@phdthesis{Duque2022, author = {Duque, Laura Maria Ribeiro}, title = {Effects of ozone on plants and plant-insect interactions}, doi = {10.25972/OPUS-27798}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-277983}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Anthropogenic activities are causing air pollution. Amongst air pollutants, tropospheric ozone is a major threat to human health and ecosystem functioning. In this dissertation, I present three studies that aimed at increasing our knowledge on how plant exposure to ozone affects its reproduction and its interactions with insect herbivores and pollinators. For this purpose, a new fumigation system was built and placed in a greenhouse. The annual plant Sinapis arvensis (wild mustard) was used as the model plant. Plants were exposed to either 0 ppb (control) or 120 ppb of ozone, for variable amounts of time and at different points of their life cycle. After fumigation, plants were exposed to herbivores or pollinators in the greenhouse, or to both groups of insects in the field. My research shows that ozone affected reproductive performance differently, depending on the timing of exposure: plants exposed at earlier ages had their reproductive fitness increased, while plants exposed later in their life cycle showed a tendency for reduced reproductive fitness. Plant phenology was a key factor influencing reproductive fitness: ozone accelerated flowering and increased the number of flowers produced by plants exposed at early ages, while plants exposed to ozone at later ages tended to have fewer flowers. On the other hand, the ozone-mediated changes in plant-insect interactions had little impact on plant reproductive success. The strongest effect of ozone on plant-pollinator interactions was the change in the number of flower visits received per plant, which was strongly linked to the number of open flowers. This means that, as a rule, exposure of plants to ozone early in the life cycle resulted in a higher number of pollinator visits, while exposure later in the life cycle resulted in fewer flower visits by potential pollinators. An exception was observed: the higher number of visits performed by large syrphid flies to young ozone-exposed plants than to the respective control plants went beyond the increase in the number of open flowers in those plants. Also, honeybees spent more time per flower in plants exposed to ozone than on control plants, while other pollinators spent similar amounts of time in control and ozone-exposed plants. This guild-dependent preference for ozone-exposed plants may be due to species-specific preferences related to changes in the quality and quantity of floral rewards. In the field, ozone-exposed plants showed only a tendency for increased colonization by sucking herbivores and slightly more damage by chewing herbivores than control plants. On the other hand, in the greenhouse experiment, Pieris brassicae butterflies preferred control plants over ozone-exposed plants as oviposition sites. Eggs laid on ozone-exposed plants took longer to hatch, but the chances of survival were higher. Caterpillars performed better in control plants than in ozone-exposed plants, particularly when the temperature was high. Most of the described effects were dependent on the duration and timing of the ozone exposure and the observed temperature, with the strongest effects being observed for longer exposures and higher temperatures. Furthermore, the timing of exposure altered the direction of the effects. The expected climate change provides ideal conditions for further increases in tropospheric ozone concentrations, therefore for stronger effects on plants and plant-insect interactions. Acceleration of flowering caused by plant exposure to ozone may put plant-pollinator interactions at risk by promoting desynchronization between plant and pollinator activities. Reduced performance of caterpillars feeding on ozone-exposed plants may weaken herbivore populations. On the other hand, the increased plant reproduction that results from exposing young plants to ozone may be a source of good news in the field of horticulture, when similar results would be achieved in high-value crops. However, plant response to ozone is highly species-specific. In fact, Sinapis arvensis is considered a weed and the advantage conferred by ozone exposure may increase its competitiveness, with negative consequences for crops or plant communities in general. Overall, plant exposure to ozone might constitute a threat for the balance of natural and agro-ecosystems.}, subject = {Plant}, language = {en} }