@article{AdolfiCarreiraJesusetal.2015, author = {Adolfi, Mateus C. and Carreira, Ana C. O. and Jesus, L{\´a}zaro W. O. and Bogerd, Jan and Funes, Rejane M. and Schartl, Manfred and Sogayar, Mari C. and Borella, Maria I.}, title = {Molecular cloning and expression analysis of dmrt1 and sox9 during gonad development and male reproductive cycle in the lambari fish, Astyanax altiparanae}, series = {Reproductive Biology and Endocrinology}, volume = {13}, journal = {Reproductive Biology and Endocrinology}, number = {2}, doi = {10.1186/1477-7827-13-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126486}, year = {2015}, abstract = {Background The dmrt1 and sox9 genes have a well conserved function related to testis formation in vertebrates, and the group of fish presents a great diversity of species and reproductive mechanisms. The lambari fish (Astyanax altiparanae) is an important Neotropical species, where studies on molecular level of sex determination and gonad maturation are scarce. Methods Here, we employed molecular cloning techniques to analyze the cDNA sequences of the dmrt1 and sox9 genes, and describe the expression pattern of those genes during development and the male reproductive cycle by qRT-PCR, and related to histology of the gonad. Results Phylogenetic analyses of predicted amino acid sequences of dmrt1 and sox9 clustered A. altiparanae in the Ostariophysi group, which is consistent with the morphological phylogeny of this species. Studies of the gonad development revealed that ovary formation occurred at 58 days after hatching (dah), 2 weeks earlier than testis formation. Expression studies of sox9 and dmrt1 in different tissues of adult males and females and during development revealed specific expression in the testis, indicating that both genes also have a male-specific role in the adult. During the period of gonad sex differentiation, dmrt1 seems to have a more significant role than sox9. During the male reproductive cycle dmrt1 and sox9 are down-regulated after spermiation, indicating a role of these genes in spermatogenesis. Conclusions For the first time the dmrt1 and sox9 were cloned in a Characiformes species. We show that both genes have a conserved structure and expression, evidencing their role in sex determination, sex differentiation and the male reproductive cycle in A. altiparanae. These findings contribute to a better understanding of the molecular mechanisms of sex determination and differentiation in fish.}, language = {en} } @article{GeisingerRodriguezCasuriagaBenavente2021, author = {Geisinger, Adriana and Rodr{\´i}guez-Casuriaga, Rosana and Benavente, Ricardo}, title = {Transcriptomics of Meiosis in the Male Mouse}, series = {Frontiers in Cell and Developmental Biology}, volume = {9}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2021.626020}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231032}, year = {2021}, abstract = {Molecular studies of meiosis in mammals have been long relegated due to some intrinsic obstacles, namely the impossibility to reproduce the process in vitro, and the difficulty to obtain highly pure isolated cells of the different meiotic stages. In the recent years, some technical advances, from the improvement of flow cytometry sorting protocols to single-cell RNAseq, are enabling to profile the transcriptome and its fluctuations along the meiotic process. In this mini-review we will outline the diverse methodological approaches that have been employed, and some of the main findings that have started to arise from these studies. As for practical reasons most studies have been carried out in males, and mostly using mouse as a model, our focus will be on murine male meiosis, although also including specific comments about humans. Particularly, we will center on the controversy about gene expression during early meiotic prophase; the widespread existing gap between transcription and translation in meiotic cells; the expression patterns and potential roles of meiotic long non-coding RNAs; and the visualization of meiotic sex chromosome inactivation from the RNAseq perspective.}, language = {en} }