@phdthesis{Niehoerster2022, author = {Nieh{\"o}rster, Thomas}, title = {Spektral aufgel{\"o}ste Fluoreszenzlebensdauer-Mikroskopie mit vielen Farben}, doi = {10.25972/OPUS-29657}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-296573}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die Fluoreszenzmikroskopie ist eine vielseitig einsetzbare Untersuchungsmethode f{\"u}r biologische Proben, bei der Biomolek{\"u}le selektiv mit Fluoreszenzfarbstoffen markiert werden, um sie dann mit sehr gutem Kontrast abzubilden. Dies ist auch mit mehreren verschiedenartigen Zielmolek{\"u}len gleichzeitig m{\"o}glich, wobei {\"u}blicherweise verschiedene Farbstoffe eingesetzt werden, die {\"u}ber ihre Spektren unterschieden werden k{\"o}nnen. Um die Anzahl gleichzeitig verwendbarer F{\"a}rbungen zu maximieren, wird in dieser Arbeit zus{\"a}tzlich zur spektralen Information auch das zeitliche Abklingverhalten der Fluoreszenzfarbstoffe mittels spektral aufgel{\"o}ster Fluoreszenzlebensdauer-Mikroskopie (spectrally resolved fluorescence lifetime imaging microscopy, sFLIM) vermessen. Dazu wird die Probe in einem Konfokalmikroskop von drei abwechselnd gepulsten Lasern mit Wellenl{\"a}ngen von 485 nm, 532nm und 640nm angeregt. Die Detektion des Fluoreszenzlichtes erfolgt mit einer hohen spektralen Aufl{\"o}sung von 32 Kan{\"a}len und gleichzeitig mit sehr hoher zeitlicher Aufl{\"o}sung von einigen Picosekunden. Damit wird zu jedem detektierten Fluoreszenzphoton der Anregungslaser, der spektrale Kanal und die Ankunftszeit registriert. Diese detaillierte multidimensionale Information wird von einem Pattern-Matching-Algorithmus ausgewertet, der das Fluoreszenzsignal mit zuvor erstellten Referenzpattern der einzelnen Farbstoffe vergleicht. Der Algorithmus bestimmt so f{\"u}r jedes Pixel die Beitr{\"a}ge der einzelnen Farbstoffe. Mit dieser Technik konnten pro Anregungslaser f{\"u}nf verschiedene F{\"a}rbungen gleichzeitig dargestellt werden, also theoretisch insgesamt 15 F{\"a}rbungen. In der Praxis konnten mit allen drei Lasern zusammen insgesamt neun F{\"a}rbungen abgebildet werden, wobei die Anzahl der Farben vor allem durch die anspruchsvolle Probenvorbereitung limitiert war. In anderen Versuchen konnte die sehr hohe Sensitivit{\"a}t des sFLIM-Systems genutzt werden, um verschiedene Zielmolek{\"u}le voneinander zu unterscheiden, obwohl sie alle mit demselben Farbstoff markiert waren. Dies war m{\"o}glich, weil sich die Fluoreszenzeigenschaften eines Farbstoffmolek{\"u}ls geringf{\"u}gig in Abh{\"a}ngigkeit von seiner Umgebung {\"a}ndern. Weiterhin konnte die sFLIM-Technik mit der hochaufl{\"o}senden STED-Mikroskopie (STED: stimulated emission depletion) kombiniert werden, um so hochaufgel{\"o}ste zweifarbige Bilder zu erzeugen, wobei nur ein einziger gemeinsamer STED-Laser ben{\"o}tigt wurde. Die gleichzeitige Erfassung von mehreren photophysikalischen Messgr{\"o}ßen sowie deren Auswertung durch den Pattern-Matching-Algorithmus erm{\"o}glichten somit die Entwicklung von neuen Methoden der Fluoreszenzmikroskopie f{\"u}r Mehrfachf{\"a}rbungen.}, subject = {Fluoreszenzmikroskopie}, language = {de} }