@article{MartinReinekingSeoetal.2015, author = {Martin, Emily A. and Reineking, Bj{\"o}rn and Seo, Bumsuk and Steffan-Dewenter, Ingolf}, title = {Pest control of aphids depends on landscape complexity and natural enemy interactions}, series = {PeerJ}, volume = {3}, journal = {PeerJ}, number = {e1095}, doi = {10.7717/peerj.1095}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148393}, year = {2015}, abstract = {Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1) the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2) the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the effectiveness of aphid natural pest control.}, language = {en} } @article{KleijnWinfreeBartomeusetal.2015, author = {Kleijn, David and Winfree, Rachael and Bartomeus, Ignasi and Carvalheiro, Lu{\´i}sa G. and Henry, Mickael and Isaacs, Rufus and Klein, Alexandra-Maria and Kremen, Claire and M'Gonigle, Leithen K. and Rader, Romina and Ricketts, Taylor H. and Williams, Neal M. and Adamson, Nancy Lee and Ascher, John S. and B{\´a}ldi, Andr{\´a}s and Bat{\´a}ry, P{\´e}ter and Benjamin, Faye and Biesmeijer, Jacobus C. and Blitzer, Eleanor J. and Bommarco, Riccardo and Brand, Mariette R. and Bretagnolle, Vincent and Button, Lindsey and Cariveau, Daniel P. and Chifflet, R{\´e}my and Colville, Jonathan F. and Danforth, Bryan N. and Elle, Elizabeth and Garratt, Michael P. D. and Herzog, Felix and Holzschuh, Andrea and Howlett, Brad G. and Jauker, Frank and Jha, Shalene and Knop, Eva and Krewenka, Kristin M. and Le F{\´e}on, Violette and Mandelik, Yael and May, Emily A. and Park, Mia G. and Pisanty, Gideon and Reemer, Menno and Riedinger, Verena and Rollin, Orianne and Rundl{\"o}f, Maj and Sardi{\~n}as, Hillary S. and Scheper, Jeroen and Sciligo, Amber R. and Smith, Henrik G. and Steffan-Dewenter, Ingolf and Thorp, Robbin and Tscharntke, Teja and Verhulst, Jort and Viana, Blandina F. and Vaissi{\`e}re, Bernard E. and Veldtman, Ruan and Ward, Kimiora L. and Westphal, Catrin and Potts, Simon G.}, title = {Delivery of crop pollination services is an insufficient argument for wild pollinator conservation}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {7414}, doi = {10.1038/ncomms8414}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151879}, year = {2015}, abstract = {There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost- effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost- effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.}, language = {en} } @article{GamezViruesPerovićGossneretal.2015, author = {G{\´a}mez-Viru{\´e}s, Sagrario and Perović, David J. and Gossner, Martin M. and B{\"o}rschig, Carmen and Bl{\"u}thgen, Nico and de Jong, Heike and Simons, Nadja K. and Klein, Alexandra-Maria and Krauss, Jochen and Maier, Gwen and Scherber, Christoph and Steckel, Juliane and Rothenw{\"o}hrer, Christoph and Steffan-Dewenter, Ingolf and Weiner, Christiane N. and Weisser, Wolfgang and Werner, Michael and Tscharntke, Teja and Westphal, Catrin}, title = {Landscape simplification filters species traits and drives biotic homogenization}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {8568}, doi = {10.1038/ncomms9568}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141925}, year = {2015}, abstract = {Biodiversity loss can affect the viability of ecosystems by decreasing the ability of communities to respond to environmental change and disturbances. Agricultural intensification is a major driver of biodiversity loss and has multiple components operating at different spatial scales: from in-field management intensity to landscape-scale simplification. Here we show that landscape-level effects dominate functional community composition and can even buffer the effects of in-field management intensification on functional homogenization, and that animal communities in real-world managed landscapes show a unified response (across orders and guilds) to both landscape-scale simplification and in-field intensification. Adults and larvae with specialized feeding habits, species with shorter activity periods and relatively small body sizes are selected against in simplified landscapes with intense in-field management. Our results demonstrate that the diversity of land cover types at the landscape scale is critical for maintaining communities, which are functionally diverse, even in landscapes where in-field management intensity is high.}, language = {en} } @article{SickelAnkenbrandGrimmeretal.2015, author = {Sickel, Wiebke and Ankenbrand, Markus J. and Grimmer, Gudrun and Holzschuh, Andrea and H{\"a}rtel, Stephan and Lanzen, Jonathan and Steffan-Dewenter, Ingolf and Keller, Alexander}, title = {Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach}, series = {BMC Ecology}, volume = {15}, journal = {BMC Ecology}, number = {20}, doi = {10.1186/s12898-015-0051-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125730}, year = {2015}, abstract = {Background Meta-barcoding of mixed pollen samples constitutes a suitable alternative to conventional pollen identification via light microscopy. Current approaches however have limitations in practicability due to low sample throughput and/or inefficient processing methods, e.g. separate steps for amplification and sample indexing. Results We thus developed a new primer-adapter design for high throughput sequencing with the Illumina technology that remedies these issues. It uses a dual-indexing strategy, where sample-specific combinations of forward and reverse identifiers attached to the barcode marker allow high sample throughput with a single sequencing run. It does not require further adapter ligation steps after amplification. We applied this protocol to 384 pollen samples collected by solitary bees and sequenced all samples together on a single Illumina MiSeq v2 flow cell. According to rarefaction curves, 2,000-3,000 high quality reads per sample were sufficient to assess the complete diversity of 95\% of the samples. We were able to detect 650 different plant taxa in total, of which 95\% were classified at the species level. Together with the laboratory protocol, we also present an update of the reference database used by the classifier software, which increases the total number of covered global plant species included in the database from 37,403 to 72,325 (93\% increase). Conclusions This study thus offers improvements for the laboratory and bioinformatical workflow to existing approaches regarding data quantity and quality as well as processing effort and cost-effectiveness. Although only tested for pollen samples, it is furthermore applicable to other research questions requiring plant identification in mixed and challenging samples.}, language = {en} }