@article{LehrnbecherMerzSebaldetal.1991, author = {Lehrnbecher, T. and Merz, H. and Sebald, Walter and Poot, M.}, title = {Interleukin 4 drives phytohemagglutinin-activated T cells through several cell cycles: no synergism between interleukin 2 and interleukin 4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62491}, year = {1991}, abstract = {Cell kinetic studies of T cells stimulated with the interleukin 2 (11-2), D-4, or both lymphokines were performed with conventional [3H] thymidine incorporation and with the bivariate BrdU/Hoechst technique. 11-2 and 11-4 are able to drive phytohemagglutininactivated T cells through more than one cell cycle. Neither synergistic nor inhibitory efl'ect on T -cell proliferationwas seen for the stimulation with both 11-2 and 11-4 as compared with the effect ofll-2 alone. The quantitative data ofthe cell cycle distribution ofphytohemagglutininactivated T cells suggestthat the population ofll-4-responsive cells is at least an overlapping population, if not a real subset of the ·population of the 11-2-responsive cells.}, subject = {Biochemie}, language = {en} } @article{RudelPrustySiegletal.2014, author = {Rudel, Thomas and Prusty, Bhupesh K. and Siegl, Christine and Gulve, Nitish and Mori, Yasuko}, title = {GP96 Interacts with HHV-6 during Viral Entry and Directs It for Cellular Degradation}, doi = {10. 1371/journal.pone.0113962}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111068}, year = {2014}, abstract = {CD46 and CD134 mediate attachment of Human Herpesvirus 6A (HHV-6A) and HHV-6B to host cell, respectively. But many cell types interfere with viral infection through rapid degradation of viral DNA. Hence, not all cells expressing these receptors are permissive to HHV-6 DNA replication and production of infective virions suggesting the involvement of additional factors that influence HHV-6 propagation. Here, we used a proteomics approach to identify other host cell proteins necessary for HHV-6 binding and entry. We found host cell chaperone protein GP96 to interact with HHV-6A and HHV-6B and to interfere with virus propagation within the host cell. In human peripheral blood mononuclear cells (PBMCs), GP96 is transported to the cell surface upon infection with HHV-6 and interacts with HHV-6A and -6B through its C-terminal end. Suppression of GP96 expression decreased initial viral binding but increased viral DNA replication. Transient expression of human GP96 allowed HHV-6 entry into CHO-K1 cells even in the absence of CD46. Thus, our results suggest an important role for GP96 during HHV-6 infection, which possibly supports the cellular degradation of the virus.}, language = {en} }