@article{HeisswolfPoethkeObermaier2006, author = {Heisswolf, Annette and Poethke, Hans-Joachim and Obermaier, Elisabeth}, title = {Multitrophic influences on oviposition site selection in a specialized leaf beetle at multiple spatial scales}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47738}, year = {2006}, abstract = {Egg distribution in herbivorous beetles can be affected by bottom-up (host plant), and by top-down factors (parasitoids and predators), as well as by other habitat parameters. The importance of bottom-up and top-down effects may change with spatial scale. In this study, we investigated the influence of host plant factors and habitat structure on egg distribution in the leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae), a monophagous herbivore on Salvia pratensis L. (Lamiales: Lamiaceae), on four spatial scales: individual host plant, microhabitat, macrohabitat, and landscape. At the individual host plant scale we studied the correlation between egg clutch incidence and plant size and quality. On all other scales we analyzed the relationship between the egg clutch incidence of C. canaliculata and host plant percentage cover, host plant density, and the surrounding vegetation structure. Vegetation structure was examined as herbivores might escape egg parasitism by depositing their eggs on sites with vegetation factors unfavorable for host searching parasitoids. The probability that egg clutches of C. canaliculata were present increased with an increasing size, percentage cover, and density of the host plant on three of the four spatial scales: individual host plant, microhabitat, and macrohabitat. There was no correlation between vegetation structure and egg clutch occurrence or parasitism on any spatial scale. A high percentage of egg clutches (38-56\%) was parasitized by Foersterella reptans Nees (Hymenoptera: Tetracampidae), the only egg parasitoid, but there was no relationship between egg parasitism and the spatial distribution of egg clutches of C. canaliculata on any of the spatial scales investigated. However, we also discuss results from a further study, which revealed top-down effects on the larval stage.}, subject = {Eiablage}, language = {en} } @phdthesis{Obermaier2000, author = {Obermaier, Elisabeth}, title = {Coexistence and resource use in space and time in a West African tortoise beetle community}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1815}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {Tropical rain forests and coral reefs are usually regarded as the epitome of complexity and diversity. The mechanisms, however, that allow so many species to coexist continuously, still need to be unraveled. Earlier equilibrium models explain community organization with a strict niche separation and specialization of the single species, achieved mainly by interspecific competition and consecutive resource partitioning. Recent non-equilibrium or stochastic models see stochastic factors ("intermediate disturbances") as more important. Such systems are characterized by broad niche overlaps and an unpredictable species composition. Mechanisms of coexistence are most interesting where species interactions are strongest and species packing is highest. This is the case within a functional group or guild where species use similar resources. In this project a community of seven closely related leaf beetle species (Chrysomelidae: Cassidinae) was investigated which coexist on a common host plant system (fam. Convovulaceae) in a tropical moist savanna (Ivory Coast, Como{\´e}-Nationalpark). A broad overlap in the seasonal phenology of the leaf beetle species stood in contrast to a distinct spatial niche differentiation. The beetle community could be separated in a savanna-group (host plant: Ipomoea) and in a river side group (host plant: Merremia). According to a correspondence analysis the five species at the river side, using a common host plant, Merremia hederacea, proved to be predictable in their species composition. They showed a small scale niche differentiation along the light gradient (microhabitats). Laboratory studies confirmed differences in the tolerance towards high temperatures (up to 50°C in the field). Physiological trade-offs between phenology, microclimate and food quality seem best to describe patterns of resource use of the beetle species. Further a phylogeny based on mt-DNA sequencing of the beetle community was compared to its ecological resource use and the evolution of host plant use was reconstructed}, subject = {Westafrika}, language = {en} }