and gut hormone-based treatments are known to reduce body weight, but their effects on hypothalamic gene expression and signaling pathways are poorly studied. Methods: Diet-induced obese male Wistar rats were randomized into the following groups: RYGB, sham operation, sham + body weight-matched (BWM) to the RYGB group, osmotic minipump delivering PYY3-36 (0.1 mg/kg/day), liraglutide s.c. (0.4 mg/kg/day), PYY3-36 + liraglutide, and saline. All groups (except BWM) were kept on a free choice of high- and low-fat diets. Four weeks after interventions, hypothalami were collected for RNA sequencing. Results: While rats in the RYGB, BWM, and PYY3-36 + liraglutide groups had comparable reductions in body weight, only RYGB and BWM treatment had a major impact on hypothalamic gene expression. In these groups, hypothalamic leptin receptor expression as well as the JAK-STAT, PI3K-Akt, and AMPK signaling pathways were upregulated. No significant changes could be detected in PYY3-36 + liraglutide-, liraglutide-, and PYY-treated groups. Conclusions: Despite causing similar body weight changes compared to RYGB and BWM, PYY3-36 + liraglutide treatment does not impact hypothalamic gene expression. Whether this striking difference is favorable or unfavorable to metabolic health in the long term requires further investigation.}, language = {en} } @article{LiangRiosMiguelJaricketal.2021, author = {Liang, Chunguang and Rios-Miguel, Ana B. and Jarick, Marcel and Neurgaonkar, Priya and Girard, Myriam and Fran{\c{c}}ois, Patrice and Schrenzel, Jacques and Ibrahim, Eslam S. and Ohlsen, Knut and Dandekar, Thomas}, title = {Staphylococcus aureus transcriptome data and metabolic modelling investigate the interplay of Ser/Thr kinase PknB, its phosphatase Stp, the glmR/yvcK regulon and the cdaA operon for metabolic adaptation}, series = {Microorganisms}, volume = {9}, journal = {Microorganisms}, number = {10}, issn = {2076-2607}, doi = {10.3390/microorganisms9102148}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248459}, year = {2021}, abstract = {Serine/threonine kinase PknB and its corresponding phosphatase Stp are important regulators of many cell functions in the pathogen S. aureus. Genome-scale gene expression data of S. aureus strain NewHG (sigB\(^+\)) elucidated their effect on physiological functions. Moreover, metabolic modelling from these data inferred metabolic adaptations. We compared wild-type to deletion strains lacking pknB, stp or both. Ser/Thr phosphorylation of target proteins by PknB switched amino acid catabolism off and gluconeogenesis on to provide the cell with sufficient components. We revealed a significant impact of PknB and Stp on peptidoglycan, nucleotide and aromatic amino acid synthesis, as well as catabolism involving aspartate transaminase. Moreover, pyrimidine synthesis was dramatically impaired by stp deletion but only slightly by functional loss of PknB. In double knockouts, higher activity concerned genes involved in peptidoglycan, purine and aromatic amino acid synthesis from glucose but lower activity of pyrimidine synthesis from glucose compared to the wild type. A second transcriptome dataset from S. aureus NCTC 8325 (sigB\(^-\)) validated the predictions. For this metabolic adaptation, PknB was found to interact with CdaA and the yvcK/glmR regulon. The involved GlmR structure and the GlmS riboswitch were modelled. Furthermore, PknB phosphorylation lowered the expression of many virulence factors, and the study shed light on S. aureus infection processes.}, language = {en} } @article{GuptaSrivastavaOsmanogluetal.2021, author = {Gupta, Shishir K. and Srivastava, Mugdha and Osmanoglu, {\"O}zge and Xu, Zhuofei and Brakhage, Axel A. and Dandekar, Thomas}, title = {Aspergillus fumigatus versus genus Aspergillus: conservation, adaptive evolution and specific virulence genes}, series = {Microorganisms}, volume = {9}, journal = {Microorganisms}, number = {10}, issn = {2076-2607}, doi = {10.3390/microorganisms9102014}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246318}, year = {2021}, abstract = {Aspergillus is an important fungal genus containing economically important species, as well as pathogenic species of animals and plants. Using eighteen fungal species of the genus Aspergillus, we conducted a comprehensive investigation of conserved genes and their evolution. This also allows us to investigate the selection pressure driving the adaptive evolution in the pathogenic species A. fumigatus. Among single-copy orthologs (SCOs) for A. fumigatus and the closely related species A. fischeri, we identified 122 versus 50 positively selected genes (PSGs), respectively. Moreover, twenty conserved genes of unknown function were established to be positively selected and thus important for adaption. A. fumigatus PSGs interacting with human host proteins show over-representation of adaptive, symbiosis-related, immunomodulatory and virulence-related pathways, such as the TGF-β pathway, insulin receptor signaling, IL1 pathway and interfering with phagosomal GTPase signaling. Additionally, among the virulence factor coding genes, secretory and membrane protein-coding genes in multi-copy gene families, 212 genes underwent positive selection and also suggest increased adaptation, such as fungal immune evasion mechanisms (aspf2), siderophore biosynthesis (sidD), fumarylalanine production (sidE), stress tolerance (atfA) and thermotolerance (sodA). These genes presumably contribute to host adaptation strategies. Genes for the biosynthesis of gliotoxin are shared among all the close relatives of A. fumigatus as an ancient defense mechanism. Positive selection plays a crucial role in the adaptive evolution of A. fumigatus. The genome-wide profile of PSGs provides valuable targets for further research on the mechanisms of immune evasion, antimycotic targeting and understanding fundamental virulence processes.}, language = {en} } @article{UlbrichtNickelWeidenbachetal.2020, author = {Ulbricht, Andrea and Nickel, Lisa and Weidenbach, Katrin and Vargas Gebauer, Herman and Kießling, Claudia and F{\"o}rstner, Konrad U. and Schmitz, Ruth A.}, title = {The CARF protein MM_0565 affects transcription of the casposon-encoded cas1-solo gene in Methanosarcina mazei G{\"o}1}, series = {Biomolecules}, volume = {10}, journal = {Biomolecules}, number = {8}, issn = {2218-273X}, doi = {10.3390/biom10081161}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211097}, year = {2020}, abstract = {Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) loci are found in bacterial and archaeal genomes where they provide the molecular machinery for acquisition of immunity against foreign DNA. In addition to the cas genes fundamentally required for CRISPR activity, a second class of genes is associated with the CRISPR loci, of which many have no reported function in CRISPR-mediated immunity. Here, we characterize MM_0565 associated to the type I-B CRISPR-locus of Methanosarcina mazei G{\"o}1. We show that purified MM_0565 composed of a CRISPR-Cas Associated Rossmann Fold (CARF) and a winged helix-turn-helix domain forms a dimer in solution; in vivo, the dimeric MM_0565 is strongly stabilized under high salt stress. While direct effects on CRISPR-Cas transcription were not detected by genetic approaches, specific binding of MM_0565 to the leader region of both CRISPR-Cas systems was observed by microscale thermophoresis and electromobility shift assays. Moreover, overexpression of MM_0565 strongly induced transcription of the cas1-solo gene located in the recently reported casposon, the gene product of which shows high similarity to classical Cas1 proteins. Based on our findings, and taking the absence of the expressed CRISPR locus-encoded Cas1 protein into account, we hypothesize that MM_0565 might modulate the activity of the CRISPR systems on different levels.}, language = {en} } @article{MichauxGerovacHansenetal.2023, author = {Michaux, Charlotte and Gerovac, Milan and Hansen, Elisabeth E. and Barquist, Lars and Vogel, J{\"o}rg}, title = {Grad-seq analysis of Enterococcus faecalis and Enterococcus faecium provides a global view of RNA and protein complexes in these two opportunistic pathogens}, series = {microLife}, volume = {4}, journal = {microLife}, doi = {10.1093/femsml/uqac027}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313311}, year = {2023}, abstract = {Enterococcus faecalis and Enterococcus faecium are major nosocomial pathogens. Despite their relevance to public health and their role in the development of bacterial antibiotic resistance, relatively little is known about gene regulation in these species. RNA-protein complexes serve crucial functions in all cellular processes associated with gene expression, including post-transcriptional control mediated by small regulatory RNAs (sRNAs). Here, we present a new resource for the study of enterococcal RNA biology, employing the Grad-seq technique to comprehensively predict complexes formed by RNA and proteins in E. faecalis V583 and E. faecium AUS0004. Analysis of the generated global RNA and protein sedimentation profiles led to the identification of RNA-protein complexes and putative novel sRNAs. Validating our data sets, we observe well-established cellular RNA-protein complexes such as the 6S RNA-RNA polymerase complex, suggesting that 6S RNA-mediated global control of transcription is conserved in enterococci. Focusing on the largely uncharacterized RNA-binding protein KhpB, we use the RIP-seq technique to predict that KhpB interacts with sRNAs, tRNAs, and untranslated regions of mRNAs, and might be involved in the processing of specific tRNAs. Collectively, these datasets provide departure points for in-depth studies of the cellular interactome of enterococci that should facilitate functional discovery in these and related Gram-positive species. Our data are available to the community through a user-friendly Grad-seq browser that allows interactive searches of the sedimentation profiles (https://resources.helmholtz-hiri.de/gradseqef/).}, language = {en} } @article{HombergerBarquistVogel2022, author = {Homberger, Christina and Barquist, Lars and Vogel, J{\"o}rg}, title = {Ushering in a new era of single-cell transcriptomics in bacteria}, series = {microLife}, volume = {3}, journal = {microLife}, doi = {10.1093/femsml/uqac020}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313292}, year = {2022}, abstract = {Transcriptome analysis of individual cells by single-cell RNA-seq (scRNA-seq) has become routine for eukaryotic tissues, even being applied to whole multicellular organisms. In contrast, developing methods to read the transcriptome of single bacterial cells has proven more challenging, despite a general perception of bacteria as much simpler than eukaryotes. Bacterial cells are harder to lyse, their RNA content is about two orders of magnitude lower than that of eukaryotic cells, and bacterial mRNAs are less stable than their eukaryotic counterparts. Most importantly, bacterial transcripts lack functional poly(A) tails, precluding simple adaptation of popular standard eukaryotic scRNA-seq protocols that come with the double advantage of specific mRNA amplification and concomitant depletion of rRNA. However, thanks to very recent breakthroughs in methodology, bacterial scRNA-seq is now feasible. This short review will discuss recently published bacterial scRNA-seq approaches (MATQ-seq, microSPLiT, and PETRI-seq) and a spatial transcriptomics approach based on multiplexed in situ hybridization (par-seqFISH). Together, these novel approaches will not only enable a new understanding of cell-to-cell variation in bacterial gene expression, they also promise a new microbiology by enabling high-resolution profiling of gene activity in complex microbial consortia such as the microbiome or pathogens as they invade, replicate, and persist in host tissue.}, language = {en} } @article{SoundararajanMarincolaLiongetal.2023, author = {Soundararajan, Manonmani and Marincola, Gabriella and Liong, Olivia and Marciniak, Tessa and Wencker, Freya D. R. and Hofmann, Franka and Schollenbruch, Hannah and Kobusch, Iris and Linnemann, Sabrina and Wolf, Silver A. and Helal, Mustafa and Semmler, Torsten and Walther, Birgit and Schoen, Christoph and Nyasinga, Justin and Revathi, Gunturu and Boelhauve, Marc and Ziebuhr, Wilma}, title = {Farming practice influences antimicrobial resistance burden of non-aureus staphylococci in pig husbandries}, series = {Microorganisms}, volume = {11}, journal = {Microorganisms}, number = {1}, issn = {2076-2607}, doi = {10.3390/microorganisms11010031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312750}, year = {2023}, abstract = {Non-aureus staphylococci (NAS) are ubiquitous bacteria in livestock-associated environments where they may act as reservoirs of antimicrobial resistance (AMR) genes for pathogens such as Staphylococcus aureus. Here, we tested whether housing conditions in pig farms could influence the overall AMR-NAS burden. Two hundred and forty porcine commensal and environmental NAS isolates from three different farm types (conventional, alternative, and organic) were tested for phenotypic antimicrobial susceptibility and subjected to whole genome sequencing. Genomic data were analysed regarding species identity and AMR gene carriage. Seventeen different NAS species were identified across all farm types. In contrast to conventional farms, no AMR genes were detectable towards methicillin, aminoglycosides, and phenicols in organic farms. Additionally, AMR genes to macrolides and tetracycline were rare among NAS in organic farms, while such genes were common in conventional husbandries. No differences in AMR detection existed between farm types regarding fosfomycin, lincosamides, fusidic acid, and heavy metal resistance gene presence. The combined data show that husbandry conditions influence the occurrence of resistant and multidrug-resistant bacteria in livestock, suggesting that changing husbandry practices may be an appropriate means of limiting the spread of AMR bacteria on farms.}, language = {en} } @article{GuptaMinochaThapaetal.2022, author = {Gupta, Shishir K. and Minocha, Rashmi and Thapa, Prithivi Jung and Srivastava, Mugdha and Dandekar, Thomas}, title = {Role of the pangolin in origin of SARS-CoV-2: an evolutionary perspective}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms23169115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285995}, year = {2022}, abstract = {After the recent emergence of SARS-CoV-2 infection, unanswered questions remain related to its evolutionary history, path of transmission or divergence and role of recombination. There is emerging evidence on amino acid substitutions occurring in key residues of the receptor-binding domain of the spike glycoprotein in coronavirus isolates from bat and pangolins. In this article, we summarize our current knowledge on the origin of SARS-CoV-2. We also analyze the host ACE2-interacting residues of the receptor-binding domain of spike glycoprotein in SARS-CoV-2 isolates from bats, and compare it to pangolin SARS-CoV-2 isolates collected from Guangdong province (GD Pangolin-CoV) and Guangxi autonomous regions (GX Pangolin-CoV) of South China. Based on our comparative analysis, we support the view that the Guangdong Pangolins are the intermediate hosts that adapted the SARS-CoV-2 and represented a significant evolutionary link in the path of transmission of SARS-CoV-2 virus. We also discuss the role of intermediate hosts in the origin of Omicron.}, language = {en} } @article{HungDreherDiessneretal.2022, author = {Hung, Sophia and Dreher, Liane and Diessner, Joachim and Schwarz, Stefan and Ohlsen, Knut and Hertlein, Tobias}, title = {MRSA infection in the thigh muscle leads to systemic disease, strong inflammation, and loss of human monocytes in humanized mice}, series = {Frontiers in Immunology}, volume = {13}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2022.892053}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278050}, year = {2022}, abstract = {MRSA (Methicillin-resistant Staphylococcus aureus) is the second-leading cause of deaths by antibiotic-resistant bacteria globally, with more than 100,000 attributable deaths annually. Despite the high urgency to develop a vaccine to control this pathogen, all clinical trials with pre-clinically effective candidates failed so far. The recent development of "humanized" mice might help to edge the pre-clinical evaluation closer to the clinical situation and thus close this gap. We infected humanized NSG mice (huNSG: (NOD)-scid IL2R\(_γ\)\(^{null}\) mice engrafted with human CD34+ hematopoietic stem cells) locally with S. aureus USA300 LAC* lux into the thigh muscle in order to investigate the human immune response to acute and chronic infection. These mice proved not only to be more susceptible to MRSA infection than wild-type or "murinized" mice, but displayed furthermore inferior survival and signs of systemic infection in an otherwise localized infection model. The rate of humanization correlated directly with the severity of disease and survival of the mice. Human and murine cytokine levels in blood and at the primary site of infection were strongly elevated in huNSG mice compared to all control groups. And importantly, differences in human and murine immune cell lineages surfaced during the infection, with human monocyte and B cell numbers in blood and bone marrow being significantly reduced at the later time point of infection. Murine monocytes in contrast behaved conversely by increasing cell numbers. This study demonstrates significant differences in the in vivo behavior of human and murine cells towards S. aureus infection, which might help to sharpen the translational potential of pre-clinical models for future therapeutic approaches.}, language = {en} } @article{IbrahimOhlsen2022, author = {Ibrahim, Eslam S. and Ohlsen, Knut}, title = {The old yellow enzyme OfrA fosters Staphylococcus aureus survival via affecting thiol-dependent redox homeostasis}, series = {Frontiers in Microbiology}, volume = {13}, journal = {Frontiers in Microbiology}, issn = {1664-302X}, doi = {10.3389/fmicb.2022.888140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-274381}, year = {2022}, abstract = {Old yellow enzymes (OYEs) are widely found in the bacterial, fungal, and plant kingdoms but absent in humans and have been used as biocatalysts for decades. However, OYEs' physiological function in bacterial stress response and infection situations remained enigmatic. As a pathogen, the Gram-positive bacterium Staphylococcus aureus adapts to numerous stress conditions during pathogenesis. Here, we show that in S. aureus genome, two paralogous genes (ofrA and ofrB) encode for two OYEs. We conducted a bioinformatic analysis and found that ofrA is conserved among all publicly available representative staphylococcal genomes and some Firmicutes. Expression of ofrA is induced by electrophilic, oxidative, and hypochlorite stress in S. aureus. Furthermore, ofrA contributes to S. aureus survival against reactive electrophilic, oxygen, and chlorine species (RES, ROS, and RCS) via thiol-dependent redox homeostasis. At the host-pathogen interface, S. aureusΔofrA has defective survival in macrophages and whole human blood and decreased staphyloxanthin production. Overall, our results shed the light onto a novel stress response strategy in the important human pathogen S. aureus.}, language = {en} } @article{RamirezZavalaKruegerDunkeretal.2022, author = {Ram{\´i}rez-Zavala, Bernardo and Kr{\"u}ger, Ines and Dunker, Christine and Jacobsen, Ilse D. and Morschh{\"a}user, Joachim}, title = {The protein kinase Ire1 has a Hac1-independent essential role in iron uptake and virulence of Candida albicans}, series = {PLoS Pathogens}, volume = {18}, journal = {PLoS Pathogens}, number = {2}, doi = {10.1371/journal.ppat.1010283}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300225}, year = {2022}, abstract = {Protein kinases play central roles in virtually all signaling pathways that enable organisms to adapt to their environment. Microbial pathogens must cope with severely restricted iron availability in mammalian hosts to invade and establish themselves within infected tissues. To uncover protein kinase signaling pathways that are involved in the adaptation of the pathogenic yeast Candida albicans to iron limitation, we generated a comprehensive protein kinase deletion mutant library of a wild-type strain. Screening of this library revealed that the protein kinase Ire1, which has a conserved role in the response of eukaryotic cells to endoplasmic reticulum stress, is essential for growth of C. albicans under iron-limiting conditions. Ire1 was not necessary for the activity of the transcription factor Sef1, which regulates the response of the fungus to iron limitation, and Sef1 target genes that are induced by iron depletion were normally upregulated in ire1Δ mutants. Instead, Ire1 was required for proper localization of the high-affinity iron permease Ftr1 to the cell membrane. Intriguingly, iron limitation did not cause increased endoplasmic reticulum stress, and the transcription factor Hac1, which is activated by Ire1-mediated removal of the non-canonical intron in the HAC1 mRNA, was dispensable for Ftr1 localization to the cell membrane and growth under iron-limiting conditions. Nevertheless, expression of a pre-spliced HAC1 copy in ire1Δ mutants restored Ftr1 localization and rescued the growth defects of the mutants. Both ire1Δ and hac1Δ mutants were avirulent in a mouse model of systemic candidiasis, indicating that an appropriate response to endoplasmic reticulum stress is important for the virulence of C. albicans. However, the specific requirement of Ire1 for the functionality of the high-affinity iron permease Ftr1, a well-established virulence factor, even in the absence of endoplasmic reticulum stress uncovers a novel Hac1-independent essential role of Ire1 in iron acquisition and virulence of C. albicans.}, language = {en} } @phdthesis{Ponath2023, author = {Ponath, Falk Fred Finn}, title = {Investigating the molecular biology of \(Fusobacterium\) \(nucleatum\)}, doi = {10.25972/OPUS-30351}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303516}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The anaerobe Fusobacterium nucleatum (F. nucleatum) is an important member of the oral microbiome but can also colonize different tissues of the human body. In particular, its association with multiple human cancers has drawn much attention. This association has prompted growing interest into the interaction of F. nucleatum with cancer, with studies focusing primarily on the host cells. At the same time, F. nucleatum itself remains poorly understood, which includes its transcriptomic architecture but also gene regulation such as global stress responses that typically enable survival of bacteria in new environments. An important aspect of such regulatory networks is the post-transcriptional regulation, which is entirely unknown in F. nucleatum. This paucity extents to any knowledge on small regulatory RNAs (sRNAs), despite their important role as post-transcriptional regulators of the bacterial physiology. Investigating the above stated aspects is further complicated by the fact that F. nucleatum is phylogenetically distant from all other bacteria, displays very limited genetic tractability and lacks genetic tools for dissecting gene function. This leaves many open questions on basic gene regulation in F. nucleatum, such as if the bacterium combines transcriptional and post-transcriptional regulation in its adaptation to a changing environment. To begin answering this question, this works elucidated the transcriptomic landscape of F. nucleatum by performing differential RNA-seq (dRNA-seq). Conducted for five representative strains of all F. nucleatum subspecies and the closely related F. periodonticum, the analysis globally uncovered transcriptional start sites (TSS), 5'untranslated regions (UTRs) and improved the existing annotation. Importantly, the dRNA-seq analysis also identified a conserved suite of sRNAs specific to Fusobacterium. The development of five genetic tools enabled further investigations of gene functions in F. nucleatum. These include vectors that enable the expression of different fluorescent proteins, inducible gene expression and scarless gene deletion in addition to transcriptional and translational reporter systems. These tools enabled the dissection of a Sigma E response and uncovered several commonalities with its counterpart in the phylogenetically distant Proteobacteria. The similarities include the upregulation of genes involved in membrane homeostasis but also a Simga E-dependent regulatory sRNA. Surprisingly, oxygen was found to activated Sigma E in F. nucleatum contrasting the typical role of the factor in envelope stress. The non-coding Sigma E-dependent sRNA, named FoxI, was shown to repress the translation of several envelope proteins which represented yet another parallel to the envelope stress response in Proteobacteria. Overall, this work sheds light on the RNA landscape of the cancer-associated bacterium leading to the discovery of a conserved global stress response consisting of a coding and a non-coding arm. The development of new genetic tools not only aided the latter discovery but also provides the means for further dissecting the molecular and infection biology of this enigmatic bacterium.}, language = {en} } @article{SanyalWallaschekGlassetal.2018, author = {Sanyal, Anirban and Wallaschek, Nina and Glass, Mandy and Flamand, Louis and Wight, Darren J. and Kaufer, Benedikt B.}, title = {The ND10 Complex Represses Lytic Human Herpesvirus 6A Replication and Promotes Silencing of the Viral Genome}, series = {Viruses}, volume = {10}, journal = {Viruses}, number = {8}, doi = {10.3390/v10080401}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227337}, pages = {401, 1-11}, year = {2018}, abstract = {Human herpesvirus 6A (HHV-6A) replicates in peripheral blood mononuclear cells (PBMCs) and various T-cell lines in vitro. Intriguingly, the virus can also establish latency in these cells, but it remains unknown what influences the decision between lytic replication and the latency of the virus. Incoming virus genomes are confronted with the nuclear domain 10 (ND10) complex as part of an intrinsic antiviral response. Most herpesviruses can efficiently subvert ND10, but its role in HHV-6A infection remains poorly understood. In this study, we investigated if the ND10 complex affects HHV-6A replication and contributes to the silencing of the virus genome during latency. We could demonstrate that ND10 complex was not dissociated upon infection, while the number of ND10 bodies was reduced in lytically infected cells. Virus replication was significantly enhanced upon knock down of the ND10 complex using shRNAs against its major constituents promyelocytic leukemia protein (PML), hDaxx, and Sp100. In addition, we could demonstrate that viral genes are more efficiently silenced in the presence of a functional ND10 complex. Our data thereby provides the first evidence that the cellular ND10 complex plays an important role in suppressing HHV-6A lytic replication and the silencing of the virus genome in latently infected cells.}, language = {en} } @article{GehrmannHertleinHopkeetal.2021, author = {Gehrmann, Robin and Hertlein, Tobias and Hopke, Elisa and Ohlsen, Knut and Lalk, Michael and Hilgeroth, Andreas}, title = {Novel small-molecule hybrid-antibacterial agents against S. aureus and MRSA strains}, series = {Molecules}, volume = {27}, journal = {Molecules}, number = {1}, issn = {1420-3049}, doi = {10.3390/molecules27010061}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252371}, year = {2021}, abstract = {Ongoing resistance developments against antibiotics that also affect last-resort antibiotics require novel antibacterial compounds. Strategies to discover such novel structures have been dimerization or hybridization of known antibacterial agents. We found novel antibacterial agents by dimerization of indols and hybridization with carbazoles. They were obtained in a simple one-pot reaction as bisindole tetrahydrocarbazoles. Further oxidation led to bisindole carbazoles with varied substitutions of both the indole and the carbazole scaffold. Both the tetrahydrocarbazoles and the carbazoles have been evaluated in various S. aureus strains, including MRSA strains. Those 5-cyano substituted derivatives showed best activities as determined by MIC values. The tetrahydrocarbazoles partly exceed the activity of the carbazole compounds and thus the activity of the used standard antibiotics. Thus, promising lead compounds could be identified for further studies.}, language = {en} } @article{MetznerHerzogHeckeletal.2022, author = {Metzner, Valentin and Herzog, Gloria and Heckel, Tobias and Bischler, Thorsten and Hasinger, Julia and Otto, Christoph and Fassnacht, Martin and Geier, Andreas and Seyfried, Florian and Dischinger, Ulrich}, title = {Liraglutide + PYY\(_{3-36}\) combination therapy mimics effects of Roux-en-Y bypass on early NAFLD whilst lacking-behind in metabolic improvements}, series = {Journal of Clinical Medicine}, volume = {11}, journal = {Journal of Clinical Medicine}, number = {3}, issn = {2077-0383}, doi = {10.3390/jcm11030753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-255244}, year = {2022}, abstract = {Background: Treatment options for NAFLD are still limited. Bariatric surgery, such as Roux-en-Y gastric bypass (RYGB), has been shown to improve metabolic and histologic markers of NAFLD. Glucagon-like-peptide-1 (GLP-1) analogues lead to improvements in phase 2 clinical trials. We directly compared the effects of RYGB with a treatment using liraglutide and/or peptide tyrosine tyrosine 3-36 (PYY\(_{3-36}\)) in a rat model for early NAFLD. Methods: Obese male Wistar rats (high-fat diet (HFD)-induced) were randomized into the following treatment groups: RYGB, sham-operation (sham), liraglutide (0.4 mg/kg/day), PYY\(_{3-36}\) (0.1 mg/kg/day), liraglutide+PYY\(_{3-36}\), and saline. After an observation period of 4 weeks, liver samples were histologically evaluated, ELISAs and RNA sequencing + RT-qPCRs were performed. Results: RYGB and liraglutide+PYY\(_{3-36}\) induced a similar body weight loss and, compared to sham/saline, marked histological improvements with significantly less steatosis. However, only RYGB induced significant metabolic improvements (e.g., adiponectin/leptin ratio 18.8 ± 11.8 vs. 2.4 ± 1.2 in liraglutide+PYY\(_{3-36}\)- or 1.4 ± 0.9 in sham-treated rats). Furthermore, RNA sequencing revealed a high number of differentially regulated genes in RYGB treated animals only. Conclusions: The combination therapy of liraglutide+PYY\(_{3-36}\) partly mimics the positive effects of RYGB on weight reduction and on hepatic steatosis, while its effects on metabolic function lack behind RYGB.}, language = {en} } @article{HennessenMiethkeZaburannyietal.2020, author = {Hennessen, Fabienne and Miethke, Marcus and Zaburannyi, Nestor and Loose, Maria and Lukežič, Tadeja and Bernecker, Steffen and H{\"u}ttel, Stephan and Jansen, Rolf and Schmiedel, Judith and Fritzenwanker, Moritz and Imirzalioglu, Can and Vogel, J{\"o}rg and Westermann, Alexander J. and Hesterkamp, Thomas and Stadler, Marc and Wagenlehner, Florian and Petković, Hrvoje and Herrmann, Jennifer and M{\"u}ller, Rolf}, title = {Amidochelocardin overcomes resistance mechanisms exerted on tetracyclines and natural chelocardin}, series = {Antibiotics}, volume = {9}, journal = {Antibiotics}, number = {9}, issn = {2079-6382}, doi = {10.3390/antibiotics9090619}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213149}, year = {2020}, abstract = {The reassessment of known but neglected natural compounds is a vital strategy for providing novel lead structures urgently needed to overcome antimicrobial resistance. Scaffolds with resistance-breaking properties represent the most promising candidates for a successful translation into future therapeutics. Our study focuses on chelocardin, a member of the atypical tetracyclines, and its bioengineered derivative amidochelocardin, both showing broad-spectrum antibacterial activity within the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) panel. Further lead development of chelocardins requires extensive biological and chemical profiling to achieve favorable pharmaceutical properties and efficacy. This study shows that both molecules possess resistance-breaking properties enabling the escape from most common tetracycline resistance mechanisms. Further, we show that these compounds are potent candidates for treatment of urinary tract infections due to their in vitro activity against a large panel of multidrug-resistant uropathogenic clinical isolates. In addition, the mechanism of resistance to natural chelocardin was identified as relying on efflux processes, both in the chelocardin producer Amycolatopsis sulphurea and in the pathogen Klebsiella pneumoniae. Resistance development in Klebsiella led primarily to mutations in ramR, causing increased expression of the acrAB-tolC efflux pump. Most importantly, amidochelocardin overcomes this resistance mechanism, revealing not only the improved activity profile but also superior resistance-breaking properties of this novel antibacterial compound.}, language = {en} } @article{MuehlbergUmstaetterDomhanetal.2020, author = {M{\"u}hlberg, Eric and Umst{\"a}tter, Florian and Domhan, Cornelius and Hertlein, Tobias and Ohlsen, Knut and Krause, Andreas and Kleist, Christian and Beijer, Barbro and Zimmermann, Stefan and Haberkorn, Uwe and Mier, Walter and Uhl, Philipp}, title = {Vancomycin-lipopeptide conjugates with high antimicrobial activity on vancomycin-resistant enterococci}, series = {Pharmaceuticals}, volume = {13}, journal = {Pharmaceuticals}, number = {6}, issn = {1424-8247}, doi = {10.3390/ph13060110}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205879}, year = {2020}, abstract = {Multidrug-resistant bacteria represent one of the most important health care problems worldwide. While there are numerous drugs available for standard therapy, there are only a few compounds capable of serving as a last resort for severe infections. Therefore, approaches to control multidrug-resistant bacteria must be implemented. Here, a strategy of reactivating the established glycopeptide antibiotic vancomycin by structural modification with polycationic peptides and subsequent fatty acid conjugation to overcome the resistance of multidrug-resistant bacteria was followed. This study especially focuses on the structure-activity relationship, depending on the modification site and fatty acid chain length. The synthesized conjugates showed high antimicrobial potential on vancomycin-resistant enterococci. We were able to demonstrate that the antimicrobial activity of the vancomycin-lipopeptide conjugates depends on the chain length of the attached fatty acid. All conjugates showed good cytocompatibility in vitro and in vivo. Radiolabeling enabled the in vivo determination of pharmacokinetics in Wistar rats by molecular imaging and biodistribution studies. An improved biodistribution profile in comparison to unmodified vancomycin was observed. While vancomycin is rapidly excreted by the kidneys, the most potent conjugate shows a hepatobiliary excretion profile. In conclusion, these results demonstrate the potential of the structural modification of already established antibiotics to provide highly active compounds for tackling multidrug-resistant bacteria.}, language = {en} } @phdthesis{Wencker2022, author = {Wencker, Freya Dorothea Ruth}, title = {The methionine biosynthesis operon in \(Staphylococcus\) \(aureus\): Role of concerted RNA decay in transcript stability and T-box riboswitch turnover}, doi = {10.25972/OPUS-20712}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207124}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Methionine is the first amino acid of every newly synthesised protein. In combination with its role as precursor for the vital methyl-group donor S-adenosylmethionine, methionine is essential for every living cell. The opportunistic human pathogen Staphylococcus aureus is capable of synthesising methionine de novo, when it becomes scarce in the environment. All genes required for the de novo biosynthesis are encoded by the metICFE-mdh operon, except for metX. Expression is controlled by a hierarchical network with a methionyl-tRNA-specific T-box riboswitch (MET-TBRS) as centrepiece, that is also referred to as met leader (RNA). T-box riboswitches (TBRS) are regulatory RNA elements located in the 5'-untranslated region (5'-UTR) of genes. The effector molecule of T-box riboswitches is uncharged cognate tRNA. The prevailing mechanism of action is premature termination of transcription of the nascent RNA in the absence of the effector (i.e. uncharged cognate tRNA) due to formation of a hairpin structure, the Terminator stem. In presence of the effector, a transient stabilisation of the alternative structure, the Antiterminator, enables transcription of the downstream genes ('read-through'). Albeit, after the read-through the thermodynamically more stable Terminator eventually forms. The Terminator and the Antiterminator are two mutually exclusive structures. Previous work of the research group showed that in staphylococci the MET-TBRS ensures strictly methionine-dependent control of met operon expression. Uncharged methionyl-tRNA that activates the system is only present in sufficient amounts under methionine-deprived conditions. In contrast to other bacterial TBRS, the staphylococcal MET-TBRS has some characteristic features regarding its length and predicted secondary structure whose relevance for the function are yet unkown. Aim of the present thesis was to experimentally determine the structure of the met leader RNA and to investigate the stability of the met operon-specific transcripts in the context of methionine biosynthesis control. Furthermore, the yet unknown function of the mdh gene within the met operon was to be determined. In the context of this thesis, the secondary structure of the met leader was determined employing in-line probing. The structural analysis revealed the presence of almost all highly conserved T-box riboswitch structural characteristics. Furthermore, three additional stems, absent in all T-box riboswitches analysed to date, could be identified. Particularly remarkable is the above average length of the Terminator stem which renders it a potential target of the double-strand-specific endoribonuclease III (RNase III). The RNase III-dependent cleavage of the met leader could be experimentally verified by the use of suitable mutants. Moreover, the exact cleavage site within the Terminator was determined. The unusual immediate separation of the met leader from the met operon mRNA via the RNase III cleavage within the Terminator stem induces the rapid degradation of the met leader RNA and, most likely, that of the 5'-region of the met mRNA. The met mRNA is degraded from its 5'-end by the exoribonuclease RNase J. The stability of the met mRNA was found to vary over the length of the transcript with an instable 5'-end (metI and metC) and a longer half-life towards the 3'-end (metE and mdh). The varying transcript stability is reflected by differences in the available cellular protein levels. The obtained data suggest that programmed mRNA degradation is another level of regulation in the complex network of staphylococcal de novo methionine biosynthesis control. In addition, the MET-TBRS was studied with regard to a future use as a drug target for novel antimicrobial agents. To this end, effects of a dysregulated methionine biosynthesis on bacterial growth and survival were investigated in met leader mutants that either caused permanent transcription of the met operon ('ON') or prevented operon transcription ('OFF'), irrespective of the methionine status in the cell. Methionine deprivation turned out to be a strong selection pressure, as 'OFF' mutants acquired adaptive mutations within the met leader to restore met operon expression that subsequently re-enabled growth. The second part of the thesis was dedicated to the characterisation of the Mdh protein that is encoded by the last gene of the met operon and whose function is unknown yet. At first, co-transcription and -expression with the met operon could be demonstrated. Next, the Mdh protein was overexpressed and purified and the crystal structure of Mdh was solved to high resolution by the Kisker research group (Rudolf-Virchow-Zentrum W{\"u}rzburg). Analysis of the structure revealed the amino acid residues crucial for catalytic activity, and zinc was identified as a co-factor of Mdh. Also, Mdh was shown to exist as a dimer. However, identification of the Mdh substrate was, in the context of this thesis, (still) unsuccessful. Nevertheless, interactions of Mdh with enzymes of the met operon could be demonstrated by employing the bacterial two-hybrid system. This fact and the high conservation of mdh/Mdh on nucleotide and amino acid level among numerous staphylococcal species suggests an important role of Mdh within the methionine metabolism that should be a worthwhile subject of future research.}, subject = {Staphylococcus aureus}, language = {en} } @article{WenckerMarincolaSchoenfelderetal.2021, author = {Wencker, Freya D. R and Marincola, Gabriella and Schoenfelder, Sonja M. K. and Maaß, Sandra and Becher, D{\"o}rte and Ziebuhr, Wilma}, title = {Another layer of complexity in Staphylococcus aureus methionine biosynthesis control: unusual RNase III-driven T-box riboswitch cleavage determines met operon mRNA stability and decay}, series = {Nucleic Acids Research}, volume = {49}, journal = {Nucleic Acids Research}, number = {4}, doi = {10.1093/nar/gkaa1277}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259029}, pages = {2192-2212}, year = {2021}, abstract = {In Staphylococcus aureus, de novo methionine biosynthesis is regulated by a unique hierarchical pathway involving stringent-response controlled CodY repression in combination with a T-box riboswitch and RNA decay. The T-box riboswitch residing in the 5′ untranslated region (met leader RNA) of the S. aureus metICFE-mdh operon controls downstream gene transcription upon interaction with uncharged methionyl-tRNA. met leader and metICFE-mdh (m)RNAs undergo RNase-mediated degradation in a process whose molecular details are poorly understood. Here we determined the secondary structure of the met leader RNA and found the element to harbor, beyond other conserved T-box riboswitch structural features, a terminator helix which is target for RNase III endoribonucleolytic cleavage. As the terminator is a thermodynamically highly stable structure, it also forms posttranscriptionally in met leader/ metICFE-mdh read-through transcripts. Cleavage by RNase III releases the met leader from metICFE-mdh mRNA and initiates RNase J-mediated degradation of the mRNA from the 5′-end. Of note, metICFE-mdh mRNA stability varies over the length of the transcript with a longer lifespan towards the 3′-end. The obtained data suggest that coordinated RNA decay represents another checkpoint in a complex regulatory network that adjusts costly methionine biosynthesis to current metabolic requirements.}, language = {en} } @article{GerovaWickeChiharaetal.2021, author = {Gerova, Milan and Wicke, Laura and Chihara, Kotaro and Schneider, Cornelius and Lavigne, Rob and Vogel, J{\"o}rg}, title = {A grad-seq view of RNA and protein complexes in Pseudomonas aeruginosa under standard and bacteriophage predation conditions}, series = {mbio}, volume = {12}, journal = {mbio}, number = {1}, doi = {10.1128/mBio.03454-20}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259054}, pages = {e03454-20}, year = {2021}, abstract = {The Gram-negative rod-shaped bacterium Pseudomonas aeruginosa is not only a major cause of nosocomial infections but also serves as a model species of bacterial RNA biology. While its transcriptome architecture and posttranscriptional regulation through the RNA-binding proteins Hfq, RsmA, and RsmN have been studied in detail, global information about stable RNA-protein complexes in this human pathogen is currently lacking. Here, we implement gradient profiling by sequencing (Grad-seq) in exponentially growing P. aeruginosa cells to comprehensively predict RNA and protein complexes, based on glycerol gradient sedimentation profiles of >73\% of all transcripts and ∼40\% of all proteins. As to benchmarking, our global profiles readily reported complexes of stable RNAs of P. aeruginosa, including 6S RNA with RNA polymerase and associated product RNAs (pRNAs). We observe specific clusters of noncoding RNAs, which correlate with Hfq and RsmA/N, and provide a first hint that P. aeruginosa expresses a ProQ-like FinO domain-containing RNA-binding protein. To understand how biological stress may perturb cellular RNA/protein complexes, we performed Grad-seq after infection by the bacteriophage ΦKZ. This model phage, which has a well-defined transcription profile during host takeover, displayed efficient translational utilization of phage mRNAs and tRNAs, as evident from their increased cosedimentation with ribosomal subunits. Additionally, Grad-seq experimentally determines previously overlooked phage-encoded noncoding RNAs. Taken together, the Pseudomonas protein and RNA complex data provided here will pave the way to a better understanding of RNA-protein interactions during viral predation of the bacterial cell. IMPORTANCE Stable complexes by cellular proteins and RNA molecules lie at the heart of gene regulation and physiology in any bacterium of interest. It is therefore crucial to globally determine these complexes in order to identify and characterize new molecular players and regulation mechanisms. Pseudomonads harbor some of the largest genomes known in bacteria, encoding ∼5,500 different proteins. Here, we provide a first glimpse on which proteins and cellular transcripts form stable complexes in the human pathogen Pseudomonas aeruginosa. We additionally performed this analysis with bacteria subjected to the important and frequently encountered biological stress of a bacteriophage infection. We identified several molecules with established roles in a variety of cellular pathways, which were affected by the phage and can now be explored for their role during phage infection. Most importantly, we observed strong colocalization of phage transcripts and host ribosomes, indicating the existence of specialized translation mechanisms during phage infection. All data are publicly available in an interactive and easy to use browser.}, language = {en} } @article{SeethalerHertleinWeckleinetal.2019, author = {Seethaler, Marius and Hertlein, Tobias and Wecklein, Bj{\"o}rn and Ymeraj, Alba and Ohlsen, Knut and Lalk, Michael and Hilgeroth, Andreas}, title = {Novel small-molecule antibacterials against Gram-positive pathogens of Staphylococcus and Enterococcus species}, series = {Antibiotics}, volume = {8}, journal = {Antibiotics}, number = {4}, issn = {2079-6382}, doi = {10.3390/antibiotics8040210}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193130}, year = {2019}, abstract = {Defeat of the antibiotic resistance of pathogenic bacteria is one great challenge today and for the future. In the last century many classes of effective antibacterials have been developed, so that upcoming resistances could be met with novel drugs of various compound classes. Meanwhile, there is a certain lack of research of the pharmaceutical companies, and thus there are missing developments of novel antibiotics. Gram-positive bacteria are the most important cause of clinical infections. The number of novel antibacterials in clinical trials is strongly restricted. There is an urgent need to find novel antibacterials. We used synthetic chemistry to build completely novel hybrid molecules of substituted indoles and benzothiophene. In a simple one-pot reaction, two novel types of thienocarbazoles were yielded. Both indole substituted compound classes have been evaluated as completely novel antibacterials against the Staphylococcus and Enterococcus species. The evaluated partly promising activities depend on the indole substituent type. First lead compounds have been evaluated within in vivo studies. They confirmed the in vitro results for the new classes of small-molecule antibacterials.}, language = {en} } @phdthesis{Matera2022, author = {Matera, Gianluca}, title = {Global mapping of RNA-RNA interactions in \(Salmonella\) via RIL-seq}, doi = {10.25972/OPUS-26877}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268776}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {RNA represents one of the most abundant macromolecules in both eukaryotic and prokaryotic cells. Since the discovery that RNA could play important gene regulatory functions in the physiology of a cell, small regulatory RNAs (sRNAs) have been at the center of molecular biology studies. Functional sRNAs can be independently transcribed or derived from processing of mRNAs and other non-coding regions and they often associate with RNA-binding proteins (RBPs). Ever since the two major bacterial RBPs, Hfq and ProQ, were identified, the way we approach the identification and characterization of sRNAs has drastically changed. Initially, a single sRNA was annotated and its function studied with the use of low-throughput biochemical techniques. However, the development of RNA-seq techniques over the last decades allowed for a broader identification of sRNAs and their functions. The process of studying a sRNA mainly focuses on the characterization of its interacting RNA partner(s) and the consequences of this binding. By using RNA interaction by ligation and sequencing (RIL-seq), the present thesis aimed at a high-throughput mapping of the Hfq-mediated RNA-RNA network in the major human pathogen Salmonella enterica. RIL-seq was at first performed in early stationary phase growing bacteria, which enabled the identification of ~1,800 unique interactions. In- depth analysis of such complex network was performed with the aid of a newly implemented RIL-seq browser. The interactome revealed known and new interactions involving sRNAs and genes part of the envelope regulon. A deeper investigation led to the identification of a new RNA sponge of the MicF sRNA, namely OppX, involved in establishing a cross-talk between the permeability at the outer membrane and the transport capacity at the periplasm and the inner membrane. Additionally, RIL-seq was applied to Salmonella enterica grown in SPI-2 medium, a condition that mimicks the intracellular lifestyle of this pathogen, and finally extended to in vivo conditions during macrophage infection. Collectively, the results obtained in the present thesis helped unveiling the complexity of such RNA networks. This work set the basis for the discovery of new mechanisms of RNA-based regulation, for the identification of a new physiological role of RNA sponges and finally provided the first resource of RNA interactions during infection conditions in a major human pathogen.}, subject = {Small RNA}, language = {en} } @article{StelznerBoynyHertleinetal.2021, author = {Stelzner, Kathrin and Boyny, Aziza and Hertlein, Tobias and Sroka, Aneta and Moldovan, Adriana and Paprotka, Kerstin and Kessie, David and Mehling, Helene and Potempa, Jan and Ohlsen, Knut and Fraunholz, Martin J. and Rudel, Thomas}, title = {Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells}, series = {PLoS Pathogens}, volume = {17}, journal = {PLoS Pathogens}, number = {9}, doi = {10.1371/journal.ppat.1009874}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-263908}, year = {2021}, abstract = {Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection. Author summary Staphylococcus aureus is an antibiotic-resistant pathogen that emerges in hospital and community settings and can cause a variety of diseases ranging from skin abscesses to lung inflammation and blood poisoning. The bacterium can asymptomatically colonize the upper respiratory tract and skin of humans and take advantage of opportune conditions, like immunodeficiency or breached barriers, to cause infection. Although S. aureus was not regarded as intracellular bacterium, it can be internalized by human cells and subsequently exit the host cells by induction of cell death, which is considered to cause tissue destruction and spread of infection. The bacterial virulence factors and underlying molecular mechanisms involved in the intracellular lifestyle of S. aureus remain largely unknown. We identified a bacterial cysteine protease to contribute to host cell death of epithelial cells mediated by intracellular S. aureus. Staphopain A induced killing of the host cell after translocation of the pathogen into the cell cytosol, while bacterial proliferation was not required. Further, the protease enhanced survival of the pathogen during lung infection. These findings reveal a novel, intracellular role for the bacterial protease staphopain A.}, language = {en} } @article{KayisogluSchlegelBartfeld2021, author = {Kayisoglu, {\"O}zge and Schlegel, Nicolas and Bartfeld, Sina}, title = {Gastrointestinal epithelial innate immunity-regionalization and organoids as new model}, series = {Journal of Molecular Medicine}, volume = {99}, journal = {Journal of Molecular Medicine}, number = {4}, doi = {10.1007/s00109-021-02043-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265220}, pages = {517-530}, year = {2021}, abstract = {The human gastrointestinal tract is in constant contact with microbial stimuli. Its barriers have to ensure co-existence with the commensal bacteria, while enabling surveillance of intruding pathogens. At the centre of the interaction lies the epithelial layer, which marks the boundaries of the body. It is equipped with a multitude of different innate immune sensors, such as Toll-like receptors, to mount inflammatory responses to microbes. Dysfunction of this intricate system results in inflammation-associated pathologies, such as inflammatory bowel disease. However, the complexity of the cellular interactions, their molecular basis and their development remains poorly understood. In recent years, stem cell-derived organoids have gained increasing attention as promising models for both development and a broad range of pathologies, including infectious diseases. In addition, organoids enable the study of epithelial innate immunity in vitro. In this review, we focus on the gastrointestinal epithelial barrier and its regional organization to discuss innate immune sensing and development.}, language = {en} } @article{PernitzschAlzheimerBremeretal.2021, author = {Pernitzsch, Sandy R. and Alzheimer, Mona and Bremer, Belinda U. and Robbe-Saule, Marie and De Reuse, Hilde and Sharma, Cynthia M.}, title = {Small RNA mediated gradual control of lipopolysaccharide biosynthesis affects antibiotic resistance in Helicobacter pylori}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-24689-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261536}, year = {2021}, abstract = {The small, regulatory RNA RepG (Regulator of polymeric G-repeats) regulates the expression of the chemotaxis receptor TlpB in Helicobacter pylori by targeting a variable G-repeat in the tlpB mRNA leader. Here, we show that RepG additionally controls lipopolysaccharide (LPS) phase variation by also modulating the expression of a gene (hp0102) that is co-transcribed with tlpB. The hp0102 gene encodes a glycosyltransferase required for LPS O-chain biosynthesis and in vivo colonization of the mouse stomach. The G-repeat length defines a gradual (rather than ON/OFF) control of LPS biosynthesis by RepG, and leads to gradual resistance to a membrane-targeting antibiotic. Thus, RepG-mediated modulation of LPS structure might impact host immune recognition and antibiotic sensitivity, thereby helping H. pylori to adapt and persist in the host. The small RNA RepG modulates expression of chemotaxis receptor TlpB in Helicobacter pylori by targeting a length-variable G-repeat in the tlpB mRNA. Here, Pernitzsch et al. show that RepG also gradually controls lipopolysaccharide biosynthesis, antibiotic susceptibility, and in-vivo colonization of the stomach, by regulating a gene that is co-transcribed with tlpB.}, language = {en} }