@article{SchuhmannScheiner2023, author = {Schuhmann, Antonia and Scheiner, Ricarda}, title = {A combination of the frequent fungicides boscalid and dimoxystrobin with the neonicotinoid acetamiprid in field-realistic concentrations does not affect sucrose responsiveness and learning behavior of honeybees}, series = {Ecotoxicology and Environmental Safety}, volume = {256}, journal = {Ecotoxicology and Environmental Safety}, doi = {10.1016/j.ecoenv.2023.114850}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350047}, year = {2023}, abstract = {The increasing loss of pollinators over the last decades has become more and more evident. Intensive use of plant protection products is one key factor contributing to this decline. Especially the mixture of different plant protection products can pose an increased risk for pollinators as synergistic effects may occur. In this study we investigated the effect of the fungicide Cantus® Gold (boscalid/dimoxystrobin), the neonicotinoid insecticide Mospilan® (acetamiprid) and their mixture on honeybees. Since both plant protection products are frequently applied sequentially to the same plants (e.g. oilseed rape), their combination is a realistic scenario for honeybees. We investigated the mortality, the sucrose responsiveness and the differential olfactory learning performance of honeybees under controlled conditions in the laboratory to reduce environmental noise. Intact sucrose responsiveness and learning performance are of pivotal importance for the survival of individual honeybees as well as for the functioning of the entire colony. Treatment with two sublethal and field relevant concentrations of each plant protection product did not lead to any significant effects on these behaviors but affected the mortality rate. However, our study cannot exclude possible negative sublethal effects of these substances in higher concentrations. In addition, the honeybee seems to be quite robust when it comes to effects of plant protection products, while wild bees might be more sensitive. Highlights • Mix of SBI fungicides and neonicotinoids can lead to synergistic effects for bees. • Combination of non-SBI fungicide and neonicotinoid in field-realistic doses tested. • Synergistic effect on mortality of honeybees. • No effects on sucrose responsiveness and learning performance of honeybees. • Synergistic effects by other pesticide mixtures or on wild bees cannot be excluded.}, language = {en} } @article{ScheinerLimMeixneretal.2021, author = {Scheiner, Ricarda and Lim, Kayun and Meixner, Marina D. and Gabel, Martin S.}, title = {Comparing the appetitive learning performance of six European honeybee subspecies in a common apiary}, series = {Insects}, volume = {12}, journal = {Insects}, number = {9}, issn = {2075-4450}, doi = {10.3390/insects12090768}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245180}, year = {2021}, abstract = {The Western honeybee (Apis mellifera L.) is one of the most widespread insects with numerous subspecies in its native range. How far adaptation to local habitats has affected the cognitive skills of the different subspecies is an intriguing question that we investigate in this study. Naturally mated queens of the following five subspecies from different parts of Europe were transferred to Southern Germany: A. m. iberiensis from Portugal, A. m. mellifera from Belgium, A. m. macedonica from Greece, A. m. ligustica from Italy, and A. m. ruttneri from Malta. We also included the local subspecies A. m. carnica in our study. New colonies were built up in a common apiary where the respective queens were introduced. Worker offspring from the different subspecies were compared in classical olfactory learning performance using the proboscis extension response. Prior to conditioning, we measured individual sucrose responsiveness to investigate whether possible differences in learning performances were due to differential responsiveness to the sugar water reward. Most subspecies did not differ in their appetitive learning performance. However, foragers of the Iberian honeybee, A. m. iberiensis, performed significantly more poorly, despite having a similar sucrose responsiveness. We discuss possible causes for the poor performance of the Iberian honeybees, which may have been shaped by adaptation to the local habitat.}, language = {en} } @article{ScheinerStraussThammetal.2020, author = {Scheiner, Ricarda and Strauß, Sina and Thamm, Markus and Farr{\´e}-Armengol, Gerard and Junker, Robert R.}, title = {The bacterium Pantoea ananatis modifies behavioral responses to sugar solutions in honeybees}, series = {Insects}, volume = {11}, journal = {Insects}, number = {10}, issn = {2075-4450}, doi = {10.3390/insects11100692}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216247}, year = {2020}, abstract = {1. Honeybees, which are among the most important pollinators globally, do not only collect pollen and nectar during foraging but may also disperse diverse microbes. Some of these can be deleterious to agricultural crops and forest trees, such as the bacterium Pantoea ananatis, an emerging pathogen in some systems. P. ananatis infections can lead to leaf blotches, die-back, bulb rot, and fruit rot. 2. We isolated P. ananatis bacteria from flowers with the aim of determining whether honeybees can sense these bacteria and if the bacteria affect behavioral responses of the bees to sugar solutions. 3. Honeybees decreased their responsiveness to different sugar solutions when these contained high concentrations of P. ananatis but were not deterred by solutions from which bacteria had been removed. This suggests that their reduced responsiveness was due to the taste of bacteria and not to the depletion of sugar in the solution or bacteria metabolites. Intriguingly, the bees appeared not to taste ecologically relevant low concentrations of bacteria. 4. Synthesis and applications. Our data suggest that honeybees may introduce P.ananatis bacteria into nectar in field-realistic densities during foraging trips and may thus affect nectar quality and plant fitness.}, language = {en} } @article{VillagomezNuernbergerRequieretal.2021, author = {Villagomez, Gemma N. and N{\"u}rnberger, Fabian and Requier, Fabrice and Schiele, Susanne and Steffan-Dewenter, Ingo}, title = {Effects of temperature and photoperiod on the seasonal timing of Western honey bee colonies and an early spring flowering plant}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {12}, doi = {10.1002/ece3.7616}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258770}, pages = {7834-7849}, year = {2021}, abstract = {Temperature and photoperiod are important Zeitgebers for plants and pollinators to synchronize growth and reproduction with suitable environmental conditions and their mutualistic interaction partners. Global warming can disturb this temporal synchronization since interacting species may respond differently to new combinations of photoperiod and temperature under future climates, but experimental studies on the potential phenological responses of plants and pollinators are lacking. We simulated current and future combinations of temperature and photoperiod to assess effects on the overwintering and spring phenology of an early flowering plant species (Crocus sieberi) and the Western honey bee (Apis mellifera). We could show that increased mean temperatures in winter and early spring advanced the flowering phenology of C. sieberi and intensified brood rearing activity of A. mellifera but did not advance their brood rearing activity. Flowering phenology of C. sieberi also relied on photoperiod, while brood rearing activity of A. mellifera did not. The results confirm that increases in temperature can induce changes in phenological responses and suggest that photoperiod can also play a critical role in these responses, with currently unknown consequences for real-world ecosystems in a warming climate.}, language = {en} } @article{SchilcherThammStrubeBlossetal.2021, author = {Schilcher, Felix and Thamm, Markus and Strube-Bloss, Martin and Scheiner, Ricarda}, title = {Opposing actions of octopamine and tyramine on honeybee vision}, series = {Biomolecules}, volume = {11}, journal = {Biomolecules}, number = {9}, issn = {2218-273X}, doi = {10.3390/biom11091374}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246214}, year = {2021}, abstract = {The biogenic amines octopamine and tyramine are important neurotransmitters in insects and other protostomes. They play a pivotal role in the sensory responses, learning and memory and social organisation of honeybees. Generally, octopamine and tyramine are believed to fulfil similar roles as their deuterostome counterparts epinephrine and norepinephrine. In some cases opposing functions of both amines have been observed. In this study, we examined the functions of tyramine and octopamine in honeybee responses to light. As a first step, electroretinography was used to analyse the effect of both amines on sensory sensitivity at the photoreceptor level. Here, the maximum receptor response was increased by octopamine and decreased by tyramine. As a second step, phototaxis experiments were performed to quantify the behavioural responses to light following treatment with either amine. Octopamine increased the walking speed towards different light sources while tyramine decreased it. This was independent of locomotor activity. Our results indicate that tyramine and octopamine act as functional opposites in processing responses to light.}, language = {en} } @article{HensgenEnglandHombergetal.2021, author = {Hensgen, Ronja and England, Laura and Homberg, Uwe and Pfeiffer, Keram}, title = {Neuroarchitecture of the central complex in the brain of the honeybee: Neuronal cell types}, series = {Journal of Comparative Neurology}, volume = {529}, journal = {Journal of Comparative Neurology}, doi = {10.1002/cne.24941}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215566}, pages = {159-186}, year = {2021}, abstract = {The central complex (CX) in the insect brain is a higher order integration center that controls a number of behaviors, most prominently goal directed locomotion. The CX comprises the protocerebral bridge (PB), the upper division of the central body (CBU), the lower division of the central body (CBL), and the paired noduli (NO). Although spatial orientation has been extensively studied in honeybees at the behavioral level, most electrophysiological and anatomical analyses have been carried out in other insect species, leaving the morphology and physiology of neurons that constitute the CX in the honeybee mostly enigmatic. The goal of this study was to morphologically identify neuronal cell types of the CX in the honeybee Apis mellifera. By performing iontophoretic dye injections into the CX, we traced 16 subtypes of neuron that connect a subdivision of the CX with other regions in the bee's central brain, and eight subtypes that mainly interconnect different subdivisions of the CX. They establish extensive connections between the CX and the lateral complex, the superior protocerebrum and the posterior protocerebrum. Characterized neuron classes and subtypes are morphologically similar to those described in other insects, suggesting considerable conservation in the neural network relevant for orientation.}, language = {en} } @article{KablauBergRutschmannetal.2020, author = {Kablau, Arne and Berg, Stefan and Rutschmann, Benjamin and Scheiner, Ricarda}, title = {Short-term hyperthermia at larval age reduces sucrose responsiveness of adult honeybees and can increase life span}, series = {Apidologie}, volume = {51}, journal = {Apidologie}, issn = {0044-8435}, doi = {10.1007/s13592-020-00743-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232462}, pages = {570-582}, year = {2020}, abstract = {Honeybees are very sensitive to their breeding temperature. Even slightly lower temperatures during larval development can significantly affect adult behavior. Several devices which are employed for killing the honeybee ectoparasite Varroa destructor rely on short-term hyperthermia in the honeybee hive. The device used here applies 43.7 °C for 2 h, which is highly effective in killing the mites. We study how short-term hyperthermia affects worker brood and behavior of emerging adult bees. Sucrose responsiveness was strongly reduced after treatment of larvae early or late of larval development. Hyperthermia significantly enhanced life span, particularly in bees receiving treated early in larval development. To ask whether increased life span correlated with foraging performance, we used radio frequency identification (RFID). Onset and offset of foraging behavior as well as foraging trip duration and lifetime foraging effort were unaffected by hyperthermia treatment as prepupa.}, language = {en} } @article{BeerHelfrichFoerster2020, author = {Beer, Katharina and Helfrich-F{\"o}rster, Charlotte}, title = {Model and Non-model Insects in Chronobiology}, series = {Frontiers in Behavioral Neuroscience}, volume = {14}, journal = {Frontiers in Behavioral Neuroscience}, issn = {1662-5153}, doi = {10.3389/fnbeh.2020.601676}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218721}, year = {2020}, abstract = {The fruit fly Drosophila melanogaster is an established model organism in chronobiology, because genetic manipulation and breeding in the laboratory are easy. The circadian clock neuroanatomy in D. melanogaster is one of the best-known clock networks in insects and basic circadian behavior has been characterized in detail in this insect. Another model in chronobiology is the honey bee Apis mellifera, of which diurnal foraging behavior has been described already in the early twentieth century. A. mellifera hallmarks the research on the interplay between the clock and sociality and complex behaviors like sun compass navigation and time-place-learning. Nevertheless, there are aspects of clock structure and function, like for example the role of the clock in photoperiodism and diapause, which can be only insufficiently investigated in these two models. Unlike high-latitude flies such as Chymomyza costata or D. ezoana, cosmopolitan D. melanogaster flies do not display a photoperiodic diapause. Similarly, A. mellifera bees do not go into "real" diapause, but most solitary bee species exhibit an obligatory diapause. Furthermore, sociality evolved in different Hymenoptera independently, wherefore it might be misleading to study the social clock only in one social insect. Consequently, additional research on non-model insects is required to understand the circadian clock in Diptera and Hymenoptera. In this review, we introduce the two chronobiology model insects D. melanogaster and A. mellifera, compare them with other insects and show their advantages and limitations as general models for insect circadian clocks.}, language = {en} } @article{RequierPailletLarocheetal.2019, author = {Requier, Fabrice and Paillet, Yoan and Laroche, Fabienne and Rutschmann, Benjamin and Zhang, Jie and Lombardi, Fabio and Svoboda, Miroslav and Steffan-Dewenter, Ingolf}, title = {Contribution of European forests to safeguard wild honeybee populations}, series = {Conservation Letters}, volume = {13}, journal = {Conservation Letters}, number = {2}, doi = {10.1111/conl.12693}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204407}, pages = {e12693}, year = {2019}, abstract = {Abstract Recent studies reveal the use of tree cavities by wild honeybee colonies in European forests. This highlights the conservation potential of forests for a highly threatened component of the native entomofauna in Europe, but currently no estimate of potential wild honeybee population sizes exists. Here, we analyzed the tree cavity densities of 106 forest areas across Europe and inferred an expected population size of wild honeybees. Both forest and management types affected the density of tree cavities. Accordingly, we estimated that more than 80,000 wild honeybee colonies could be sustained in European forests. As expected, potential conservation hotspots were identified in unmanaged forests, and, surprisingly, also in other large forest areas across Europe. Our results contribute to the EU policy strategy to halt pollinator declines and reveal the potential of forest areas for the conservation of so far neglected wild honeybee populations in Europe.}, language = {en} } @article{DrescherKleinNeumannetal.2017, author = {Drescher, Nora and Klein, Alexandra-Maria and Neumann, Peter and Ya{\~n}ez, Orlando and Leonhardt, Sara D.}, title = {Inside Honeybee Hives: Impact of Natural Propolis on the Ectoparasitic Mite Varroa destructor and Viruses}, series = {Insects}, volume = {8}, journal = {Insects}, number = {1}, doi = {10.3390/insects8010015}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171164}, pages = {15}, year = {2017}, abstract = {Social immunity is a key factor for honeybee health, including behavioral defense strategies such as the collective use of antimicrobial plant resins (propolis). While laboratory data repeatedly show significant propolis effects, field data are scarce, especially at the colony level. Here, we investigated whether propolis, as naturally deposited in the nests, can protect honeybees against ectoparasitic mites Varroa destructor and associated viruses, which are currently considered the most serious biological threat to European honeybee subspecies, Apis mellifera, globally. Propolis intake of 10 field colonies was manipulated by either reducing or adding freshly collected propolis. Mite infestations, titers of deformed wing virus (DWV) and sacbrood virus (SBV), resin intake, as well as colony strength were recorded monthly from July to September 2013. We additionally examined the effect of raw propolis volatiles on mite survival in laboratory assays. Our results showed no significant effects of adding or removing propolis on mite survival and infestation levels. However, in relation to V. destructor, DWV titers increased significantly less in colonies with added propolis than in propolis-removed colonies, whereas SBV titers were similar. Colonies with added propolis were also significantly stronger than propolis-removed colonies. These findings indicate that propolis may interfere with the dynamics of V. destructor-transmitted viruses, thereby further emphasizing the importance of propolis for honeybee health.}, language = {en} } @article{NuernbergerSteffanDewenterHaertel2017, author = {N{\"u}rnberger, Fabian and Steffan-Dewenter, Ingolf and H{\"a}rtel, Stephan}, title = {Combined effects of waggle dance communication and landscape heterogeneity on nectar and pollen uptake in honey bee colonies}, series = {PeerJ}, volume = {5}, journal = {PeerJ}, number = {e3441}, doi = {10.7717/peerj.3441}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170813}, year = {2017}, abstract = {The instructive component of waggle dance communication has been shown to increase resource uptake of Apis mellifera colonies in highly heterogeneous resource environments, but an assessment of its relevance in temperate landscapes with different levels of resource heterogeneity is currently lacking. We hypothesized that the advertisement of resource locations via dance communication would be most relevant in highly heterogeneous landscapes with large spatial variation of floral resources. To test our hypothesis, we placed 24 Apis mellifera colonies with either disrupted or unimpaired instructive component of dance communication in eight Central European agricultural landscapes that differed in heterogeneity and resource availability. We monitored colony weight change and pollen harvest as measure of foraging success. Dance disruption did not significantly alter colony weight change, but decreased pollen harvest compared to the communicating colonies by 40\%. There was no general effect of resource availability on nectar or pollen foraging success, but the effect of landscape heterogeneity on nectar uptake was stronger when resource availability was high. In contrast to our hypothesis, the effects of disrupted bee communication on nectar and pollen foraging success were not stronger in landscapes with heterogeneous compared to homogenous resource environments. Our results indicate that in temperate regions intra-colonial communication of resource locations benefits pollen foraging more than nectar foraging, irrespective of landscape heterogeneity. We conclude that the so far largely unexplored role of dance communication in pollen foraging requires further consideration as pollen is a crucial resource for colony development and health.}, language = {en} } @article{SteijvenSpaetheSteffanDewenteretal.2017, author = {Steijven, Karin and Spaethe, Johannes and Steffan-Dewenter, Ingolf and H{\"a}rtel, Stephan}, title = {Learning performance and brain structure of artificially-reared honey bees fed with different quantities of food}, series = {PeerJ}, volume = {5}, journal = {PeerJ}, number = {e3858}, doi = {10.7717/peerj.3858}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170137}, year = {2017}, abstract = {Background Artificial rearing of honey bee larvae is an established method which enables to fully standardize the rearing environment and to manipulate the supplied diet to the brood. However, there are no studies which compare learning performance or neuroanatomic differences of artificially-reared (in-lab) bees in comparison with their in-hive reared counterparts. Methods Here we tested how different quantities of food during larval development affect body size, brain morphology and learning ability of adult honey bees. We used in-lab rearing to be able to manipulate the total quantity of food consumed during larval development. After hatching, a subset of the bees was taken for which we made 3D reconstructions of the brains using confocal laser-scanning microscopy. Learning ability and memory formation of the remaining bees was tested in a differential olfactory conditioning experiment. Finally, we evaluated how bees reared with different quantities of artificial diet compared to in-hive reared bees. Results Thorax and head size of in-lab reared honey bees, when fed the standard diet of 160 µl or less, were slightly smaller than hive bees. The brain structure analyses showed that artificially reared bees had smaller mushroom body (MB) lateral calyces than their in-hive counterparts, independently of the quantity of food they received. However, they showed the same total brain size and the same associative learning ability as in-hive reared bees. In terms of mid-term memory, but not early long-term memory, they performed even better than the in-hive control. Discussion We have demonstrated that bees that are reared artificially (according to the Aupinel protocol) and kept in lab-conditions perform the same or even better than their in-hive sisters in an olfactory conditioning experiment even though their lateral calyces were consistently smaller at emergence. The applied combination of experimental manipulation during the larval phase plus subsequent behavioral and neuro-anatomic analyses is a powerful tool for basic and applied honey bee research.}, language = {en} } @article{KohlRutschmann2018, author = {Kohl, Patrick Laurenz and Rutschmann, Benjamin}, title = {The neglected bee trees: European beech forests as a home for feral honey bee colonies}, series = {PeerJ}, volume = {6}, journal = {PeerJ}, number = {e4602}, doi = {10.7717/peerj.4602}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176512}, year = {2018}, abstract = {It is a common belief that feral honey bee colonies (Apis mellifera L.) were eradicated in Europe through the loss of habitats, domestication by man and spread of pathogens and parasites. Interestingly, no scientific data are available, neither about the past nor the present status of naturally nesting honeybee colonies. We expected near-natural beech (Fagus sylvatica L.) forests to provide enough suitable nest sites to be a home for feral honey bee colonies in Europe. Here, we made a first assessment of their occurrence and density in two German woodland areas based on two methods, the tracing of nest sites based on forager flight routes (beelining technique), and the direct inspection of potential cavity trees. Further, we established experimental swarms at forest edges and decoded dances for nest sites performed by scout bees in order to study how far swarms from beekeeper-managed hives would potentially move into a forest. We found that feral honey bee colonies regularly inhabit tree cavities in near-natural beech forests at densities of at least 0.11-0.14 colonies/km\(^{2}\). Colonies were not confined to the forest edges; they were also living deep inside the forests. We estimated a median distance of 2,600 m from the bee trees to the next apiaries, while scout bees in experimental swarms communicated nest sites in close distances (median: 470 m). We extrapolate that there are several thousand feral honey bee colonies in German woodlands. These have to be taken in account when assessing the role of forest areas in providing pollination services to the surrounding land, and their occurrence has implications for the species' perception among researchers, beekeepers and conservationists. This study provides a starting point for investigating the life-histories and the ecological interactions of honey bees in temperate European forest environments.}, language = {en} }