@article{NaseemKunzDandekar2014, author = {Naseem, Muhammad and Kunz, Meik and Dandekar, Thomas}, title = {Probing the unknowns in cytokinin-mediated immune defense in Arabidopsis with systems biology approaches}, series = {Bioinformatics and Biology Insights}, volume = {8}, journal = {Bioinformatics and Biology Insights}, issn = {1177-9322}, doi = {10.4137/bbi.s13462}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120199}, pages = {35-44}, year = {2014}, abstract = {Plant hormones involving salicylic acid (SA), jasmonic acid (JA), ethylene (Et), and auxin, gibberellins, and abscisic acid (ABA) are known to regulate host immune responses. However, plant hormone cytokinin has the potential to modulate defense signaling including SA and JA. It promotes plant pathogen and herbivore resistance; underlying mechanisms are still unknown. Using systems biology approaches, we unravel hub points of immune interaction mediated by cytokinin signaling in Arabidopsis. High-confidence Arabidopsis protein-protein interactions (PPI) are coupled to changes in cytokinin-mediated gene expression. Nodes of the cellular interactome that are enriched in immune functions also reconstitute sub-networks. Topological analyses and their specific immunological relevance lead to the identification of functional hubs in cellular interactome. We discuss our identified immune hubs in light of an emerging model of cytokinin-mediated immune defense against pathogen infection in plants.}, language = {en} } @phdthesis{Bettaga2014, author = {Bettaga, Noomen}, title = {Bedeutung der NO-sensitiven Guanylyl Cyclase bei der Angiogenese und der Arteriogenese in der Maus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111284}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Stickstoffmonoxid (NO) spielt eine wichtige Rolle bei Gef{\"a}ßremodelling-Prozessen wie Angiogenese und Arteriogenese. Die NO-Synthese im Gef{\"a}ßsystem wird haupts{\"a}chlich durch die endotheliale NO-Synthase (eNOS) gew{\"a}hrleistet. Sie kann durch verschiedene Faktoren wie Scherkr{\"a}fte und Zytokine wie der vaskul{\"a}re endotheliale Wachstumsfaktor (VEGF) reguliert werden. VEGF ist ein wichtiger Stimulator der Angiogenese und wird w{\"a}hrend dieses Prozesses hochreguliert. Die meisten physiologischen Effekte von NO werden durch die NO-sensitive Guanylyl-Cyclase (NO-GC) vermittelt. Als Hauptrezeptor f{\"u}r NO produziert die NO-GC den sekund{\"a}ren Botenstoff cyklisches Guanosinmonophosphat (cGMP) und f{\"u}hrt dadurch zur Stimulation der verschiedenen Effektoren wie z.B. der PKG. Ob die Wirkung von NO in Angiogenese und Arteriogenese ebenfalls durch NO-GC vermittelt wird, war bis zum Beginn dieser Arbeit noch unklar. Die NO-GC besteht aus zwei Untereinheiten (α und ß). Die Deletion der ß1-Untereinheit in M{\"a}usen resultiert in einer vollst{\"a}ndigen Knockout Maus (GCKO). Mithilfe des Cre-LoxP-Systems wurden zus{\"a}tzlich zellspezifische Knockout-M{\"a}use f{\"u}r glatte Muskelzellen (SMC-GCKO) und Endothelzellen (EC-GCKO) generiert. Um die Rolle der NO-GC in der Angiogenese und Arteriogenese zu untersuchen, wurden drei gut etablierte Methoden benutzt. Im ersten Teil des Projekts sollte die Expression der NO-GC in Endothelzellen untersucht werden. Zu diesem Zweck wurde die reverse Transkriptase-Polymerase-Kettenreaktion (RT-PCR) benutzt. Die Ergebnisse zeigen, dass die NO-GC in Endothelzellen der Lunge nur {\"a}ußerst gering wenig exprimiert ist. Durch den Aortenring-Assay wurde eine Rolle der NO-GC bei der VEGF-vermittelten Angiogenese festgestellt. Dabei zeigte sich eine st{\"a}rkere Angiogeneserate bei globaler Abwesenheit der NO-GC. Bei Fehlen der NO-GC ausschließlich in Endothelzellen zeigte sich kein Unterschied in den aussprossenden Aorten im Vergleich zu den Kontroll-Tieren. Dies zeigt, dass die NO-GC in Endothelzellen sehr wahrscheinlich keine Rolle bei der VEGF-vermittelten Angiogenese spielt. Im zweiten Teil wurde die Rolle der NO-GC bei der Angiogenese in einem in vivo-Modell untersucht. In dem Modell der Sauerstoff-induzierten-Retinopathie zeigten die GCKO-M{\"a}use eine verringerte Vaso-Obliteration, eine verlangsamte Angiogenese und eine erh{\"o}hte Tuft-Bildung. {\"A}hnliche Ergebnisse wurden bei den SMC-GCKO-Tieren beobachtet. EC-GCKO-M{\"a}use zeigten eine gegen{\"u}ber den Kontroll-Tieren unver{\"a}nderte Vaso-Obliteration, Angiogeneserate und Tuft-Bildung. Diese Ergebnisse lassen darauf schließen, dass die NO-GC in Endothelzellen keine Rolle spielt. Immunfluoreszenz-Aufnahmen zeigten die Expression von NO-GC in Perizyten der Gef{\"a}ßkapillaren der Mausretina. Daher k{\"o}nnte die NO-GC in diesem Zelltyp letztendlich f{\"u}r die Effekte bei den GCKO- und SMC-GCKO-Tieren verantwortlich sein. Im letzten Teil dieser Arbeit wurde eine Versuchsreihe unter Anwendung des Hinterlauf-Isch{\"a}mie-Modells durchgef{\"u}hrt. Hierbei entwickelten die Pfoten aller GCKO- und teilweise der SMC-GCKO-Tiere nach der Ligation der Femoralarterie eine Nekrose. Die Regeneration der Hinterl{\"a}ufe der EC-GCKO-Tiere nach der Operation verlief normal. Diese Ergebnisse schließen eine bedeutende Rolle der NO-GC in Endothelzellen aus, zeigen allerdings, dass die NO-GC in den glatten Muskelzellen essentiell f{\"u}r den Arteriogenese-Prozess ist. Zusammengefasst f{\"u}hrt die Deletion der NO-GC in glatten Muskelzellen und wahrscheinlich auch in Perizyten zur einer verlangsamten Angiogenese und Inhibierung der Arteriogenese.}, subject = {Guanylylcyclase}, language = {de} } @phdthesis{Siegl2014, author = {Siegl, Christine}, title = {Degradation of Tumour Suppressor p53 during Chlamydia trachomatis Infections}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108679}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The intracellular pathogen Chlamydia is the causative agent of millions of new infections per year transmitting diseases like trachoma, pelvic inflammatory disease or lymphogranuloma venereum. Undetected or recurrent infections caused by chlamydial persistence are especially likely to provoke severe pathologies. To ensure host cell survival and to facilitate long term infections Chlamydia induces anti-apoptotic pathways, mainly at the level of mitochondria, and restrains activity of pro-apoptotic proteins. Additionally, the pathogen seizes host energy, carbohydrates, amino acids, lipids and nucleotides to facilitate propagation of bacterial progeny and growth of the chlamydial inclusion. At the beginning of this study, Chlamydia-mediated apoptosis resistance to DNA damage induced by the topoisomerase inhibitor etoposide was investigated. In the course of this, a central cellular protein crucial for etoposide-mediated apoptosis, the tumour suppressor p53, was found to be downregulated during Chlamydia infections. Subsequently, different chlamydial strains and serovars were examined and p53 downregulation was ascertained to be a general feature during Chlamydia infections of human cells. Reduction of p53 protein level was established to be mediated by the PI3K-Akt signalling pathway, activation of the E3-ubiquitin ligase HDM2 and final degradation by the proteasome. Additionally, an intriguing discrepancy between infections of human and mouse cells was detected. Both activation of the PI3K-Akt pathway as well as degradation of p53 could not be observed in Chlamydia-infected mouse cells. Recently, production of reactive oxygen species (ROS) and damage to host cell DNA was reported to occur during Chlamydia infection. Thus, degradation of p53 strongly contributes to the anti-apoptotic environment crucial for chlamydial infection. To verify the importance of p53 degradation for chlamydial growth and development, p53 was stabilised and activated by the HDM2-inhibiting drug nutlin-3 and the DNA damage-inducing compound etoposide. Unexpectedly, chlamydial development was severely impaired and inclusion formation was defective. Completion of the chlamydial developmental cycle was prevented resulting in loss of infectivity. Intriguingly, removal of the p53 activating stimulus allowed formation of the bacterial inclusion and recovery of infectivity. A similar observation of growth recovery was made in infected cell lines deficient for p53. As bacterial growth and inclusion formation was strongly delayed in the presence of activated p53, p53-mediated inhibitory regulation of cellular metabolism was suspected to contribute to chlamydial growth defects. To verify this, glycolytic and pentose phosphate pathways were analysed revealing the importance of a functioning PPP for chlamydial growth. In addition, increased expression of glucose-6-phosphate dehydrogenase rescued chlamydial growth inhibition induced by activated p53. The rescuing effect was even more pronounced in p53-deficient cells treated with etoposide or nutlin-3 revealing additional p53-independent aspects of Chlamydia inhibition. Removal of ROS by anti-oxidant compounds was not sufficient to rescue chlamydial infectivity. Apparently, not only the anti-oxidant capacities of the PPP but also provision of precursors for nucleotide synthesis as well as contribution to DNA repair are important for successful chlamydial growth. Modulation of host cell signalling was previously reported for a number of pathogens. As formation of ROS and DNA damage are likely to occur during infections of intracellular bacteria, several strategies to manipulate the host and to inhibit induction of apoptosis were invented. Downregulation of the tumour suppressor p53 is a crucial point during development of Chlamydia, ensuring both host cell survival and metabolic support conducive to chlamydial growth.}, subject = {Chlamydia-trachomatis-Infektion}, language = {en} } @phdthesis{Proppert2014, author = {Proppert, Sven Martin}, title = {Design, implementation and characterization of a microscope capable of three-dimensional two color super-resolution fluorescence imaging}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-107905}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {This thesis reviews the fundamentals of three-dimensional super-resolution localization imaging. In order to infer the axial coordinate of the emission of single fluorophores, the point spread function is engineered following a technique usually referred to as astigmatic imaging by the introduction of a cylindrical lens to the detection path of a microscope. After giving a short introduction to optics and localization microscopy, I outline sources of aberrations as frequently encountered in 3D-localization microscopy and will discuss their respective impact on the precision and accuracy of the localization process. With the knowledge from these considerations, experiments were designed and conducted to verify the validity of the conclusions and to demonstrate the abilities of the proposed microscope to resolve biological structures in the three spatial dimensions. Additionally, it is demonstrated that measurements of huge volumes with virtually no aberrations is in principle feasible. During the course of this thesis, a new method was introduced for inferring axial coordinates. This interpolation method based on cubic B-splines shows superior performance in the calibration of a microscope and the evaluation of subsequent measurement and will therefore be used and explained in this work. Finally, this work is also meant to give future students some guidance for entering the field of 3D localization microscopy and therefore, detailed protocols are provided covering the specific aspects of two color 3D localization imaging.}, subject = {Dimension 3}, language = {en} } @article{AhmedZeeshanHuberetal.2014, author = {Ahmed, Zeeshan and Zeeshan, Saman and Huber, Claudia and Hensel, Michael and Schomburg, Dietmar and M{\"u}nch, Richard and Eylert, Eva and Eisenreich, Wolfgang and Dandekar, Thomas}, title = {'Isotopo' a database application for facile analysis and management of mass isotopomer data}, series = {Database}, volume = {2014}, journal = {Database}, number = {bau077}, doi = {10.1093/database/bau077}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120102}, year = {2014}, abstract = {The composition of stable-isotope labelled isotopologues/isotopomers in metabolic products can be measured by mass spectrometry and supports the analysis of pathways and fluxes. As a prerequisite, the original mass spectra have to be processed, managed and stored to rapidly calculate, analyse and compare isotopomer enrichments to study, for instance, bacterial metabolism in infection. For such applications, we provide here the database application 'Isotopo'. This software package includes (i) a database to store and process isotopomer data, (ii) a parser to upload and translate different data formats for such data and (iii) an improved application to process and convert signal intensities from mass spectra of \(^{13}C\)-labelled metabolites such as tertbutyldimethylsilyl-derivatives of amino acids. Relative mass intensities and isotopomer distributions are calculated applying a partial least square method with iterative refinement for high precision data. The data output includes formats such as graphs for overall enrichments in amino acids. The package is user-friendly for easy and robust data management of multiple experiments.}, language = {en} } @article{Schartl2014, author = {Schartl, Manfred}, title = {Beyond the zebrafish: diverse fish species for modeling human disease}, series = {Disease Models \& Mechanisms}, volume = {7}, journal = {Disease Models \& Mechanisms}, number = {2}, issn = {1754-8411}, doi = {10.1242/dmm.012245}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119919}, year = {2014}, abstract = {In recent years, zebrafish, and to a lesser extent medaka, have become widely used small animal models for human diseases. These organisms have convincingly demonstrated the usefulness of fish for improving our understanding of the molecular and cellular mechanisms leading to pathological conditions, and for the development of new diagnostic and therapeutic tools. Despite the usefulness of zebrafish and medaka in the investigation of a wide spectrum of traits, there is evidence to suggest that other fish species could be better suited for more targeted questions. With the emergence of new, improved sequencing technologies that enable genomic resources to be generated with increasing efficiency and speed, the potential of non-mainstream fish species as disease models can now be explored. A key feature of these fish species is that the pathological condition that they model is often related to specific evolutionary adaptations. By exploring these adaptations, new disease-causing and disease-modifier genes might be identified; thus, diverse fish species could be exploited to better understand the complexity of disease processes. In addition, non-mainstream fish models could allow us to study the impact of environmental factors, as well as genetic variation, on complex disease phenotypes. This Review will discuss the opportunities that such fish models offer for current and future biomedical research.}, language = {en} } @article{AndreskaAufmkolkSaueretal.2014, author = {Andreska, Thomas and Aufmkolk, Sarah and Sauer, Markus and Blum, Robert}, title = {High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons}, series = {Frontiers in Cellular Neuroscience}, volume = {8}, journal = {Frontiers in Cellular Neuroscience}, number = {107}, issn = {1662-5102}, doi = {10.3389/fncel.2014.00107}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119793}, year = {2014}, abstract = {In the mammalian brain, the neurotrophin brain-derived neurotrophic factor (BDNF) has emerged as a key factor for synaptic refinement, plasticity and learning. Although BDNF-induced signaling cascades are well known, the spatial aspects of the synaptic BDNF localization remained unclear. Recent data provide strong evidence for an exclusive presynaptic location and anterograde secretion of endogenous BDNF at synapses of the hippocampal circuit. In contrast, various studies using BDNF overexpression in cultured hippocampal neurons support the idea that postsynaptic elements and other dendritic structures are the preferential sites of BDNF localization and release. In this study we used rigorously tested anti-BDNF antibodies and achieved a dense labeling of endogenous BDNF close to synapses. Confocal microscopy showed natural BDNF close to many, but not all glutamatergic synapses, while neither GABAergic synapses nor postsynaptic structures carried a typical synaptic BDNF label. To visualize the BDNF distribution within the fine structure of synapses, we implemented super resolution fluorescence imaging by direct stochastic optical reconstruction microscopy (dSTORM). Two-color dSTORM images of neurites were acquired with a spatial resolution of ~20 nm. At this resolution, the synaptic scaffold proteins Bassoon and Homer exhibit hallmarks of mature synapses and form juxtaposed bars, separated by a synaptic cleft. BDNF imaging signals form granule-like clusters with a mean size of ~60 nm and are preferentially found within the fine structure of the glutamatergic presynapse. Individual glutamatergic presynapses carried up to 90\% of the synaptic BDNF immunoreactivity, and only a minor fraction of BDNF molecules was found close to the postsynaptic bars. Our data proof that hippocampal neurons are able to enrich and store high amounts of BDNF in small granules within the mature glutamatergic presynapse, at a principle site of synaptic plasticity.}, language = {en} } @article{ProppertWolterHolmetal.2014, author = {Proppert, Sven and Wolter, Steve and Holm, Thorge and Klein, Theresa and van de Linde, Sebastian and Sauer, Markus}, title = {Cubic B-spline calibration for 3D super-resolution measurements using astigmatic imaging}, series = {Optics Express}, volume = {22}, journal = {Optics Express}, number = {9}, issn = {1094-4087}, doi = {10.1364/OE.22.010304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119730}, pages = {10304-16}, year = {2014}, abstract = {In recent years three-dimensional (3D) super-resolution fluorescence imaging by single-molecule localization (localization microscopy) has gained considerable interest because of its simple implementation and high optical resolution. Astigmatic and biplane imaging are experimentally simple methods to engineer a 3D-specific point spread function (PSF), but existing evaluation methods have proven problematic in practical application. Here we introduce the use of cubic B-splines to model the relationship of axial position and PSF width in the above mentioned approaches and compare the performance with existing methods. We show that cubic B-splines are the first method that can combine precision, accuracy and simplicity.}, language = {en} } @article{BatramJonesJanzenetal.2014, author = {Batram, Christopher and Jones, Nivola G. and Janzen, Christian J. and Markert, Sebastian M. and Engstler, Markus}, title = {Expression site attenuation mechanistically links antigenic variation and development in Trypanosoma brucei}, series = {eLife}, volume = {3}, journal = {eLife}, number = {e02324}, issn = {2050-084X}, doi = {10.7554/eLife.02324}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119727}, year = {2014}, abstract = {We have discovered a new mechanism of monoallelic gene expression that links antigenic variation, cell cycle, and development in the model parasite Trypanosoma brucei. African trypanosomes possess hundreds of variant surface glycoprotein (VSG) genes, but only one is expressed from a telomeric expression site (ES) at any given time. We found that the expression of a second VSG alone is sufficient to silence the active VSG gene and directionally attenuate the ES by disruptor of telomeric silencing-1B (DOT1B)-mediated histone methylation. Three conserved expression-site-associated genes (ESAGs) appear to serve as signal for ES attenuation. Their depletion causes G1-phase dormancy and reversible initiation of the slender-to-stumpy differentiation pathway. ES-attenuated slender bloodstream trypanosomes gain full developmental competence for transformation to the tsetse fly stage. This surprising connection between antigenic variation and developmental progression provides an unexpected point of attack against the deadly sleeping sickness.}, language = {en} } @article{YilmazAksoyCamlitepeetal.2014, author = {Yilmaz, Ayse and Aksoy, Volkan and Camlitepe, Yilmaz and Giurfa, Martin}, title = {Eye structure, activity rhythms, and visually-driven behavior are tuned to visual niche in ants}, series = {Frontiers in Behavioral Neuroscience}, volume = {8}, journal = {Frontiers in Behavioral Neuroscience}, doi = {10.3389/fnbeh.2014.00205}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119595}, pages = {205}, year = {2014}, abstract = {Insects have evolved physiological adaptations and behavioral strategies that allow them to cope with a broad spectrum of environmental challenges and contribute to their evolutionary success. Visual performance plays a key role in this success. Correlates between life style and eye organization have been reported in various insect species. Yet, if and how visual ecology translates effectively into different visual discrimination and learning capabilities has been less explored. Here we report results from optical and behavioral analyses performed in two sympatric ant species, Formica cunicularia and Camponotus aethiops. We show that the former are diurnal while the latter are cathemeral. Accordingly, F. cunicularia workers present compound eyes with higher resolution, while C. aethiops workers exhibit eyes with lower resolution but higher sensitivity. The discrimination and learning of visual stimuli differs significantly between these species in controlled dual-choice experiments: discrimination learning of small-field visual stimuli is achieved by F. cunicularia but not by C. aethiops, while both species master the discrimination of large-field visual stimuli. Our work thus provides a paradigmatic example about how timing of foraging activities and visual environment match the organization of compound eyes and visually-driven behavior. This correspondence underlines the relevance of an ecological/evolutionary framework for analyses in behavioral neuroscience.}, language = {en} } @article{DusikSenthilanMentzeletal.2014, author = {Dusik, Verena and Senthilan, Pingkalai R. and Mentzel, Benjamin and Hartlieb, Heiko and W{\"u}lbeck, Corina and Yoshii, Taishi and Raabe, Thomas and Helfrich-F{\"o}rster, Charlotte}, title = {The MAP Kinase p38 Is Part of Drosophila melanogaster's Circadian Clock}, series = {PLoS Genetics}, volume = {10}, journal = {PLoS Genetics}, number = {8}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1004565}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119433}, pages = {e1004565}, year = {2014}, abstract = {All organisms have to adapt to acute as well as to regularly occurring changes in the environment. To deal with these major challenges organisms evolved two fundamental mechanisms: the p38 mitogen-activated protein kinase (MAPK) pathway, a major stress pathway for signaling stressful events, and circadian clocks to prepare for the daily environmental changes. Both systems respond sensitively to light. Recent studies in vertebrates and fungi indicate that p38 is involved in light-signaling to the circadian clock providing an interesting link between stress-induced and regularly rhythmic adaptations of animals to the environment, but the molecular and cellular mechanisms remained largely unknown. Here, we demonstrate by immunocytochemical means that p38 is expressed in Drosophila melanogaster's clock neurons and that it is activated in a clock-dependent manner. Surprisingly, we found that p38 is most active under darkness and, besides its circadian activation, additionally gets inactivated by light. Moreover, locomotor activity recordings revealed that p38 is essential for a wild-type timing of evening activity and for maintaining ∼ 24 h behavioral rhythms under constant darkness: flies with reduced p38 activity in clock neurons, delayed evening activity and lengthened the period of their free-running rhythms. Furthermore, nuclear translocation of the clock protein Period was significantly delayed on the expression of a dominant-negative form of p38b in Drosophila's most important clock neurons. Western Blots revealed that p38 affects the phosphorylation degree of Period, what is likely the reason for its effects on nuclear entry of Period. In vitro kinase assays confirmed our Western Blot results and point to p38 as a potential "clock kinase" phosphorylating Period. Taken together, our findings indicate that the p38 MAP Kinase is an integral component of the core circadian clock of Drosophila in addition to playing a role in stress-input pathways.}, language = {en} } @article{AdelfingerGentschevdeGuibertetal.2014, author = {Adelfinger, Marion and Gentschev, Ivaylo and de Guibert, Julio Grimm and Weibel, Stephanie and Langbein-Laugwitz, Johanna and H{\"a}rtl, Barbara and Escobar, Hugo Murua and Nolte, Ingo and Chen, Nanhai G. and Aguilar, Richard J. and Yu, Yong A. and Zhang, Qian and Frentzen, Alexa and Szalay, Aladar A.}, title = {Evaluation of a New Recombinant Oncolytic Vaccinia Virus Strain GLV-5b451 for Feline Mammary Carcinoma Therapy}, series = {PLoS ONE}, volume = {9}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0104337}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119387}, pages = {e104337}, year = {2014}, abstract = {Virotherapy on the basis of oncolytic vaccinia virus (VACV) infection is a promising approach for cancer therapy. In this study we describe the establishment of a new preclinical model of feline mammary carcinoma (FMC) using a recently established cancer cell line, DT09/06. In addition, we evaluated a recombinant vaccinia virus strain, GLV-5b451, expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as an oncolytic agent against FMC. Cell culture data demonstrate that GLV-5b451 virus efficiently infected, replicated in and destroyed DT09/06 cancer cells. In the selected xenografts of FMC, a single systemic administration of GLV-5b451 led to significant inhibition of tumor growth in comparison to untreated tumor-bearing mice. Furthermore, tumor-specific virus infection led to overproduction of functional scAb GLAF-2, which caused drastic reduction of intratumoral VEGF levels and inhibition of angiogenesis. In summary, here we have shown, for the first time, that the vaccinia virus strains and especially GLV-5b451 have great potential for effective treatment of FMC in animal model.}, language = {en} } @article{LeonhardtKaltenpoth2014, author = {Leonhardt, Sara D. and Kaltenpoth, Martin}, title = {Microbial Communities of Three Sympatric Australian Stingless Bee Species}, series = {PLoS ONE}, volume = {9}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0105718}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119341}, pages = {e105718}, year = {2014}, abstract = {Bacterial symbionts of insects have received increasing attention due to their prominent role in nutrient acquisition and defense. In social bees, symbiotic bacteria can maintain colony homeostasis and fitness, and the loss or alteration of the bacterial community may be associated with the ongoing bee decline observed worldwide. However, analyses of microbiota associated with bees have been largely confined to the social honeybees (Apis mellifera) and bumblebees (Bombus spec.), revealing - among other taxa - host-specific lactic acid bacteria (LAB, genus Lactobacillus) that are not found in solitary bees. Here, we characterized the microbiota of three Australian stingless bee species (Apidae: Meliponini) of two phylogenetically distant genera (Tetragonula and Austroplebeia). Besides common plant bacteria, we find LAB in all three species, showing that LAB are shared by honeybees, bumblebees and stingless bees across geographical regions. However, while LAB of the honeybee-associated Firm4-5 clusters were present in Tetragonula, they were lacking in Austroplebeia. Instead, we found a novel clade of likely host-specific LAB in all three Australian stingless bee species which forms a sister clade to a large cluster of Halictidae-associated lactobacilli. Our findings indicate both a phylogenetic and geographical signal of host-specific LAB in stingless bees and highlight stingless bees as an interesting group to investigate the evolutionary history of the bee-LAB association.}, language = {en} } @article{NaseemSrivastavaDandekar2014, author = {Naseem, Muhammad and Srivastava, Mugdha and Dandekar, Thomas}, title = {Stem-cell-triggered immunity safeguards cytokinin enriched plant shoot apexes from pathogen infection}, series = {Frontiers in Plant Science}, volume = {5}, journal = {Frontiers in Plant Science}, issn = {1664-462X}, doi = {10.3389/fpls.2014.00588}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118247}, pages = {588}, year = {2014}, abstract = {Intricate mechanisms discriminate between friends and foes in plants. Plant organs deploy overlapping and distinct protection strategies. Despite vulnerability to a plethora of pathogens, the growing tips of plants grow bacteria free. The shoot apical meristem (SAM) is among three stem cells niches, a self-renewable reservoir for the future organogenesis of leaf, stem, and flowers. How plants safeguard this high value growth target from infections was not known until now. Recent reports find the stem cell secreted 12-amino acid peptide CLV3p (CLAVATA3 peptide) is perceived by FLS2 (FLAGELLIN SENSING 2) receptor and activates the transcription of immunity and defense marker genes. No infection in the SAM of wild type plants and bacterial infection in clv3 and fls2 mutants illustrate this natural protection against infections. Cytokinins (CKs) are enriched in the SAM and regulate meristem activities by their involvement in stem cell signaling networks. Auxin mediates plant susceptibility to pathogen infections while CKs boost plant immunity. Here, in addition to the stem-cell-triggered immunity we also highlight a potential link between CK signaling and CLV3p mediated immune response in the SAM.}, language = {en} } @article{SchueleinVoelkWolfZhuetal.2014, author = {Sch{\"u}lein-V{\"o}lk, Christina and Wolf, Elmar and Zhu, Jing and Xu, Wenshan and Taranets, Lyudmyla and Hellmann, Andreas and J{\"a}nicke, Laura A. and Diefenbacher, Markus E. and Behrens, Axel and Eilers, Martin and Popov, Nikita}, title = {Dual Regulation of Fbw7 Function and Oncogenic Transformation by Usp28}, series = {CELL REPORTS}, volume = {9}, journal = {CELL REPORTS}, number = {3}, issn = {2211-1247}, doi = {10.1016/j.celrep.2014.09.057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118219}, pages = {1099-1109}, year = {2014}, abstract = {Fbw7, the substrate recognition subunit of SCF(Fbw7) ubiquitin ligase, mediates the turnover of multiple proto-oncoproteins and promotes its own degradation. Fbw7-dependent substrate ubiquitination is antagonized by the Usp28 deubiquitinase. Here, we show that Usp28 preferentially antagonizes autocatalytic ubiquitination and stabilizes Fbw7, resulting in dose-dependent effects in Usp28 knockout mice. Monoallelic deletion of Usp28 maintains stable Fbw7 but drives Fbw7 substrate degradation. In contrast, complete knockout triggers Fbw7 degradation and leads to the accumulation of Fbw7 substrates in several tissues and embryonic fibroblasts. On the other hand, overexpression of Usp28 stabilizes both Fbw7 and its substrates. Consequently, both complete loss and ectopic expression of Usp28 promote Ras-driven oncogenic transformation. We propose that dual regulation of Fbw7 activity by Usp28 is a safeguard mechanism for maintaining physiological levels of proto-oncogenic Fbw7 substrates, which is equivalently disrupted by loss or overexpression of Usp28.}, language = {en} } @phdthesis{Proft2014, author = {Proft, Florian Lukas Patrick}, title = {Molekulare Wirkmechanismen des Antidepressivums Venlafaxin - genetische Untersuchungen in Maus und Mensch}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-109201}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Depressive Erkrankungen verursachen sowohl das pers{\"o}nliche Leid der erkrankten Individuen als auch volkswirtschaftlichen Schaden durch krankheitsbedingten Arbeitsausfall und Belastung der Gesundheitsversorgungssysteme. Therapeutische Konzepte wie die Anwendung pharmakotherapeutischer Intervention sind in unterschiedlichem Maß von Erfolg gekr{\"o}nt. Zahlreiche somatische Faktoren wurden mit der {\"A}tiologie depressiver St{\"o}rungen in Verbindung gebracht. Die prim{\"a}r verfolgten pharmakologischen Ans{\"a}tze basieren nach wie vor auf Erkenntnissen aus der Mitte des vergangenen Jahrhunderts. In erster Linie setzt die Pharmakotherapie Substanzen ein, die die Wiederaufnahme monoaminerger Neurotransmitter (Serotonin, Noradrenalin, zum Teil auch Dopamin) aus dem synaptischen Spalt inhibieren und nach einer allerdings meist mehrw{\"o}chigen, regelm{\"a}ßigen Einnahme des Pr{\"a}parates zu einem R{\"u}ckgang der depressiven Symptomatik f{\"u}hren. Andererseits kann jedoch bei zahlreichen Erkrankten auch nach fortgesetzter Therapie mit verschiedenen Behandlungsans{\"a}tzen keine Remission verzeichnet werden und es stellt sich die Frage nach der Ursache dieser Diskrepanz. Im Fokus der vorliegenden Arbeit stand der als Antidepressivum eingesetzte selektive Serotonin- / Noradrenalin-Wiederaufnahme-Inhibitor Venlafaxin. Durch Blockade des pr{\"a}synaptischen Serotonin- und Noradrenalin-Transporters f{\"u}hrt Venlafaxin initial zu einer intensivierten Neurotransmission. Die Zielstrukturen von Venlafaxin sind der pr{\"a}synaptische Serotonin- und der Noradrenalin-Transporter, wobei aufgrund unterschiedlicher Affinit{\"a}t eine geringe Dosis beziehungsweise Konzentration als rein serotonerg betrachtet wird und bei einer hohen Dosis beziehungsweise Konzentration sowohl die Wiederaufnahme von Serotonin als auch Noradrenalin inhibiert wird. Es wurden in dieser Arbeit zwei Ziele verfolgt. Im ersten Teil wurde mittels Gen-expressionsuntersuchungen nach potentiellen Effektoren von Venlafaxin gesucht, um prinzipielle Mechanismen der antidepressiven Wirkung zu identifizieren und auf ihrer Basis die Entwicklung spezifischerer Intervention zu erm{\"o}glichen. Der zweite Teil beinhaltet eine pharmakogenetische Untersuchung am Menschen. Ziel war zu evaluieren, inwieweit die Expressionsaktivit{\"a}t von SLC6A2 und SLC6A4 und damit die pr{\"a}synaptische Transportkapazit{\"a}t in Kombination mit der Serumkonzentration aktiver Substanz als Pr{\"a}diktor des therapeutischen Effektes dienen kann. Die Kenntnis dieser Zusammenh{\"a}nge w{\"u}rde bei Vorliegen eines bestimmten Genotyps eine gezieltere Titration der individuell ben{\"o}tigten Konzentration erm{\"o}glichen und k{\"o}nnte die Effektivit{\"a}t der Therapie steigern. F{\"u}r die Genexpressionsuntersuchungen erhielten DBA/2-M{\"a}use {\"u}ber einen Zeitraum von 30 Tagen Venlafaxin in verschiedenen Dosierungen {\"u}ber das Trinkwasser. Anschließend wurden die Hippokampi der Tiere mittels genomweiter Microarray-Analyse hypothesenfrei auf zwischen den Dosisgruppen differentiell exprimierte Gene hin untersucht. Der Hippokampus wird als zentrales Element der Steuerung, Ausbildung und Ver{\"a}nderung von Verhaltensmustern gesehen. Signifikant differentiell exprimierte Gene, die in vorherigen Studien mit depressiver Erkrankung beziehungsweise einem Effekt psychiatrischer Medikation assoziiert worden waren, wurden mittels qRT-PCR-Analyse validiert. Im Anschluss an die Analyse im Tier wurden als differentiell exprimiert best{\"a}tigte Gene per qRT-PCR analog in humanen Leukozyten untersucht. Die Blutproben waren in einem klinisch-naturalistischen Design w{\"a}hrend der ersten und der f{\"u}nften Woche einer Venlafaxin-Pharmakotherapie von Patienten der Klinik f{\"u}r Psychiatrie, Psychosomatik und Psychotherapie des Universit{\"a}tsklinikums W{\"u}rzburg gewonnen worden, das heißt vor und nach potentiellem Eintreten der antidepressiven Wirkung. Trotz der unterschiedlichen Herkunft der analysierten Gewebe k{\"o}nnten auf diesem Weg Hinweise auf Vorg{\"a}nge im menschlichen Gehirn gefunden werden, wie in vergleichenden post mortem Untersuchungen zwischen peripherem und zentralem humanem Material erkannt worden war. Die in der Tierstudie identifizierten Gene kodieren f{\"u}r Transkriptionsfaktoren sowie Proteine die als Teil von second messenger-Kaskaden bekannt sind. Von statistischer Signifikanz erwies sich in der Analyse der humanen Leukozyten die Expressionsreduktion der mRNA der Transkriptionsfaktor-Untereinheit Fos. Befunde zu einer Funktion von Fos, die eine Interpretation im Bezug auf den antidepressiven Effekt von Venlafaxin erm{\"o}glichen, liegen lediglich aus Tierstudien vor. Fos-ko im Hippo-kampus von M{\"a}usen wurde mit reduziertem Angstverhalten und h{\"o}herer Exzitabilit{\"a}t von hippokampalen Neuronen assoziiert. Auch wurde eine Assoziation mit Vorg{\"a}ngen bei synaptischer Plastizit{\"a}t und damit potentiell bei Lernvorg{\"a}ngen gefunden. Auf der anderen Seite wurde depressions-{\"a}hnliches Verhalten bei Ratten mit niedriger hippokampaler Fos-Expression und dessen erfolgreiche pharmakologische "Therapie" mit einer Induktion der Fos-Expression assoziiert. Es scheinen also bereits zwischen nicht-menschlichen Spezies ausgepr{\"a}gte Unterschiede der Rolle von Fos beziehungsweise Fos zu bestehen. Aufgrund der unterschiedlichen Spezies und Gewebe in den hier durchgef{\"u}hrten Untersuchungen sowie den uneinheitlichen Befunden bez{\"u}glich der Rolle von Fos beziehungsweise Fos in vorangegangenen Studien kann abschließend lediglich konstatiert werden, dass Fos vermutlich an der Entstehung depressionsbeg{\"u}nstigender Physiologie beteiligt ist und auch, dass eine antidepressive Pharmakotherapie mit Venlafaxin ihre Wirkung vermutlich unter Beteiligung von Fos entfaltet. Die Entwicklung innovativer Antidepressiva die unter Umgehung der monoaminergen Transmissionssysteme durch gezielte Reduktion der Fos-Abundanz das therapeutische Ziel erreichen lassen, k{\"o}nnte auf Basis der vorliegenden Studie angedacht werden, scheint allerdings aufgrund der ubiquit{\"a}ren Mediatorent{\"a}tigkeit des Proteins und insbesondere aufgrund seiner nicht endg{\"u}ltig definierten Rolle bei der Entstehung von Krebs nicht praktikabel. Zuk{\"u}nftige Untersuchungen sollten daher auf andere im Microarray differentiell exprimiert gefundene Gene fokussieren. In die Untersuchung der Expressionsaktivit{\"a}t der f{\"u}r die prim{\"a}ren Zielstrukturen von Venlafaxin (Serotonin- beziehungsweise Noradrenalin-Transporter) kodierenden Gene (SLC6A4 beziehungsweise SLC6A2) und der Serumkonzentration an aktiver Substanz nach Venlafaxin-Applikation im Hinblick auf deren Pr{\"a}diktivit{\"a}t des therapeutischen Effektes, wurden in einem klinisch-naturalistischen Design Patienten der Klinik f{\"u}r Psychiatrie, Psychosomatik und Psychotherapie des Universit{\"a}tsklinikums W{\"u}rzburg eingeschlossen. Genotypisiert wurden f{\"u}r SLC6A2 der SNP rs28386840 und f{\"u}r SLC6A4 der Polymorphismus 5-HTTLPR. Die Genotypen wurden jeweils in niedrig- und hoch-exprimierend unterteilt und damit auf die ph{\"a}notypische Transportkapazit{\"a}t der pr{\"a}synaptischen Membran Bezug genommen. Der therapeutische Erfolg wurde anhand der CGI-I-Skala evaluiert und f{\"u}r die Analysen in "gutes Ansprechen" und "schlechtes Ansprechen" dichotomisiert. Der SLC6A2-Polymorphismus zeigte sich als nicht mit dem therapeutischen Effekt assoziiert. Der hochexprimierende SLC6A4-Genotyp wurde signifikant mit einem schlechteren Ansprechen assoziiert. Dies war in den nach Serumkonzentration aktiver Substanz stratifizierten Unterkollektiven insbesondere in dem Bereich zwischen 200 und 400 ng / ml zu erkennen, wohingegen unter- und oberhalb dieses Bereiches keine Assoziation zu finden war. Aus diesen Resultaten kann gefolgert werden, dass sich aus der Genotypisierung von rs28386840 keine therapeutischen Instruktionen ableiten lassen. Bei Kenntnis des 5-HTTLPR-Genotyps k{\"o}nnte f{\"u}r den klinischen Alltag die Empfehlung ergehen, falls Venlafaxin als sSNRI bei Patienten mit hochexprimierendem Genotyp eingesetzt werden soll, eine Serumsummenkonzentration jenseits des durch die AGNP empfohlenen Bereiches (100 - 400 ng / ml) anzustreben. Da hier jedoch lediglich eine Stichprobe von 56 Patienten untersucht und insbesondere, da zahlreiche potentielle Kofaktoren des therapeutischen Effektes nicht in die Analyse einbezogen werden konnten, ist die Assoziation vor Anwendung in der Therapiesteuerung anhand umfassenderer prospektiver kontrollierter Studien zu validieren.}, subject = {Wirkmechanismus}, language = {de} } @phdthesis{Xian2014, author = {Xian, Yibo}, title = {Identification of essential genes and novel virulence factors of Neisseria gonorrhoeae by transposon mutagenesis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-102659}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Neisseria gonorrhoeae is a human-specific pathogen that causes gonorrhea. It is defined as a super bacterium by the WHO due to the emergence of gonococci that are resistant to a variety of antibiotics and a rapidly increasing infection incidence. Genome-wide investigation of neisserial gene essentiality and novel virulence factors is urgently required in order to identify new targets for anti-neisserial therapeutics. To identify essential genes and new virulence factors, a high-density mutant library in N. gonorrhoeae MS11 was generated by in vitro transposon mutagenesis. The transposon library harbors more than 100,000 individual mutants, a density that is unprecedented in gonococcal research. Essential genes in N. gonorrhoeae were determined by enumerating frequencies of transposon insertion sites (TIS) with Illumina deep sequencing (Tn-seq). Tn-seq indicated an average distance between adjacent TIS of 25 bp. Statistical analysis unequivocally demonstrated 781 genes that were significantly depleted in TIS and thus are essential for Neisseria survival. A subset of the genes was experimentally verified to comprise essential genes and thus support the outcome of the study. The hereby identified candidate essential genes thus may constitute excellent targets for the development of new antibiotics or vaccines. In a second study, the transposon mutant library was applied in a genome-scale "negative-selection strategy" to identify genes that are involved in low phosphate-dependent invasion (LPDI). LPDI is dependent on the Neisseria porin subtype PorBIA which acts as an epithelial cell invasin in absence of phosphate and is associated with severe pathogenicity in disseminated gonococcal infections (DGI). Tn-seq demonstrated 98 genes, which were involved in adherence to host cells and 43 genes involved in host cell invasion. E.g. the hypothetical protein NGFG_00506, an ABC transporter ATP-binding protein NGFG_01643, as well as NGFG_04218 encoding a homolog of mafI in N. gonorrhoeae FA1090 were experimentally verified as new invasive factors in LPDI. NGFG_01605, a predicted protease, was identified to be a common factor involved in PorBIA, Opa50 and Opa57-mediated neisserial engulfment by the epithelial cells. Thus, this first systematic Tn-seq application in N. gonorrhoeae identified a set of previously unknown N. gonorrhoeae invasive factors which demonstrate molecular mechanisms of DGI.}, subject = {Neisseria gonorrhoeae}, language = {en} } @article{SieglPrustyKarunakaranetal.2014, author = {Siegl, Christine and Prusty, Bhupesh K. and Karunakaran, Karthika and Wischhusen, J{\"o}rg and Rudel, Thomas}, title = {Tumor Suppressor p53 Alters Host Cell Metabolism to Limit Chlamydia trachomatis Infection}, series = {Cell Reports}, volume = {9}, journal = {Cell Reports}, number = {3}, issn = {2211-1247}, doi = {10.1016/j.celrep.2014.10.004}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118200}, pages = {918-929}, year = {2014}, abstract = {Obligate intracellular bacteria depend entirely on nutrients from the host cell for their reproduction. Here, we show that obligate intracellular Chlamydia downregulate the central tumor suppressor p53 in human cells. This reduction of p53 levels is mediated by the PI3K-Akt signaling pathway, activation of HDM2, and subsequent proteasomal degradation of p53. The stabilization of p53 in human cells severely impaired chlamydial development and caused the loss of infectious particle formation. DNA-damage-induced p53 interfered with chlamydial development through downregulation of the pentose phosphate pathway (PPP). Increased expression of the PPP key enzyme glucose-6-phosphate dehydrogenase rescued the inhibition of chlamydial growth induced by DNA damage or stabilized p53. Thus, downregulation of p53 is a key event in the chlamydial life cycle that reprograms the host cell to create a metabolic environment supportive of chlamydial growth.}, language = {en} } @article{PeterBultinckMyantetal.2014, author = {Peter, Stefanie and Bultinck, Jennyfer and Myant, Kevin and Jaenicke, Laura A. and Walz, Susanne and M{\"u}ller, Judith and Gmachl, Michael and Treu, Matthias and Boehmelt, Guido and Ade, Casten P. and Schmitz, Werner and Wiegering, Armin and Otto, Christoph and Popov, Nikita and Sansom, Owen and Kraut, Norbert and Eilers, Martin}, title = {H Tumor cell-specific inhibition of MYC function using small molecule inhibitors of the HUWE1 ubiquitin ligase}, series = {EMBO Molecular Medicine}, volume = {6}, journal = {EMBO Molecular Medicine}, number = {12}, issn = {1757-4684}, doi = {10.15252/emmm.201403927}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118132}, pages = {1525-41}, year = {2014}, abstract = {Deregulated expression of MYC is a driver of colorectal carcinogenesis, necessitating novel strategies to inhibit MYC function. The ubiquitin ligase HUWE1 (HECTH9, ARF-BP1, MULE) associates with both MYC and the MYC-associated protein MIZ1. We show here that HUWE1 is required for growth of colorectal cancer cells in culture and in orthotopic xenograft models. Using high-throughput screening, we identify small molecule inhibitors of HUWE1, which inhibit MYC-dependent transactivation in colorectal cancer cells, but not in stem and normal colon epithelial cells. Inhibition of HUWE1 stabilizes MIZ1. MIZ1 globally accumulates on MYC target genes and contributes to repression of MYC-activated target genes upon HUWE1 inhibition. Our data show that transcriptional activation by MYC in colon cancer cells requires the continuous degradation of MIZ1 and identify a novel principle that allows for inhibition of MYC function in tumor cells.}, language = {en} } @article{SommerlandtHuberSpaethe2014, author = {Sommerlandt, F. M. J. and Huber, W. and Spaethe, J.}, title = {Social Information in the Stingless Bee, Trigona corvina Cockerell (Hymenoptera: Apidae): The Use of Visual and Olfactory Cues at the Food Site}, series = {Sociobiology}, volume = {61}, journal = {Sociobiology}, number = {4}, doi = {10.13102/sociobiology.v61i4.401-406}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118120}, year = {2014}, abstract = {For social insects, colony performance is largely dependent on the quantity and quality of food intake and thus on the efficiency of its foragers. In addition to innate preferences and previous experience, foragers can use social information to decide when and where to forage. In some stingless bee (Meliponini) species, individual foraging decisions are shown to be influenced by the presence of social information at resource sites. In dual choice tests, we studied whether visual and/or olfactory cues affect individual decision-making in rigona corvina Cockerell and if this information is species-specific. We found that T. corvina foragers possess local enhancement: they are attracted by olfactory and visual cues released by conspecifics but avoid feeders associated with heterospecific individuals of the species Tetragona ziegleri (Friese). Overall, olfactory cues seem to be more important than visual cues, but information by visual cues alone is sufficient for discrimination.}, language = {en} } @article{BenzMaierBaueretal.2014, author = {Benz, Roland and Maier, Elke and Bauer, Susanne and Ludwig, Albrecht}, title = {The Deletion of Several Amino Acid Stretches of Escherichia coli Alpha-Hemolysin (HlyA) Suggests That the Channel-Forming Domain Contains Beta-Strands}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {12}, issn = {1932-6203}, doi = {10.1371/journal.pone.0112248}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118115}, pages = {e112248}, year = {2014}, abstract = {Escherichia coli α-hemolysin (HlyA) is a pore-forming protein of 110 kDa belonging to the family of RTX toxins. A hydrophobic region between the amino acid residues 238 and 410 in the N-terminal half of HlyA has previously been suggested to form hydrophobic and/or amphipathic α-helices and has been shown to be important for hemolytic activity and pore formation in biological and artificial membranes. The structure of the HlyA transmembrane channel is, however, largely unknown. For further investigation of the channel structure, we deleted in HlyA different stretches of amino acids that could form amphipathic β-strands according to secondary structure predictions (residues 71-110, 158-167, 180-203, and 264-286). These deletions resulted in HlyA mutants with strongly reduced hemolytic activity. Lipid bilayer measurements demonstrated that HlyAΔ71-110 and HlyAΔ264-286 formed channels with much smaller single-channel conductance than wildtype HlyA, whereas their channel-forming activity was virtually as high as that of the wildtype toxin. HlyAΔ158-167 and HlyAΔ180-203 were unable to form defined channels in lipid bilayers. Calculations based on the single-channel data indicated that the channels generated by HlyAΔ71-110 and HlyAΔ264-286 had a smaller size (diameter about 1.4 to 1.8 nm) than wildtype HlyA channels (diameter about 2.0 to 2.6 nm), suggesting that in these mutants part of the channel-forming domain was removed. Osmotic protection experiments with erythrocytes confirmed that HlyA, HlyAΔ71-110, and HlyAΔ264-286 form defined transmembrane pores and suggested channel diameters that largely agreed with those estimated from the single-channel data. Taken together, these results suggest that the channel-forming domain of HlyA might contain β-strands, possibly in addition to α-helical structures.}, language = {en} } @article{OervoessyKoroesiBataryetal.2014, author = {Oervoessy, Noemi and Koroesi, Adam and Batary, Peter and Vozar, Agnes and Peregovits, Laszlo}, title = {Habitat Requirements of the Protected Southern Festoon (Zerynthia Polysena); Adult, Egg and Larval Distribution in a Highly Degraded Habitat Complex}, series = {Acta Zoologica Academiae Scientiarum Hungaricae}, volume = {60}, journal = {Acta Zoologica Academiae Scientiarum Hungaricae}, number = {4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117810}, pages = {371-387}, year = {2014}, abstract = {Habitat quality affects the presence and size of butterfly populations. Resources for all life stages must be found in a given or few habitat patches. Southern festoon (Zerynthia polyxena) is a vulnerable, but locally abundant species in Hungary. The larva requires birthwort (Aristolochia clematitis) as food plant. We examined the small scale habitat use of adults and distribution of eggs and larvae among different vegetation types to reveal the requirements of the species in all life stages. Transect counts were conducted in a tree plantation complex comprising four types of vegetation. Number (+/- SE) of adults, eggs and larvae were lowest in poplar plantation (adult 0.3 +/- 0.2, egg 1.1 +/- 1.1, larva 0.6 +/- 0.3). Medium amount of butterflies were observed in open (adult 8.3 +/- 2.9, egg 3.1 +/- 2.6, larva 3.1 +/- 1.9) and black-locust (adult 9.4 +/- 4.2, egg 12.7 +/- 4.9, larva 4.1 +/- 1.1) habitat. Number of butterflies was highest in hummocks (adult 13.5 +/- 1.5, egg 12.9 +/- 5.7, larva 8.4 +/- 2.1). Adults avoided bare ground. We encountered most eggs in dense food plant patches with high plants. Food plant height also positively influenced the occurrence of the larvae. Although distribution of adults and juvenile forms showed quite similar patterns, we could also reveal some differences that caused by different environmental conditions in distinct vegetation types. Our study stresses the importance of habitat quality, which affects population size of butterflies even in a highly degraded habitat complex.}, language = {en} } @article{BreezeVaissiereBommarcoetal.2014, author = {Breeze, Tom D. and Vaissiere, Bernhard E. and Bommarco, Riccardo and Petanidou, Theodora and Seraphides, Nicos and Kozak, Lajos and Scheper, Jeroen and Biesmeijer, Jacobus C. and Kleijn, David and Gyldenk{\ae}rne, Steen and Moretti, Marco and Holzschuh, Andrea and Steffan-Dewenter, Ingolf and Stout, Jane C. and P{\"a}rtel, Meelis and Zobel, Martin and Potts, Simon G.}, title = {Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across Europe}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {1}, issn = {1932-6203}, doi = {10.1371/journal.pone.0082996}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117692}, pages = {e82996}, year = {2014}, abstract = {Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90\% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue.}, language = {en} } @article{WaeschkeHardgeHancocketal.2014, author = {W{\"a}schke, Nicole and Hardge, Kerstin and Hancock, Christine and Hilker, Monika and Obermaier, Elisabeth and Meiners, Torsten}, title = {Odour Environments: How Does Plant Diversity Affect Herbivore and Parasitoid Orientation?}, series = {PlOS ONE}, volume = {9}, journal = {PlOS ONE}, number = {1}, issn = {1932-6203}, doi = {10.1371/journal.pone.0085152}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117687}, pages = {e85152}, year = {2014}, abstract = {Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weevils capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weevils foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant) location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts.}, language = {en} } @article{SanzMorenoFuhrmannWolfetal.2014, author = {Sanz-Moreno, Adrian and Fuhrmann, David and Wolf, Elmar and von Eyss, Bj{\"o}rn and Eilers, Martin and Els{\"a}sser, Hans-Peter}, title = {Miz1 Deficiency in the Mammary Gland Causes a Lactation Defect by Attenuated Stat5 Expression and Phosphorylation}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {2}, doi = {10.1371/journal.pone.0089187}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117286}, pages = {e89187}, year = {2014}, abstract = {Miz1 is a zinc finger transcription factor with an N-terminal POZ domain. Complexes with Myc, Bcl-6 or Gfi-1 repress expression of genes like Cdkn2b (p15(Ink4)) or Cd-kn1a (p21(Cip1)). The role of Miz1 in normal mammary gland development has not been addressed so far. Conditional knockout of the Miz1 POZ domain in luminal cells during pregnancy caused a lactation defect with a transient reduction of glandular tissue, reduced proliferation and attenuated differentiation. This was recapitulated in vitro using mouse mammary gland derived HC11 cells. Further analysis revealed decreased Stat5 activity in Miz1 Delta POZ mammary glands and an attenuated expression of Stat5 targets. Gene expression of the Prolactin receptor (PrlR) and ErbB4, both critical for Stat5 phosphorylation (pStat5) or pStat5 nuclear translocation, was decreased in Miz1 Delta POZ females. Microarray, ChIP-Seq and gene set enrichment analysis revealed a down-regulation of Miz1 target genes being involved in vesicular transport processes. Our data suggest that deranged intracellular transport and localization of PrlR and ErbB4 disrupt the Stat5 signalling pathway in mutant glands and cause the observed lactation phenotype.}, language = {en} } @article{PascoalinoDindarVieiradaRochaetal.2014, author = {Pascoalino, Bruno and Dindar, G{\"u}lcin and Vieira-da-Rocha, Jo{\~a}o P. and Machado, Carlos Renato and Janzen, Christian J. and Schenkman, Sergio}, title = {Characterization of two different Asf1 histone chaperones with distinct cellular localizations and functions in Trypanosoma brucei}, series = {Nucleic Acids Research}, volume = {42}, journal = {Nucleic Acids Research}, number = {5}, issn = {1362-4962}, doi = {10.1093/nar/gkt1267}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117220}, pages = {2906-2918}, year = {2014}, abstract = {The anti-silencing function protein 1 (Asf1) is a chaperone that forms a complex with histones H3 and H4 facilitating dimer deposition and removal from chromatin. Most eukaryotes possess two different Asf1 chaperones but their specific functions are still unknown. Trypanosomes, a group of early-diverged eukaryotes, also have two, but more divergent Asf1 paralogs than Asf1 of higher eukaryotes. To unravel possible different functions, we characterized the two Asf1 proteins in Trypanosoma brucei. Asf1A is mainly localized in the cytosol but translocates to the nucleus in S phase. In contrast, Asf1B is predominantly localized in the nucleus, as described for other organisms. Cytosolic Asf1 knockdown results in accumulation of cells in early S phase of the cell cycle, whereas nuclear Asf1 knockdown arrests cells in S/G2 phase. Overexpression of cytosolic Asf1 increases the levels of histone H3 and H4 acetylation. In contrast to cytosolic Asf1, overexpression of nuclear Asf1 causes less pronounced growth defects in parasites exposed to genotoxic agents, prompting a function in chromatin remodeling in response to DNA damage. Only the cytosolic Asf1 interacts with recombinant H3/H4 dimers in vitro. These findings denote the early appearance in evolution of distinguishable functions for the two Asf1 chaperons in trypanosomes.}, language = {en} } @article{GroezingerTheinFeldhaaretal.2014, author = {Gr{\"o}zinger, Franziska and Thein, J{\"u}rgen and Feldhaar, Heike and R{\"o}del, Mark-Oliver}, title = {Giants, Dwarfs and the Environment - Metamorphic Trait Plasticity in the Common Frog}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {3}, issn = {1932-6203}, doi = {10.1371/journal.pone.0089982}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117203}, pages = {e89982}, year = {2014}, abstract = {In order to understand adaptation processes and population dynamics, it is central to know how environmental parameters influence performance of organisms within populations, including their phenotypes. The impact of single or few particular parameters in concert was often assessed in laboratory and mesocosm experiments. However, under natural conditions, with many biotic and abiotic factors potentially interacting, outcomes on phenotypic changes may be different. To study the potential environmental impact on realized phenotypic plasticity within a natural population, we assessed metamorphic traits (developmental time, size and body mass) in an amphibian species, the European common frog Rana temporaria, since a) larval amphibians are known to exhibit high levels of phenotypic plasticity of these traits in response to habitat parameters and, b) the traits' features may strongly influence individuals' future performance and fitness. In 2007 we studied these metamorphic traits in 18 ponds spread over an area of 28 km 2. A subset of six ponds was reinvestigated in 2009 and 2010. This study revealed locally high variances in metamorphic traits in this presumed generalist species. We detected profound differences between metamorphing froglets (up to factor ten); both between and within ponds, on a very small geographic scale. Parameters such as predation and competition as well as many other pond characteristics, generally expected to have high impact on development, could not be related to the trait differences. We observed high divergence of patterns of mass at metamorphosis between ponds, but no detectable pattern when metamorphic traits were compared between ponds and years. Our results indicate that environment alone, i.e. as experienced by tadpoles sharing the same breeding pond, can only partly explain the variability of metamorphic traits observed. This emphasizes the importance to assess variability of reaction norms on the individual level to explain within-population variability.}, language = {en} } @article{GroenewegvanRoyenFenzetal.2014, author = {Groeneweg, Femke L. and van Royen, Martin E. and Fenz, Susanne and Keizer, Veer I. P. and Geverts, Bart and Prins, Jurrien and de Kloet, E. Ron and Houtsmuller, Adriaan B. and Schmidt, Thomas S. and Schaaf, Marcel J. M.}, title = {Quantitation of Glucocorticoid Receptor DNA-Binding Dynamics by Single-Molecule Microscopy and FRAP}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {3}, doi = {10.1371/journal.pone.0090532}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117085}, pages = {e90532}, year = {2014}, abstract = {Recent advances in live cell imaging have provided a wealth of data on the dynamics of transcription factors. However, a consistent quantitative description of these dynamics, explaining how transcription factors find their target sequences in the vast amount of DNA inside the nucleus, is still lacking. In the present study, we have combined two quantitative imaging methods, single-molecule microscopy and fluorescence recovery after photobleaching, to determine the mobility pattern of the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR), two ligand-activated transcription factors. For dexamethasone-activated GR, both techniques showed that approximately half of the population is freely diffusing, while the remaining population is bound to DNA. Of this DNA-bound population about half the GRs appeared to be bound for short periods of time (similar to 0.7 s) and the other half for longer time periods (similar to 2.3 s). A similar pattern of mobility was seen for the MR activated by aldosterone. Inactive receptors (mutant or antagonist-bound receptors) show a decreased DNA binding frequency and duration, but also a higher mobility for the diffusing population. Likely, very brief (<= 1 ms) interactions with DNA induced by the agonists underlie this difference in diffusion behavior. Surprisingly, different agonists also induce different mobilities of both receptors, presumably due to differences in ligand-induced conformational changes and receptor complex formation. In summary, our data provide a consistent quantitative model of the dynamics of GR and MR, indicating three types of interactions with DNA, which fit into a model in which frequent low-affinity DNA binding facilitates the search for high-affinity target sequences.}, language = {en} } @article{HellerHemp2014, author = {Heller, Klaus-Gerhard and Hemp, Claudia}, title = {Fiddler on the Tree - A Bush-Cricket Species with Unusual Stridulatory Organs and Song}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {3}, doi = {10.1371/journal.pone.0092366}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117068}, pages = {e92366}, year = {2014}, abstract = {Insects of the order Orthoptera are well-known for their acoustic communication. The structures used for this purpose show a high diversity which obviously relates to differences in song parameters and to the physics of sound production. Here we describe song and morphology of the sound producing organs of a tropical bush-cricket, Ectomoptera nepicauda, from East Africa. It has a very unusual calling song consisting of frequency-modulated, pure-tone sounds in the high ultrasonic range of 80 to 120 kHz and produced by extremely fast wing movements. Concerning morphology, it represents the most extreme state in the degree of left-right fore-wing differentiation found among Orthoptera: the acoustic parts of the left fore-wing consist exclusively of the stridulatory file, comparable in function to the bow of a violin, while the right wing carries only the plectrum (= string) and mirror (= soundbox).}, language = {en} } @article{KoetschanKittelmannLuetal.2014, author = {Koetschan, Christian and Kittelmann, Sandra and Lu, Jingli and Al-Halbouni, Djamila and Jarvis, Graeme N. and M{\"u}ller, Tobias and Wolf, Matthias and Janssen, Peter H.}, title = {Internal Transcribed Spacer 1 Secondary Structure Analysis Reveals a Common Core throughout the Anaerobic Fungi (Neocallimastigomycota)}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {3}, doi = {10.1371/journal.pone.0091928}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117058}, pages = {e91928}, year = {2014}, abstract = {The internal transcribed spacer (ITS) is a popular barcode marker for fungi and in particular the ITS1 has been widely used for the anaerobic fungi (phylum Neocallimastigomycota). A good number of validated reference sequences of isolates as well as a large number of environmental sequences are available in public databases. Its highly variable nature predisposes the ITS1 for low level phylogenetics; however, it complicates the establishment of reproducible alignments and the reconstruction of stable phylogenetic trees at higher taxonomic levels (genus and above). Here, we overcame these problems by proposing a common core secondary structure of the ITS1 of the anaerobic fungi employing a Hidden Markov Model-based ITS1 sequence annotation and a helix-wise folding approach. We integrated the additional structural information into phylogenetic analyses and present for the first time an automated sequence-structure-based taxonomy of the ITS1 of the anaerobic fungi. The methodology developed is transferable to the ITS1 of other fungal groups, and the robust taxonomy will facilitate and improve high-throughput anaerobic fungal community structure analysis of samples from various environments.}, language = {en} } @article{BartomeusPottsSteffanDewenteretal.2014, author = {Bartomeus, Ignasi and Potts, Simon G. and Steffan-Dewenter, Ingolf and Vaissiere, Bernard E. and Woyciechowski, Michal and Krewenka, Kristin M. and Tscheulin, Thomas and Roberts, Stuart P. M. and Szentgyoergyi, Hajnalka and Westphal, Catrin and Bommarco, Riccardo}, title = {Contribution of insect pollinators to crop yield and quality varies with agricultural intensification}, series = {PEERJ}, volume = {2}, journal = {PEERJ}, number = {e328}, issn = {2167-9843}, doi = {10.7717/peerj.328}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116928}, year = {2014}, abstract = {Background. Up to 75\% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71\% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations.}, language = {en} } @article{TomaszkiewiczChalopinSchartletal.2014, author = {Tomaszkiewicz, Marta and Chalopin, Domitille and Schartl, Manfred and Galiana, Delphine and Volff, Jean-Nicolas}, title = {A multicopy Y-chromosomal SGNH hydrolase gene expressed in the testis of the platyfish has been captured and mobilized by a Helitron transposon}, series = {BMC Genetics}, volume = {15}, journal = {BMC Genetics}, number = {44}, doi = {10.1186/1471-2156-15-44}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116746}, year = {2014}, abstract = {Background: Teleost fish present a high diversity of sex determination systems, with possible frequent evolutionary turnover of sex chromosomes and sex-determining genes. In order to identify genes involved in male sex determination and differentiation in the platyfish Xiphophorus maculatus, bacterial artificial chromosome contigs from the sex-determining region differentiating the Y from the X chromosome have been assembled and analyzed. Results: A novel three-copy gene called teximY (for testis-expressed in Xiphophorus maculatus on the Y) was identified on the Y but not on the X chromosome. A highly related sequence called texim1, probably at the origin of the Y-linked genes, as well as three more divergent texim genes were detected in (pseudo) autosomal regions of the platyfish genome. Texim genes, for which no functional data are available so far in any organism, encode predicted esterases/lipases with a SGNH hydrolase domain. Texim proteins are related to proteins from very different origins, including proteins encoded by animal CR1 retrotransposons, animal platelet-activating factor acetylhydrolases (PAFah) and bacterial hydrolases. Texim gene distribution is patchy in animals. Texim sequences were detected in several fish species including killifish, medaka, pufferfish, sea bass, cod and gar, but not in zebrafish. Texim-like genes are also present in Oikopleura (urochordate), Amphioxus (cephalochordate) and sea urchin (echinoderm) but absent from mammals and other tetrapods. Interestingly, texim genes are associated with a Helitron transposon in different fish species but not in urochordates, cephalochordates and echinoderms, suggesting capture and mobilization of an ancestral texim gene in the bony fish lineage. RT-qPCR analyses showed that Y-linked teximY genes are preferentially expressed in testis, with expression at late stages of spermatogenesis (late spermatids and spermatozeugmata). Conclusions: These observations suggest either that TeximY proteins play a role in Helitron transposition in the male germ line in fish, or that texim genes are spermatogenesis genes mobilized and spread by transposable elements in fish genomes.}, language = {en} } @phdthesis{Weber2014, author = {Weber, David}, title = {Hey target gene regulation in embryonic stem cells and cardiomyocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101663}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The Notch signaling pathway is crucial for mammalian heart development. It controls cell-fate decisions, coordinates patterning processes and regulates proliferation and differentiation. Critical Notch effectors are Hey bHLH transcription factors (TF) that are expressed in atrial (Hey1) and ventricular (Hey2) cardiomyocytes (CM) and in the developing endocardium (Hey1/2/L). The importance of Hey proteins for cardiac development is demonstrated by knockout (KO) mice, which suffer from lethal cardiac defects, such as ventricular septum defects (VSD), valve defects and cardiomyopathy. Despite this clear functional relevance, little is known about Hey downstream targets in the heart and the molecular mechanism by which they are regulated. Here, I use a cell culture system with inducible Hey1, Hey2 or HeyL expression to study Hey target gene regulation in HEK293 cells, in murine embryonic stem cells (ESC) and in ESC derived CM. In HEK293 cells, I could show that genome wide binding sites largely overlap between all three Hey proteins, but HeyL has many additional binding sites that are not bound by Hey1 or Hey2. Shared binding sites are located close to transcription start sites (TSS) where Hey proteins preferentially bind to canonical E boxes, although more loosely defined modes of binding exist. Additional sites only bound by HeyL are more scattered across the genome. The ability of HeyL to bind these sites depends on the C-terminal part of the protein. Although there are genes which are differently regulated by HeyL, it is unclear whether this regulation results from binding of additional sites by HeyL. Additionally, Hey target gene regulation was studied in ESC and differentiated CM, which are more relevant for the observed cardiac phenotypes. ESC derived CM contract in culture and are positive for typical cardiac markers by qRT PCR and staining. According to these markers differentiation is unaffected by prolonged Hey1 or Hey2 overexpression. Regulated genes are largely redundant between Hey1 and Hey2. These are mainly other TF involved in e.g. developmental processes, apoptosis, cell migration and cell cycle. Many target genes are cell type specifically regulated causing a shift in Hey repression of genes involved in cell migration in ESC to repression of genes involved in cell cycle in CM. The number of Hey binding sites is reduced in CM and HEK293 cells compared to ESC, most likely due to more regions of dense chromatin in differentiated cells. Binding sites are enriched at the proximal promoters of down-regulated genes, compared to up-or non-regulated genes. This indicates that up-regulation primarily results from indirect effects, while down-regulation is the direct results of Hey binding to target promoters. The extent of repression generally correlates with the amount of Hey binding and subsequent recruitment of histone deacetylases (Hdac) to target promoters resulting in histone H3 deacetylation. However, in CM the repressive effect of Hey binding on a subset of genes can be annulled, likely due to binding of cardiac specific activators like Srf, Nkx2-5 and Gata4. These factors seem not to interfere with Hey binding in CM, but they recruit histone acetylases such as p300 that may counteract Hey mediated histone H3 deacetylation. Such a scenario explains differential regulation of Hey target genes between ESC and CM resulting in gene and cell-type specific regulation.}, subject = {Transkriptionsfaktor}, language = {en} } @article{BaurRautenbergFaulstichetal.2014, author = {Baur, Stefanie and Rautenberg, Maren and Faulstich, Manuela and Grau, Timo and Severin, Yannik and Unger, Clemens and Hoffmann, Wolfgang H. and Rudel, Thomas and Autenrieth, Ingo B. and Weidenmaier, Christopher}, title = {A Nasal Epithelial Receptor for Staphylococcus aureus WTA Governs Adhesion to Epithelial Cells and Modulates Nasal Colonization}, series = {PLOS PATHOGENS}, volume = {10}, journal = {PLOS PATHOGENS}, number = {5}, issn = {1553-7374}, doi = {10.1371/journal.ppat.1004089}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116280}, pages = {e1004089}, year = {2014}, abstract = {Nasal colonization is a major risk factor for S. aureus infections. The mechanisms responsible for colonization are still not well understood and involve several factors on the host and the bacterial side. One key factor is the cell wall teichoic acid (WTA) of S. aureus, which governs direct interactions with nasal epithelial surfaces. We report here the first receptor for the cell wall glycopolymer WTA on nasal epithelial cells. In several assay systems this type F-scavenger receptor, termed SREC-I, bound WTA in a charge dependent manner and mediated adhesion to nasal epithelial cells in vitro. The impact of WTA and SREC-I interaction on epithelial adhesion was especially pronounced under shear stress, which resembles the conditions found in the nasal cavity. Most importantly, we demonstrate here a key role of the WTA-receptor interaction in a cotton rat model of nasal colonization. When we inhibited WTA mediated adhesion with a SREC-I antibody, nasal colonization in the animal model was strongly reduced at the early onset of colonization. More importantly, colonization stayed low over an extended period of 6 days. Therefore we propose targeting of this glycopolymer-receptor interaction as a novel strategy to prevent or control S. aureus nasal colonization.}, language = {en} } @article{DanielTraenknerWojtaszetal.2014, author = {Daniel, Katrin and Tr{\"a}nkner, Daniel and Wojtasz, Lukasz and Shibuya, Hiroki and Watanabe, Yoshinori and Alsheimer, Manfred and Toth, Attila}, title = {Mouse CCDC79 (TERB1) is a meiosis-specific telomere associated protein}, series = {BMC Cell Biology}, volume = {15}, journal = {BMC Cell Biology}, number = {17}, issn = {1471-2121}, doi = {10.1186/1471-2121-15-17}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116248}, year = {2014}, abstract = {Background: Telomeres have crucial meiosis-specific roles in the orderly reduction of chromosome numbers and in ensuring the integrity of the genome during meiosis. One such role is the attachment of telomeres to trans-nuclear envelope protein complexes that connect telomeres to motor proteins in the cytoplasm. These trans-nuclear envelope connections between telomeres and cytoplasmic motor proteins permit the active movement of telomeres and chromosomes during the first meiotic prophase. Movements of chromosomes/telomeres facilitate the meiotic recombination process, and allow high fidelity pairing of homologous chromosomes. Pairing of homologous chromosomes is a prerequisite for their correct segregation during the first meiotic division. Although inner-nuclear envelope proteins, such as SUN1 and potentially SUN2, are known to bind and recruit meiotic telomeres, these proteins are not meiosis-specific, therefore cannot solely account for telomere-nuclear envelope attachment and/or for other meiosis-specific characteristics of telomeres in mammals. Results: We identify CCDC79, alternatively named TERB1, as a meiosis-specific protein that localizes to telomeres from leptotene to diplotene stages of the first meiotic prophase. CCDC79 and SUN1 associate with telomeres almost concurrently at the onset of prophase, indicating a possible role for CCDC79 in telomere-nuclear envelope interactions and/or telomere movements. Consistent with this scenario, CCDC79 is missing from most telomeres that fail to connect to SUN1 protein in spermatocytes lacking the meiosis-specific cohesin SMC1B. SMC1B-deficient spermatocytes display both reduced efficiency in telomere-nuclear envelope attachment and reduced stability of telomeres specifically during meiotic prophase. Importantly, CCDC79 associates with telomeres in SUN1-deficient spermatocytes, which strongly indicates that localization of CCDC79 to telomeres does not require telomere-nuclear envelope attachment. Conclusion: CCDC79 is a meiosis-specific telomere associated protein. Based on our findings we propose that CCDC79 plays a role in meiosis-specific telomere functions. In particular, we favour the possibility that CCDC79 is involved in telomere-nuclear envelope attachment and/or the stabilization of meiotic telomeres. These conclusions are consistent with the findings of an independently initiated study that analysed CCDC79/TERB1 functions.}, language = {en} } @article{GarciaMatosShenetal.2014, author = {Garcia, Tzintzuni I. and Matos, Isa and Shen, Yingjia and Pabuwal, Vagmita and Coelho, Maria Manuela and Wakamatsu, Yuko and Schartl, Manfred and Walter, Ronald B.}, title = {Novel Method for Analysis of Allele Specific Expression in Triploid Oryzias latipes Reveals Consistent Pattern of Allele Exclusion}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {6}, issn = {1932-6203}, doi = {10.1371/journal.pone.0100250}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116000}, pages = {e100250}, year = {2014}, abstract = {Assessing allele-specific gene expression (ASE) on a large scale continues to be a technically challenging problem. Certain biological phenomena, such as X chromosome inactivation and parental imprinting, affect ASE most drastically by completely shutting down the expression of a whole set of alleles. Other more subtle effects on ASE are likely to be much more complex and dependent on the genetic environment and are perhaps more important to understand since they may be responsible for a significant amount of biological diversity. Tools to assess ASE in a diploid biological system are becoming more reliable. Non-diploid systems are, however, not uncommon. In humans full or partial polyploid states are regularly found in both healthy (meiotic cells, polynucleated cell types) and diseased tissues (trisomies, non-disjunction events, cancerous tissues). In this work we have studied ASE in the medaka fish model system. We have developed a method for determining ASE in polyploid organisms from RNAseq data and we have implemented this method in a software tool set. As a biological model system we have used nuclear transplantation to experimentally produce artificial triploid medaka composed of three different haplomes. We measured ASE in RNA isolated from the livers of two adult, triploid medaka fish that showed a high degree of similarity. The majority of genes examined (82\%) shared expression more or less evenly among the three alleles in both triploids. The rest of the genes (18\%) displayed a wide range of ASE levels. Interestingly the majority of genes (78\%) displayed generally consistent ASE levels in both triploid individuals. A large contingent of these genes had the same allele entirely suppressed in both triploids. When viewed in a chromosomal context, it is revealed that these genes are from large sections of 4 chromosomes and may be indicative of some broad scale suppression of gene expression.}, language = {en} } @article{BaalbergenHelwerdaSchelfhorstetal.2014, author = {Baalbergen, Els and Helwerda, Renate and Schelfhorst, Rense and Castillo Cajas, Ruth F. and van Moorsel, Coline H. M. and Kundrata, Robin and Welter-Schultes, Francisco W. and Giokas, Sinos and Schilthuizen, Menno}, title = {Predator-Prey Interactions between Shell-Boring Beetle Larvae and Rock-Dwelling Land Snails}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {6}, issn = {1932-6203}, doi = {10.1371/journal.pone.0100366}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115963}, pages = {e100366}, year = {2014}, abstract = {Drilus beetle larvae (Coleoptera: Elateridae) are specialized predators of land snails. Here, we describe various aspects of the predator-prey interactions between multiple Drilus species attacking multiple Albinaria (Gastropoda: Clausiliidae) species in Greece. We observe that Drilus species may be facultative or obligate Albinaria-specialists. We map geographically varying predation rates in Crete, where on average 24\% of empty shells carry fatal Drilus bore holes. We also provide first-hand observations and video-footage of prey entry and exit strategies of the Drilus larvae, and evaluate the potential mutual evolutionary impacts. We find limited evidence for an effect of shell features and snail behavioral traits on inter-and intraspecifically differing predation rates. We also find that Drilus predators adjust their predation behavior based on specific shell traits of the prey. In conclusion, we suggest that, with these baseline data, this interesting predator-prey system will be available for further, detailed more evolutionary ecology studies.}, language = {en} } @article{KleinStieglerKleinetal.2014, author = {Klein, Barett Anthony and Stiegler, Martin and Klein, Arno and Tautz, J{\"u}rgen}, title = {Mapping Sleeping Bees within Their Nest: Spatial and Temporal Analysis of Worker Honey Bee Sleep}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {7}, issn = {1932-6203}, doi = {10.1371/journal.pone.0102316}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115857}, pages = {e102316}, year = {2014}, abstract = {Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.). Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns.}, language = {en} } @article{IoakeimidisOttKozjakPavlovicetal.2014, author = {Ioakeimidis, Fotis and Ott, Christine and Kozjak-Pavlovic, Vera and Violitzi, Foteini and Rinotas, Vagelis and Makrinou, Eleni and Eliopoulos, Elias and Fasseas, Costas and Kollias, George and Douni, Eleni}, title = {A Splicing Mutation in the Novel Mitochondrial Protein DNAJC11 Causes Motor Neuron Pathology Associated with Cristae Disorganization, and Lymphoid Abnormalities in Mice}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {8}, doi = {10.1371/journal.pone.0104237}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115581}, pages = {e104237}, year = {2014}, abstract = {Mitochondrial structure and function is emerging as a major contributor to neuromuscular disease, highlighting the need for the complete elucidation of the underlying molecular and pathophysiological mechanisms. Following a forward genetics approach with N-ethyl-N-nitrosourea (ENU)-mediated random mutagenesis, we identified a novel mouse model of autosomal recessive neuromuscular disease caused by a splice-site hypomorphic mutation in a novel gene of unknown function, DnaJC11. Recent findings have demonstrated that DNAJC11 protein co-immunoprecipitates with proteins of the mitochondrial contact site (MICOS) complex involved in the formation of mitochondrial cristae and cristae junctions. Homozygous mutant mice developed locomotion defects, muscle weakness, spasticity, limb tremor, leucopenia, thymic and splenic hypoplasia, general wasting and early lethality. Neuropathological analysis showed severe vacuolation of the motor neurons in the spinal cord, originating from dilatations of the endoplasmic reticulum and notably from mitochondria that had lost their proper inner membrane organization. The causal role of the identified mutation in DnaJC11 was verified in rescue experiments by overexpressing the human ortholog. The full length 63 kDa isoform of human DNAJC11 was shown to localize in the periphery of the mitochondrial outer membrane whereas putative additional isoforms displayed differential submitochondrial localization. Moreover, we showed that DNAJC11 is assembled in a high molecular weight complex, similarly to mitofilin and that downregulation of mitofilin or SAM50 affected the levels of DNAJC11 in HeLa cells. Our findings provide the first mouse mutant for a putative MICOS protein and establish a link between DNAJC11 and neuromuscular diseases.}, language = {en} } @article{MorrisCarusoBuscotetal.2014, author = {Morris, E. Kathryn and Caruso, Tancredi and Buscot, Francois and Fischer, Markus and Hancock, Christine and Maier, Tanja S. and Meiners, Torsten and M{\"u}ller, Caroline and Obermaier, Elisabeth and Prati, Daniel and Socher, Stephanie A. and Sonnemann, Ilja and W{\"a}schke, Nicola and Wubet, Tesfaye and Wurst, Susanne and Rillig, Matthias C.}, title = {Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories}, series = {Ecology and Evolution}, volume = {4}, journal = {Ecology and Evolution}, number = {18}, issn = {2045-7758}, doi = {10.1002/ece3.1155}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115462}, pages = {3514-3524}, year = {2014}, abstract = {Biodiversity, a multidimensional property of natural systems, is difficult to quantify partly because of the multitude of indices proposed for this purpose. Indices aim to describe general properties of communities that allow us to compare different regions, taxa, and trophic levels. Therefore, they are of fundamental importance for environmental monitoring and conservation, although there is no consensus about which indices are more appropriate and informative. We tested several common diversity indices in a range of simple to complex statistical analyses in order to determine whether some were better suited for certain analyses than others. We used data collected around the focal plant Plantago lanceolata on 60 temperate grassland plots embedded in an agricultural landscape to explore relationships between the common diversity indices of species richness (S), Shannon's diversity (H'), Simpson's diversity (D-1), Simpson's dominance (D-2), Simpson's evenness (E), and Berger-Parker dominance (BP). We calculated each of these indices for herbaceous plants, arbuscular mycorrhizal fungi, aboveground arthropods, belowground insect larvae, and P.lanceolata molecular and chemical diversity. Including these trait-based measures of diversity allowed us to test whether or not they behaved similarly to the better studied species diversity. We used path analysis to determine whether compound indices detected more relationships between diversities of different organisms and traits than more basic indices. In the path models, more paths were significant when using H', even though all models except that with E were equally reliable. This demonstrates that while common diversity indices may appear interchangeable in simple analyses, when considering complex interactions, the choice of index can profoundly alter the interpretation of results. Data mining in order to identify the index producing the most significant results should be avoided, but simultaneously considering analyses using multiple indices can provide greater insight into the interactions in a system.}, language = {en} } @article{VolceanovHerbstBiniosseketal.2014, author = {Volceanov, Larisa and Herbst, Katharina and Biniossek, Martin and Schilling, Oliver and Haller, Dirk and N{\"o}lke, Thilo and Subbarayal, Prema and Rudel, Thomas and Zieger, Barbara and H{\"a}cker, Georg}, title = {Septins Arrange F-Actin-Containing Fibers on the Chlamydia trachomatis Inclusion and Are Required for Normal Release of the Inclusion by Extrusion}, series = {MBIO}, volume = {5}, journal = {MBIO}, number = {5}, issn = {2150-7511}, doi = {10.1128/mBio.01802-14}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115421}, pages = {e01802-14}, year = {2014}, abstract = {Chlamydia trachomatis is an obligate intracellular human pathogen that grows inside a membranous, cytosolic vacuole termed an inclusion. Septins are a group of 13 GTP-binding proteins that assemble into oligomeric complexes and that can form higher-order filaments. We report here that the septins SEPT2, -9, -11, and probably -7 form fibrillar structures around the chlamydial inclusion. Colocalization studies suggest that these septins combine with F actin into fibers that encase the inclusion. Targeting the expression of individual septins by RNA interference (RNAi) prevented the formation of septin fibers as well as the recruitment of actin to the inclusion. At the end of the developmental cycle of C. trachomatis, newly formed, infectious elementary bodies are released, and this release occurs at least in part through the organized extrusion of intact inclusions. RNAi against SEPT9 or against the combination of SEPT2/7/9 substantially reduced the number of extrusions from a culture of infected HeLa cells. The data suggest that a higher-order structure of four septins is involved in the recruitment or stabilization of the actin coat around the chlamydial inclusion and that this actin recruitment by septins is instrumental for the coordinated egress of C. trachomatis from human cells. The organization of F actin around parasite-containing vacuoles may be a broader response mechanism of mammalian cells to the infection by intracellular, vacuole-dwelling pathogens. IMPORTANCE Chlamydia trachomatis is a frequent bacterial pathogen throughout the world, causing mostly eye and genital infections. C. trachomatis can develop only inside host cells; it multiplies inside a membranous vacuole in the cytosol, termed an inclusion. The inclusion is covered by cytoskeletal "coats" or "cages," whose organization and function are poorly understood. We here report that a relatively little-characterized group of proteins, septins, is required to organize actin fibers on the inclusion and probably through actin the release of the inclusion. Septins are a group of GTP-binding proteins that can organize into heteromeric complexes and then into large filaments. Septins have previously been found to be involved in the interaction of the cell with bacteria in the cytosol. Our observation that they also organize a reaction to bacteria living in vacuoles suggests that they have a function in the recognition of foreign compartments by a parasitized human cell.}, language = {en} } @article{KernAgarwalHuberetal.2014, author = {Kern, Selina and Agarwal, Shruti and Huber, Kilian and Gehring, Andre P. and Str{\"o}dke, Benjamin and Wirth, Christine C. and Br{\"u}gl, Thomas and Abodo, Liane Onambele and Dandekar, Thomas and Doerig, Christian and Fischer, Rainer and Tobin, Andrew B. and Alam, Mahmood M. and Bracher, Franz and Pradel, Gabriele}, title = {Inhibition of the SR Protein-Phosphorylating CLK Kinases of Plasmodium falciparum Impairs Blood Stage Replication and Malaria Transmission}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {9}, issn = {1932-6203}, doi = {10.1371/journal.pone.0105732}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115405}, pages = {e105732}, year = {2014}, abstract = {Cyclin-dependent kinase-like kinases (CLKs) are dual specificity protein kinases that phosphorylate Serine/Arginine-rich (SR) proteins involved in pre-mRNA processing. Four CLKs, termed PfCLK-1-4, can be identified in the human malaria parasite Plasmodium falciparum, which show homology with the yeast SR protein kinase Sky1p. The four PfCLKs are present in the nucleus and cytoplasm of the asexual blood stages and of gametocytes, sexual precursor cells crucial for malaria parasite transmission from humans to mosquitoes. We identified three plasmodial SR proteins, PfSRSF12, PfSFRS4 and PfSF-1, which are predominantly present in the nucleus of blood stage trophozoites, PfSRSF12 and PfSF-1 are further detectable in the nucleus of gametocytes. We found that recombinantly expressed SR proteins comprising the Arginine/Serine (RS)-rich domains were phosphorylated by the four PfCLKs in in vitro kinase assays, while a recombinant PfSF-1 peptide lacking the RS-rich domain was not phosphorylated. Since it was hitherto not possible to knock-out the pfclk genes by conventional gene disruption, we aimed at chemical knock-outs for phenotype analysis. We identified five human CLK inhibitors, belonging to the oxo-beta-carbolines and aminopyrimidines, as well as the antiseptic chlorhexidine as PfCLK-targeting compounds. The six inhibitors block P. falciparum blood stage replication in the low micromolar to nanomolar range by preventing the trophozoite-to-schizont transformation. In addition, the inhibitors impair gametocyte maturation and gametogenesis in in vitro assays. The combined data show that the four PfCLKs are involved in phosphorylation of SR proteins with essential functions for the blood and sexual stages of the malaria parasite, thus pointing to the kinases as promising targets for antimalarial and transmission blocking drugs.}, language = {en} } @article{MuthalaguJunttilaWieseetal.2014, author = {Muthalagu, Nathiya and Junttila, Melissa R. and Wiese, Kathrin E. and Wolf, Elmar and Morton, Jennifer and Bauer, Barbara and Evan, Gerard I. and Eilers, Martin and Murphy, Daniel J.}, title = {BIM Is the Primary Mediator of MYC-Induced Apoptosis in Multiple Solid Tissues}, series = {Cell Reports}, volume = {8}, journal = {Cell Reports}, number = {5}, doi = {10.1016/j.celrep.2014.07.057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115370}, pages = {1347-1353}, year = {2014}, abstract = {MYC is one of the most frequently overexpressed oncogenes in human cancer, and even modestly deregulated MYC can initiate ectopic proliferation in many postmitotic cell types in vivo. Sensitization of cells to apoptosis limits MYC's oncogenic potential. However, the mechanism through which MYC induces apoptosis is controversial. Some studies implicate p19ARF-mediated stabilization of p53, followed by induction of proapoptotic BH3 proteins NOXA and PUMA, whereas others argue for direct regulation of BH3 proteins, especially BIM. Here, we use a single experimental system to systematically evaluate the roles of p19ARF and BIM during MYC-induced apoptosis, in vitro, in vivo, and in combination with a widely used chemotherapeutic, doxorubicin. We find a common specific requirement for BIM during MYC-induced apoptosis in multiple settings, which does not extend to the p53-responsive BH3 family member PUMA, and find no evidence of a role for p19ARF during MYC-induced apoptosis in the tissues examined.}, language = {en} } @article{PamirSzyszkaScheineretal.2014, author = {Pamir, Evren and Szyszka, Paul and Scheiner, Ricarda and Nawrot, Martin P.}, title = {Rapid learning dynamics in individual honeybees during classical conditioning}, series = {Frontiers in Behavioral Neuroscience}, volume = {8}, journal = {Frontiers in Behavioral Neuroscience}, number = {313}, issn = {1662-5153}, doi = {10.3389/fnbeh.2014.00313}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115365}, year = {2014}, abstract = {Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3298 animals). We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response (CR) in learners, and the high stability of the CR during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24 h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled.}, language = {en} } @article{StellamannsUppaluriHochstetteretal.2014, author = {Stellamanns, Eric and Uppaluri, Sravanti and Hochstetter, Axel and Heddergott, Niko and Engstler, Markus and Pfohl, Thomas}, title = {Optical trapping reveals propulsion forces, power generation and motility efficiency of the unicellular parasites Trypanosoma brucei brucei}, series = {Scientific Reports}, volume = {4}, journal = {Scientific Reports}, number = {6515}, issn = {2045-2322}, doi = {10.1038/srep06515}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115348}, year = {2014}, abstract = {Unicellular parasites have developed sophisticated swimming mechanisms to survive in a wide range of environments. Cell motility of African trypanosomes, parasites responsible for fatal illness in humans and animals, is crucial both in the insect vector and the mammalian host. Using millisecond-scale imaging in a microfluidics platform along with a custom made optical trap, we are able to confine single cells to study trypanosome motility. From the trapping characteristics of the cells, we determine the propulsion force generated by cells with a single flagellum as well as of dividing trypanosomes with two fully developed flagella. Estimates of the dissipative energy and the power generation of single cells obtained from the motility patterns of the trypanosomes within the optical trap indicate that specific motility characteristics, in addition to locomotion, may be required for antibody clearance. Introducing a steerable second optical trap we could further measure the force, which is generated at the flagellar tip. Differences in the cellular structure of the trypanosomes are correlated with the trapping and motility characteristics and in consequence with their propulsion force, dissipative energy and power generation.}, language = {en} } @phdthesis{Wurster2014, author = {Wurster, Sebastian}, title = {Die Bedeutung von LIN9 f{\"u}r die Regulation der Genexpression, die genomische Stabilit{\"a}t und die Tumorsuppression}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114967}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Pocket proteins and E2F transcription factors regulate the expression of cell cycle associated genes and play a central role in the coordination of cell division, differentiation, and apoptosis. Disorders of these pathways contribute to the development of various human tumor entities. Despite intensive research in the field of cell cycle regulation many details are not yet understood. The LIN complex (LINC / DREAM) is a recently discovered human multiprotein complex, which dynamically interacts with pocket proteins and E2F transcription factors. An essential component of the LIN complex is the LIN9 protein. In order to obtain a better insight into the function of this protein in cell cycle regulation and tumorigenesis, a conditional Lin9 knockout mouse model was established in our laboratory. The primary objective of this study was the phenotypic characterization of embryonic fibroblasts (MEFs) from these mice. Shortly after inactivation of Lin9 cell proliferation was massively impaired. Multiple types of mitotic defects such as structural abnormalities of the spindle apparatus, aberrant nuclei, failed nuclear segregation and cytokinesis failure have been observed in Lin9-depleted cells leading to a dramatic increase in polyploid and aneuploid cells. Ultimately these serious aberrations result in premature cellular senescence. If the senescence of Lin9-deficient cells is overcome by the Large T antigen the cells can adhere to the loss of Lin9, but show severe genomic instability and grow anchorage-independently in soft-agar as a sign of oncogenic transformation. In the second part of the thesis the gene expression of Lin9-deficient cells was assessed by quantitative real time PCR analyses to determine, whether the mitotic abnormalities are caused by transcriptional defects. Here a significant reduction of mitotic gene expression was observed in Lin9-depleted cells. Additionally chromatin immunoprecipitation experiments were performed to clarify the underlying molecular mechanisms. Compared to control cells epigenetic alterations at the promoters of mitotic target genes with regard to activating histone modifications were found in Lin9-deficient MEFs. In the last section of this study, the effects of Lin9 heterozygosity were analyzed. Lin9 heterozygous MEFs showed normal proliferation, although expression of different mitotic genes was slightly reduced. It appeared, however, that the mitotic spindle checkpoint of Lin9 heterozygous MEFs is weakened and thus over several cell generations an increase in polyploid cells was observed. Soft-agar assays showed that Lin9 heterozygosity contributes to oncogenic transformation. Taken together, these results document a crucial role of LIN9 in the regulation of cell cycle-associated gene expression. LIN9 is an essential factor for cell proliferation on one hand, while at the same time it functions as a tumor suppressor.}, subject = {Zellzyklus}, language = {de} } @article{BensaadFavaroLewisetal.2014, author = {Bensaad, Karim and Favaro, Elena and Lewis, Caroline A. and Peck, Barrie and Lord, Simon and Collins, Jennifer M. and Pinnick, Katherine E. and Wigfield, Simon and Buffa, Francesca M. and Li, Ji-Liang and Zhang, Qifeng and Wakelam, Michael J. O. and Karpe, Fredrik and Schulze, Almut and Harris, Adrian L.}, title = {Fatty Acid Uptake and Lipid Storage Induced by HIF-1 alpha Contribute to Cell Growth and Survival after Hypoxia-Reoxygenation}, series = {Cell Reports}, volume = {9}, journal = {Cell Reports}, number = {1}, issn = {2211-1247}, doi = {10.1016/j.celrep.2014.08.056}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115162}, pages = {349-365}, year = {2014}, abstract = {An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3) and FABP7, both of which are involved in fatty acid uptake. In vitro, both were induced by hypoxia in a hypoxia-inducible factor-1 alpha (HIF-1 alpha)-dependent manner. There was a significant lipid droplet (LD) accumulation in hypoxia that was time and O-2 concentration dependent. Knockdown of endogenous expression of FABP3, FABP7, or Adipophilin (an essential LD structural component) significantly impaired LD formation under hypoxia. We showed that LD accumulation is due to FABP3/7-dependent fatty acid uptake while de novo fatty acid synthesis is repressed in hypoxia. We also showed that ATP production occurs via beta-oxidation or glycogen degradation in a cell-type-dependent manner in hypoxia-reoxygenation. Finally, inhibition of lipid storage reduced protection against reactive oxygen species toxicity, decreased the survival of cells subjected to hypoxia-reoxygenation in vitro, and strongly impaired tumorigenesis in vivo.}, language = {en} } @article{AkhoonSinghVarshneyetal.2014, author = {Akhoon, Bashir A. and Singh, Krishna P. and Varshney, Megha and Gupta, Shishir K. and Shukla, Yogeshwar and Gupta, Shailendra K.}, title = {Understanding the Mechanism of Atovaquone Drug Resistance in Plasmodium falciparum Cytochrome b Mutation Y268S Using Computational Methods}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {10}, doi = {10.1371/journal.pone.0110041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114882}, pages = {e110041}, year = {2014}, abstract = {The rapid appearance of resistant malarial parasites after introduction of atovaquone (ATQ) drug has prompted the search for new drugs as even single point mutations in the active site of Cytochrome b protein can rapidly render ATQ ineffective. The presence of Y268 mutations in the Cytochrome b (Cyt b) protein is previously suggested to be responsible for the ATQ resistance in Plasmodium falciparum (P. falciparum). In this study, we examined the resistance mechanism against ATQ in P. falciparum through computational methods. Here, we reported a reliable protein model of Cyt bc1 complex containing Cyt b and the Iron-Sulphur Protein (ISP) of P. falciparum using composite modeling method by combining threading, ab initio modeling and atomic-level structure refinement approaches. The molecular dynamics simulations suggest that Y268S mutation causes ATQ resistance by reducing hydrophobic interactions between Cyt bc1 protein complex and ATQ. Moreover, the important histidine contact of ATQ with the ISP chain is also lost due to Y268S mutation. We noticed the induced mutation alters the arrangement of active site residues in a fashion that enforces ATQ to find its new stable binding site far away from the wild-type binding pocket. The MM-PBSA calculations also shows that the binding affinity of ATQ with Cyt bc1 complex is enough to hold it at this new site that ultimately leads to the ATQ resistance.}, language = {en} } @article{SenecalIsabelleFritzleretal.2014, author = {Senecal, Jean-Luc and Isabelle, Catherine and Fritzler, Marvin J. and Targoff, Ira N. and Goldstein, Rose and Gagne, Michel and Raynauld, Jean-Pierre and Joyal, France and Troyanov, Yves and Dabauvalle, Marie-Christine}, title = {An Autoimmune Myositis-Overlap Syndrome Associated With Autoantibodies to Nuclear Pore Complexes Description and Long-Term Follow-up of the Anti-Nup Syndrome}, series = {Medicine}, volume = {93}, journal = {Medicine}, number = {24}, issn = {0025-7974}, doi = {10.1097/MD.0000000000000223}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114829}, pages = {361-372}, year = {2014}, abstract = {Autoimmune myositis encompasses various myositis-overlap syndromes, each being identified by the presence of serum marker autoantibodies. We describe a novel myositis-overlap syndrome in 4 patients characterized by the presence of a unique immunologic marker, autoantibodies to nuclear pore complexes. The clinical phenotype was characterized by prominent myositis in association with erosive, anti-CCP, and rheumatoid factor-positive arthritis, trigeminal neuralgia, mild interstitial lung disease, Raynaud phenomenon, and weight loss. The myositis was typically chronic, relapsing, and refractory to corticosteroids alone, but remitted with the addition of a second immuno-modulating drug. There was no clinical or laboratory evidence for liver disease. The prognosis was good with 100\% long-term survival (mean follow-up 19.5 yr). By indirect immunofluorescence on HEp-2 cells, sera from all 4 patients displayed a high titer of antinuclear autoantibodies (ANA) with a distinct punctate peripheral (rim) fluorescent pattern of the nuclear envelope characteristic of nuclear pore complexes. Reactivity with nuclear pore complexes was confirmed by immunoelectron microscopy. In a cohort of 100 French Canadian patients with autoimmune myositis, the nuclear pore complex fluorescent ANA pattern was restricted to these 4 patients (4\%). It was not observed in sera from 393 adult patients with systemic sclerosis (n = 112), mixed connective tissue disease (n = 35), systemic lupus (n = 94), rheumatoid arthritis (n = 45), or other rheumatic diseases (n = 107), nor was it observed in 62 normal adults. Autoantibodies to nuclear pore complexes were predominantly of IgG isotype. No other IgG autoantibody markers for defined connective tissue diseases or overlap syndromes were present, indicating a selective and highly focused immune response. In 3 patients, anti-nuclear pore complex autoantibody titers varied in parallel with myositis activity, suggesting a pathogenic link to pathophysiology. The nuclear pore complex proteins, that is, nucleoporins (nup), recognized by these sera were heterogeneous and included Nup358/RanBP2 (n = 2 patients), Nup90 (n = 1), Nup62 (n = 1), and gp210 (n = 1). Taken together the data suggest that nup autoantigens themselves drive the anti-nup autoimmune response. Immunogenetically, the 4 patients shared the DQA1*0501 allele associated with an increased risk for autoimmune myositis. In conclusion, we report an apparent novel subset of autoimmune myositis in our population of French Canadian patients with connective tissue diseases. This syndrome is recognized by the presence of a unique immunologic marker, autoantibodies to nuclear pore complexes that react with nups, consistent with an "anti-nupsyndrome.''}, language = {en} } @phdthesis{Klein2014, author = {Klein, Teresa}, title = {Lokalisationsmikroskopie f{\"u}r die Visualisierung zellul{\"a}rer Strukturen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-99260}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Die Einf{\"u}hrung der Fluoreszenzmikroskopie erm{\"o}glicht es, Strukturen in Zellen spezifisch und mit hohem Kontrast zu markieren und zu untersuchen. Da die Lichtmikroskopie jedoch in ihrer Aufl{\"o}sung begrenzt ist, bleiben Strukturinformationen auf molekularer Ebene verborgen. Diese als Beugungsgrenze bekannte Limitierung, kann mit modernen Verfahren umgangen werden. Die Lokalisationsmikroskopie nutzt hierf{\"u}r photoschaltbare Fluorophore, deren Fluoreszenz r{\"a}umlich und zeitlich separiert wird, um so einzelne Fluorophore mit Nanometer-Genauigkeit lokalisieren zu k{\"o}nnen. Aus tausenden Einzelmolek{\"u}l-Lokalisationen wird ein k{\"u}nstliches, hochaufgel{\"o}stes Bild rekonstruiert. Die hochaufl{\"o}sende Mikroskopie ist grade f{\"u}r die Lebendzell-Beobachtung ein wertvolles Werkzeug, um subzellul{\"a}re Strukturen und Proteindynamiken jenseits der Beugungsgrenze unter physiologischen Bedingungen untersuchen zu k{\"o}nnen. Als Marker k{\"o}nnen sowohl photoaktivierbare fluoreszierende Proteine als auch photoschaltbare organische Fluorophore eingesetzt werden. W{\"a}hrend die Markierung mit fluoreszierenden Proteinen einfach zu verwirklichen ist, haben organische Farbstoffe hingegen den Vorteil, dass sie auf Grund der h{\"o}heren Photonenausbeute eine pr{\"a}zisere Lokalisation erlauben. In lebenden Zellen wird die Markierung von Strukturen mit synthetischen Fluorophoren {\"u}ber sogenannte chemische Tags erm{\"o}glicht. Diese sind olypeptidsequenzen, die genetisch an das Zielprotein fusioniert werden und anschließend mit Farbstoff-gekoppelten Substraten gef{\"a}rbt werden. An der Modellstruktur des Histonproteins H2B werden in dieser Arbeit Farbstoffe in Kombination mit chemischen Tags identifiziert, die erfolgreich f{\"u}r die Hochaufl{\"o}sung mit direct stochastic optical reconstruction microscopy (dSTORM) in lebenden Zellen eingesetzt werden k{\"o}nnen. F{\"u}r besonders geeignet erweisen sich die Farbstoffe Tetramethylrhodamin, 505 und Atto 655, womit der gesamte spektrale Bereich vertreten ist. Allerdings k{\"o}nnen unspezifische Bindung und Farbstoffaggregation ein Problem bei der effizienten Markierung in lebenden Zellen darstellen. Es wird gezeigt, dass die Beschichtung der Glasoberfl{\"a}che mit Glycin die unspezifische Adsorption der Fluorophore erfolgreich minimieren kann. Weiterhin wird der Einfluss des Anregungslichtes auf die lebende Zelle diskutiert. Es werden Wege beschrieben, um die Photosch{\"a}digung m{\"o}glichst gering zu halten, beispielsweise durch die Wahl eines Farbstoffs im rotem Anregungsbereich. Die M{\"o}glichkeit lebende Zellen mit photoschaltbaren organischen Fluorophoren spezifisch markieren zu k{\"o}nnen, stellt einen großen Gewinn f{\"u}r die Lokalisationsmikroskopie dar, bei der urspr{\"u}nglich farbstoffgekoppelte Antik{\"o}rper zum Einsatz kamen. Diese Markierungsmethode wird in dieser Arbeit eingesetzt, um das Aggregationsverhalten von Alzheimer verursachenden � -Amyloid Peptiden im Rahmen einer Kooperation zu untersuchen. Es werden anhand von HeLa Zellen verschiedene beugungsbegrenzte Morphologien der Aggregate aufgekl{\"a}rt. Dabei wird gezeigt, dass intrazellul{\"a}r vorhandene Peptide gr{\"o}ßere Aggregate formen als die im extrazellul{\"a}ren Bereich. In einer zweiten Kollaboration wird mit Hilfe des photoaktivierbaren Proteins mEos2 und photoactivated localization microscopy (PALM) die strukturelle Organisation zweier Flotillinproteine in der Membran von Bakterien untersucht. Diese Proteine bilden zwei Cluster mit unterschiedlichen Durchmessern, die mit Nanometer-Genauigkeit bestimmt werden konnten. Es wurde außerdem festgestellt, dass beide Proteine in unterschiedlichen Anzahlen im Bakterium vorliegen.}, subject = {Hochaufl{\"o}sendes Verfahren}, language = {de} }