@phdthesis{Sbiera2012, author = {Sbiera, Silviu}, title = {Interaction of Human Polyomavirus JC with cells of the hematopoietic system in the periphery}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74183}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Primary contact with human polyomaviruses is followed by lifelong asymptomatic persistence of viral DNA. Under severe immunosuppression JCV activation may lead to unrestricted virus growth in the CNS followed by development of progressive multifocal leukoencephalopathy (PML). Besides the kidney and the brain, target cells of persistent infection were also found in the hematopoietic system. This included the presence of JCV genomes in peripheral blood cells (PBCs). In the attempt to understand the role of PBCs for the JCV infection in humans, we asked for the type of cells affected as well as for virus interaction with PBCs. Analysis of separated subpopulations by highly sensitive and specific polymerase chain reaction and Southern blot hybridization revealed the presence of JCV DNA mostly in circulating granulocytes. These cells have important functions in innate immunity and are professional phagocytes. This suggested that PCR amplified DNA might be the result of an extranuclear association of the virus due to membrane attachment or phagocytosis rather than JCV infection with presence of viral DNA in the nucleus. In the attempt to answer this question JCV DNA was subcellularly localized in the blood of 22 healthy donors by JCV specific fluorescence in situ hybridization (FISH). Granulocytes and peripheral blood mononuclear cells (PBMCs) were separated by Percoll gradient centrifugation. Intracellular JCV DNA was hybridized with Digoxigenin-labeled JCV specific DNA probes covering half of the viral genome. As the sensitivity of the anti-digoxigenin antibody system was lower than the PCR detection level, a chemical amplification step was included consisting of peroxidase labeled secondary antibody precipitating biotinylated tyramide followed by detection with streptavidin-Texas-Red and fluorescence microscopy. Comparison of the number of cells affected in healthy individuals with 15 HIV-1 infected patients with and without PML revealed that the rate of affected PBMCs was comparable in both groups (2.5±0.4 and 14.5±0.9 per 1000). In contrast, the rate of JCV positive granulocytes in the immunosuppressed group was 92.6±1.7\% compared to 4±1.4\% in healthy donors thus confirming that granulocytes are the major group of circulating cells affected by JCV and that HIV-1 associated immune impairment has an important effect on the virus-cell association. Localization revealed that JCV DNA was predominantly located within the cytoplasm, although hybridizing signals occasionally covered the nuclear compartment. The fluorescent glow of chemical amplification combined with classical fluorescence microscopy did not allow an unequivocal localization of viral DNA. However, confocal microscopy of 24 sections through single cells combined with FISH without chemical amplification confirmed cytoplasmic localization of JCV DNA in a large number of cells. Additionally, it clearly demonstrated that JCV DNA was also located in the nucleus and nuclear localization directly correlated with the number of cells affected. Calculation of the virus load in subcellular compartments revealed that up to 50\% of the JCV genomes were located in the nucleus thus pointing to viral infection at least in the granulocytes of HIV-1 infected patients. This may contribute to the distribution of the virus from sites of peripheral infection to the CNS and may promote the development of active PML in the severely immune impaired patients.}, subject = {Polyomaviren}, language = {en} }