@article{BogdanSchultzGrosshans2013, author = {Bogdan, Sven and Schultz, J{\"o}rg and Grosshans, J{\"o}rg}, title = {Formin' cellular structures: Physiological roles of Diaphanous (Dia) in actin dynamics}, series = {Communicative \& Integrative Biology}, volume = {6}, journal = {Communicative \& Integrative Biology}, number = {e27634}, doi = {10.4161/cib.27634}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121305}, year = {2013}, abstract = {Members of the Diaphanous (Dia) protein family are key regulators of fundamental actin driven cellular processes, which are conserved from yeast to humans. Researchers have uncovered diverse physiological roles in cell morphology, cell motility, cell polarity, and cell division, which are involved in shaping cells into tissues and organs. The identification of numerous binding partners led to substantial progress in our understanding of the differential functions of Dia proteins. Genetic approaches and new microscopy techniques allow important new insights into their localization, activity, and molecular principles of regulation.}, language = {en} } @article{BeerHelfrichFoerster2020, author = {Beer, Katharina and Helfrich-F{\"o}rster, Charlotte}, title = {Post-embryonic Development of the Circadian Clock Seems to Correlate With Social Life Style in Bees}, series = {Frontiers in Cell and Developmental Biology}, volume = {8}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2020.581323}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216450}, year = {2020}, abstract = {Social life style can influence many aspects of an animal's daily life, but it has not yet been clarified, whether development of the circadian clock in social and solitary living bees differs. In a comparative study, with the social honey bee, Apis mellifera, and the solitary mason bee, Osmia bicornis, we now found indications for a differentially timed clock development in social and solitary bees. Newly emerged solitary bees showed rhythmic locomotion right away and the number of neurons in the brain that produce the clock component pigment-dispersing factor (PDF) did not change during aging of the adult solitary bee. Honey bees on the other hand, showed no circadian locomotion directly after emergence and the neuronal clock network continued to grow after emergence. Social bees appear to emerge at an early developmental stage at which the circadian clock is still immature, but bees are already able to fulfill in-hive tasks.}, language = {en} } @article{SchusterLisackSubotaetal.2021, author = {Schuster, Sarah and Lisack, Jaime and Subota, Ines and Zimmermann, Henriette and Reuter, Christian and Mueller, Tobias and Morriswood, Brooke and Engstler, Markus}, title = {Unexpected plasiticty in the life cycle of Trypanosoma brucei}, series = {eLife}, volume = {10}, journal = {eLife}, doi = {10.7554/eLife.66028.sa2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261744}, year = {2021}, abstract = {African trypanosomes cause sleeping sickness in humans and nagana in cattle. These unicellular parasites are transmitted by the bloodsucking tsetse fly. In the mammalian host's circulation, proliferating slender stage cells differentiate into cell cycle-arrested stumpy stage cells when they reach high population densities. This stage transition is thought to fulfil two main functions: first, it auto-regulates the parasite load in the host; second, the stumpy stage is regarded as the only stage capable of successful vector transmission. Here, we show that proliferating slender stage trypanosomes express the mRNA and protein of a known stumpy stage marker, complete the complex life cycle in the fly as successfully as the stumpy stage, and require only a single parasite for productive infection. These findings suggest a reassessment of the traditional view of the trypanosome life cycle. They may also provide a solution to a long-lasting paradox, namely the successful transmission of parasites in chronic infections, despite low parasitemia.}, language = {en} }