@phdthesis{Wilde2019, author = {Wilde, Sabrina}, title = {Einsatz von mechanistischen Biomarkern zur Charakterisierung und Bewertung von \(in\) \(vitro\) Genotoxinen}, doi = {10.25972/OPUS-18278}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-182782}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Die verf{\"u}gbaren in vitro Genotoxizit{\"a}tstests weisen hinsichtlich ihrer Spezifit{\"a}t und ihres Informationsgehalts zum vorliegenden Wirkmechanismus (Mode of Action, MoA) Einschr{\"a}nkungen auf. Um diese M{\"a}ngel zu {\"u}berwinden, wurden in dieser Arbeit zwei Ziele verfolgt, die zu der Entwicklung und Etablierung neuer in vitro Methoden zur Pr{\"u}fung auf Genotoxizit{\"a}t in der Arzneimittelentwicklung beitragen. 1. Etablierung und Bewertung einer neuen in vitro Genotoxizit{\"a}tsmethode (MultiFlow Methode) Die MultiFlow Methode basiert auf DNA-schadensassoziierten Proteinantworten von γH2AX (DNA-Doppelstrangbr{\"u}che), phosphorylierten H3 (S10) (mitotische Zellen), nukle{\"a}ren Protein p53 (Genotoxizit{\"a}t) und cleaved PARP1 (Apoptose) in TK6-Zellen. Insgesamt wurden 31 Modellsubstanzen mit dem MultiFlow Assay und erg{\"a}nzend mit dem etablierten Mikrokerntest (MicroFlow MNT), auf ihre F{\"a}higkeit verschiedene MoA-Gruppen (Aneugene/Klastogene/Nicht-Genotoxine) zu differenzieren, untersucht. Die Performance der „neuen" gegen{\"u}ber der „alten" Methode f{\"u}hrte zu einer verbesserten Sensitivit{\"a}t von 95\% gegen{\"u}ber 90\%, Spezifit{\"a}t von 90\% gegen{\"u}ber 72\% und einer MoA-Klassifizierungsrate von 85\% gegen{\"u}ber 45\% (Aneugen vs. Klastogen). 2. Identifizierung mechanistischer Biomarker zur Klassifizierung genotoxischer Substanzen Die Analyse 67 ausgew{\"a}hlter DNA-schadensassoziierter Gene in der QuantiGene Plex Methode zeigte, dass mehrere Gene gleichzeitig zur MoA-Klassifizierung beitragen k{\"o}nnen. Die Kombination der h{\"o}chstrangierten Marker BIK, KIF20A, TP53I3, DDB2 und OGG1 erm{\"o}glichte die beste Identifizierungsrate der Modellsubstanzen. Das synergetische Modell kategorisierte 16 von 16 Substanzen korrekt in Aneugene, Klastogene und Nicht-Genotoxine. Unter Verwendung der Leave-One-Out-Kreuzvalidierung wurde das Modell evaluiert und erreichte eine Sensitivit{\"a}t, Spezifit{\"a}t und Pr{\"a}diktivit{\"a}t von 86\%, 83\% und 85\%. Ergebnisse der traditionellen qPCR Methode zeigten, dass Genotoxizit{\"a}t mit TP53I3, Klastogenit{\"a}t mit ATR und RAD17 und oxidativer Stress mit NFE2L2 detektiert werden kann. Durch die Untersuchungen von posttranslationalen Modifikationen unter Verwendung der High-Content-Imaging-Technologie wurden mechanistische Assoziationen f{\"u}r BubR1 (S670) und pH3 (S28) mit Aneugenit{\"a}t, 53BP1 (S1778) und FANCD2 (S1404) mit Klastogenit{\"a}t, p53 (K373) mit Genotoxizit{\"a}t und Nrf2 (S40) mit oxidativem Stress identifiziert. Diese Arbeit zeigt, dass (Geno)toxine unterschiedliche Gen- und Proteinver{\"a}nderungen in TK6-Zellen induzieren, die zur Erfassung mechanistischer Aktivit{\"a}ten und Einteilung (geno)toxischer MoA-Gruppen (Aneugen/Klastogen/ Reaktive Sauerstoffspezies) eingesetzt werden k{\"o}nnen und daher eine bessere Risikobewertung von Wirkstoffkandidaten erm{\"o}glichen.}, subject = {Genotoxizit{\"a}t}, language = {de} } @article{KunzGoettlichWallesetal.2017, author = {Kunz, Meik and G{\"o}ttlich, Claudia and Walles, Thorsten and Nietzer, Sarah and Dandekar, Gudrun and Dandekar, Thomas}, title = {MicroRNA-21 versus microRNA-34: Lung cancer promoting and inhibitory microRNAs analysed in silico and in vitro and their clinical impact}, series = {Tumor Biology}, volume = {39}, journal = {Tumor Biology}, number = {7}, doi = {10.1177/1010428317706430}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158399}, year = {2017}, abstract = {MicroRNAs are well-known strong RNA regulators modulating whole functional units in complex signaling networks. Regarding clinical application, they have potential as biomarkers for prognosis, diagnosis, and therapy. In this review, we focus on two microRNAs centrally involved in lung cancer progression. MicroRNA-21 promotes and microRNA-34 inhibits cancer progression. We elucidate here involved pathways and imbed these antagonistic microRNAs in a network of interactions, stressing their cancer microRNA biology, followed by experimental and bioinformatics analysis of such microRNAs and their targets. This background is then illuminated from a clinical perspective on microRNA-21 and microRNA-34 as general examples for the complex microRNA biology in lung cancer and its diagnostic value. Moreover, we discuss the immense potential that microRNAs such as microRNA-21 and microRNA-34 imply by their broad regulatory effects. These should be explored for novel therapeutic strategies in the clinic.}, language = {en} } @article{KotlyarKrebsSolimandoetal.2023, author = {Kotlyar, Mischa J. and Krebs, Markus and Solimando, Antonio Giovanni and Marquardt, Andr{\´e} and Burger, Maximilian and K{\"u}bler, Hubert and Bargou, Ralf and Kneitz, Susanne and Otto, Wolfgang and Breyer, Johannes and Vergho, Daniel C. and Kneitz, Burkhard and Kalogirou, Charis}, title = {Critical evaluation of a microRNA-based risk classifier predicting cancer-specific survival in renal cell carcinoma with tumor thrombus of the inferior vena cava}, series = {Cancers}, volume = {15}, journal = {Cancers}, number = {7}, issn = {2072-6694}, doi = {10.3390/cancers15071981}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311040}, year = {2023}, abstract = {(1) Background: Clear cell renal cell carcinoma extending into the inferior vena cava (ccRCC\(^{IVC}\)) represents a clinical high-risk setting. However, there is substantial heterogeneity within this patient subgroup regarding survival outcomes. Previously, members of our group developed a microRNA(miR)-based risk classifier — containing miR-21-5p, miR-126-3p and miR-221-3p expression — which significantly predicted the cancer-specific survival (CSS) of ccRCC\(^{IVC}\) patients. (2) Methods: Examining a single-center cohort of tumor tissue from n = 56 patients with ccRCC\(^{IVC}\), we measured the expression levels of miR-21, miR-126, and miR-221 using qRT-PCR. The prognostic impact of clinicopathological parameters and miR expression were investigated via single-variable and multivariable Cox regression. Referring to the previously established risk classifier, we performed Kaplan-Meier analyses for single miR expression levels and the combined risk classifier. Cut-off values and weights within the risk classifier were taken from the previous study. (3) Results: miR-21 and miR-126 expression were significantly associated with lymphonodal status at the time of surgery, the development of metastasis during follow-up, and cancer-related death. In Kaplan-Meier analyses, miR-21 and miR-126 significantly impacted CSS in our cohort. Moreover, applying the miR-based risk classifier significantly stratified ccRCC\(^{IVC}\) according to CSS. (4) Conclusions: In our retrospective analysis, we successfully validated the miR-based risk classifier within an independent ccRCC\(^{IVC}\) cohort.}, language = {en} } @article{KneitzKalogirouSpahnetal.2013, author = {Kneitz, Burkhard and Kalogirou, Charis and Spahn, Martin and Krebs, Markus and Joniau, Steven and Lerut, Evelyne and Burger, Maximilian and Scholz, Claus-J{\"u}rgen and Kneitz, Susanne and Riedmiller, Hubertus}, title = {MiR-205 Is Progressively Down-Regulated in Lymph Node Metastasis but Fails as a Prognostic Biomarker in High-Risk Prostate Cancer}, series = {International Journal of Molecular Sciences}, journal = {International Journal of Molecular Sciences}, doi = {10.3390/ijms141121414}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97321}, year = {2013}, abstract = {The treatment of high-risk prostate cancer (HRPCa) is a tremendous challenge for uro-oncologists. The identification of predictive moleculobiological markers allowing risk assessment of lymph node metastasis and systemic progression is essential in establishing effective treatment. In the current study, we investigate the prognostic potential of miR-205 in HRPCa study and validation cohorts, setting defined clinical endpoints for both. We demonstrate miR-205 to be significantly down-regulated in over 70\% of the HRPCa samples analysed and that reconstitution of miR-205 causes inhibition of proliferation and invasiveness in prostate cancer (PCa) cell lines. Additionally, miR-205 is increasingly down-regulated in lymph node metastases compared to the primary tumour indicating that miR-205 plays a role in migration of PCa cells from the original location into extraprostatic tissue. Nevertheless, down-regulation of miR-205 in primary PCa was not correlated to the synchronous presence of metastasis and failed to predict the outcome for HRPCa patients. Moreover, we found a tendency for miR-205 up-regulation to correlate with an adverse outcome of PCa patients suggesting a pivotal role of miR-205 in tumourigenesis. Overall, we showed that miR-205 is involved in the development and metastasis of PCa, but failed to work as a useful clinical biomarker in HRPCa. These findings might have implications for the use of miR-205 as a prognostic or therapeutic target in HRPCa.}, language = {en} } @phdthesis{Hess2013, author = {Heß, Michael}, title = {Vaccinia virus-encoded bacterial beta-glucuronidase as a diagnostic biomarker for oncolytic virotherapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86789}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Oncolytic virotherapy represents a promising approach to revolutionize cancer therapy. Several preclinical and clinical trials display the safety of oncolytic viruses as wells as their efficiency against solid tumors. The development of complementary diagnosis and monitoring concepts as well as the optimization of anti-tumor activity are key points of current virotherapy research. Within the framework of this thesis, the diagnostic and therapeutic prospects of beta-glucuronidase expressed by the oncolytic vaccinia virus strain GLV-1h68 were evaluated. In this regard, a beta-glucuronidase-based, therapy-accompanying biomarker test was established which is currently under clinical validation. By using fluorescent substrates, the activity of virally expressed beta-glucuronidase could be detected and quantified. Thereby conclusions about the replication kinetics of oncolytic viruses in animal models and virus-induced cancer cell lysis could be drawn. These findings finally led to the elaboration and establishment of a versatile biomarker assay which allows statements regarding the replication of oncolytic viruses in mice based on serum samples. Besides the analysis of retrospective conditions, this test is able to serve as therapy-accompanying monitoring tool for virotherapy approaches with beta-glucuronidase-expressing viruses. The newly developed assay also served as complement to routinely used plaque assays as well as reference for virally expressed anti-angiogenic antibodies in additional preclinical studies. Further validation of this biomarker test is currently taking place in the context of clinical trials with GL-ONC1 (clinical grade GLV-1h68) and has already shown promising preliminary results. It was furthermore demonstrated that fluorogenic substrates in combination with beta-glucuronidase expressed by oncolytic viruses facilitated the optical detection of solid tumors in preclinical models. In addition to diagnostic purposes, virus-encoded enzymes could also be combined with prodrugs resulting in an improved therapeutic outcome of oncolytic virotherapy. In further studies, the visualization of virus-induced immune reactions as well as the establishment of innovative concepts to improve the therapeutic outcome of oncolytic virotherapy could be accomplished. In conclusion, the results of this thesis provide crucial findings about the influence of virally expressed beta-glucuronidase on various diagnostic concepts in the context of oncolytic virotherapy. In addition, innovative monitoring and therapeutic strategies could be established. Our preclinical findings have important clinical influence, particularly by the development of a therapy-associated biomarker assay which is currently used in different clinical trials.}, subject = {Vaccinia-Virus}, language = {en} } @article{HackerEscalonaEspinosaConsalvoetal.2016, author = {Hacker, Ulrich T. and Escalona-Espinosa, Laura and Consalvo, Nicola and Goede, Valentin and Schiffmann, Lars and Scherer, Stefan J. and Hedge, Priti and Van Cutsem, Eric and Coutelle, Oliver and B{\"u}ning, Hildegard}, title = {Evaluation of Angiopoietin-2 as a biomarker in gastric cancer: results from the randomised phase III AVAGAST trial}, series = {British Journal of Cancer}, volume = {114}, journal = {British Journal of Cancer}, number = {8}, doi = {10.1038/bjc.2016.30}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189578}, pages = {855-862}, year = {2016}, abstract = {Background: In the phase III AVAGAST trial, the addition of bevacizumab to chemotherapy improved progression-free survival (PFS) but not overall survival (OS) in patients with advanced gastric cancer. We studied the role of Angiopoietin-2 (Ang-2), a key driver of tumour angiogenesis, metastasis and resistance to antiangiogenic treatment, as a biomarker. Methods: Previously untreated, advanced gastric cancer patients were randomly assigned to receive bevacizumab (n = 387) or placebo (n = 387) in combination with chemotherapy. Plasma collected at baseline and at progression was analysed by ELISA. The role of Ang-2 as a prognostic and a predictive biomarker of bevacizumab efficacy was studied using a Cox proportional hazards model. Logistic regression analysis was applied for correlations with metastasis. Results: Median baseline plasma Ang-2 levels were lower in Asian (2143 pg ml\(^-\)\(^1\)) vs non-Asian patients (3193 pg ml\(^-\)\(^1\)), P<0.0001. Baseline plasma Ang-2 was identified as an independent prognostic marker for OS but did not predict bevacizumab efficacy alone or in combination with baseline VEGF. Baseline plasma Ang-2 correlated with the frequency of liver metastasis (LM) at any time: Odds ratio per 1000 pg ml\(^-\)\(^1\) increase: 1.19; 95\% CI 1.10-1.29; P<0.0001 (non-Asians) and 1.37; 95\% CI 1.13-1.64; P = 0.0010 (Asians). Conclusions: Baseline plasma Ang-2 is a novel prognostic biomarker for OS in advanced gastric cancer strongly associated with LM. Differences in Ang-2 mediated vascular response may, in part, account for outcome differences between Asian and non-Asian patients; however, data have to be further validated. Ang-2 is a promising drug target in gastric cancer.}, language = {en} } @article{BohnertWirthSchmitzetal.2021, author = {Bohnert, Simone and Wirth, Christoph and Schmitz, Werner and Trella, Stefanie and Monoranu, Camelia-Maria and Ondruschka, Benjamin and Bohnert, Michael}, title = {Myelin basic protein and neurofilament H in postmortem cerebrospinal fluid as surrogate markers of fatal traumatic brain injury}, series = {International Journal of Legal Medicine}, volume = {135}, journal = {International Journal of Legal Medicine}, number = {4}, issn = {1437-1596}, doi = {10.1007/s00414-021-02606-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266929}, pages = {1525-1535}, year = {2021}, abstract = {The aim of this study was to investigate if the biomarkers myelin basic protein (MBP) and neurofilament-H (NF-H) yielded informative value in forensic diagnostics when examining cadaveric cerebrospinal fluid (CSF) biochemically via an enzyme-linked immunosorbent assay (ELISA) and comparing the corresponding brain tissue in fatal traumatic brain injury (TBI) autopsy cases by immunocytochemistry versus immunohistochemistry. In 21 trauma and 19 control cases, CSF was collected semi-sterile after suboccipital puncture and brain specimens after preparation. The CSF MBP (p = 0.006) and NF-H (p = 0.0002) levels after TBI were significantly higher than those in cardiovascular controls. Immunohistochemical staining against MBP and against NF-H was performed on cortical and subcortical samples from also biochemically investigated cases (5 TBI cases/5 controls). Compared to the controls, the TBI cases showed a visually reduced staining reaction against MBP or repeatedly ruptured neurofilaments against NF-H. Immunocytochemical tests showed MBP-positive phagocytizing macrophages in CSF with a survival time of > 24 h. In addition, numerous TMEM119-positive microglia could be detected with different degrees of staining intensity in the CSF of trauma cases. As a result, we were able to document that elevated levels of MBP and NF-H in the CSF should be considered as useful neuroinjury biomarkers of traumatic brain injury.}, language = {en} } @article{BohnertReinertTrellaetal.2021, author = {Bohnert, Simone and Reinert, Christoph and Trella, Stefanie and Schmitz, Werner and Ondruschka, Benjamin and Bohnert, Michael}, title = {Metabolomics in postmortem cerebrospinal fluid diagnostics: a state-of-the-art method to interpret central nervous system-related pathological processes}, series = {International Journal of Legal Medicine}, volume = {135}, journal = {International Journal of Legal Medicine}, issn = {0937-9827}, doi = {10.1007/s00414-020-02462-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235724}, pages = {183-191}, year = {2021}, abstract = {In the last few years, quantitative analysis of metabolites in body fluids using LC/MS has become an established method in laboratory medicine and toxicology. By preparing metabolite profiles in biological specimens, we are able to understand pathophysiological mechanisms at the biochemical and thus the functional level. An innovative investigative method, which has not yet been used widely in the forensic context, is to use the clinical application of metabolomics. In a metabolomic analysis of 41 samples of postmortem cerebrospinal fluid (CSF) samples divided into cohorts of four different causes of death, namely, cardiovascular fatalities, isoIated torso trauma, traumatic brain injury, and multi-organ failure, we were able to identify relevant differences in the metabolite profile between these individual groups. According to this preliminary assessment, we assume that information on biochemical processes is not gained by differences in the concentration of individual metabolites in CSF, but by a combination of differently distributed metabolites forming the perspective of a new generation of biomarkers for diagnosing (fatal) TBI and associated neuropathological changes in the CNS using CSF samples.}, language = {en} }