@phdthesis{Schwarze2014, author = {Schwarze, Simone}, title = {Untersuchung von Faltungs- und Funktionsdynamik isolierter Proteindom{\"a}nen mittels Fluoreszenzl{\"o}schung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-107080}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Proteine bestehen aus einer spezifischen Sequenz verschiedener Aminos{\"a}uren, die ihre charakteristische Funktion bestimmt. Die große Variabilit{\"a}t an Aminos{\"a}uresequenzen erm{\"o}glichte die Evolution einer nahezu unbegrenzten Anzahl an Proteinen. Meistens nehmen diese Schl{\"u}sselpositionen ein, von robusten Baustoffen bis hin zu molekularen Maschinen. Daher kann eine Fehlfunktion gravierende Auswirkungen auf das Leben haben, z.B. Krankheiten wie Alzheimer oder Epilepsi. Um die Funktionen und Fehlfunktionen zu verstehen, ist eine umfassende Kenntnis der Proteinfaltung, der Protein-Protein Assoziation, sowie den Dynamiken innerhalb von Proteinen erforderlich. Diese Vorg{\"a}nge wurden in dieser Arbeit an drei isolierten Proteindom{\"a}nen durch die Anwendung der Fluoreszenzl{\"o}schmechanismen der H-Dimerbildung und des photoinduzierten Elektronentransfers untersucht. Der entfaltete Zustand der Bindungsdom{\"a}ne BBL, das Teil des 2-oxo-acid Dehydrogenasekomplexes ist, wurde unter physiologischen Bedingungen mit Zirkulardichroismus (CD) und einer Kombination aus photoinduziertem Elektronentransfer und Fluoreszenzkorrelationsspektroskopie analysiert. Beide Methoden zeigten {\"u}bereinstimmend anhand von 20 in BBL einzeln eingef{\"u}gten konservativen Punktmutationen, dass Seitenketteninteraktionen keine Auswirkungen auf die Sekund{\"a}rstruktur des denaturierten Zustandes, den Ausgangspunkt der Faltung, haben. Mit Hilfe der Dekonvolation der CD-Spektren wurde zudem gezeigt, dass die Reststruktur im denaturierten Zustand der helikalen Proteindom{\"a}ne von β-Str{\"a}ngen und β-Kehren dominiert wird, die eine entscheidende Funktion bei der Faltung in den nativen Zustand haben k{\"o}nnten. Die N-terminale Dom{\"a}ne (NTD), der f{\"u}r die Materialforschung hochinteressanten Spinnen-seidenfaser, ist f{\"u}r die Polymerisation des Spinnenseidenfadens auf den pH-Wechsel von pH 7 auf pH 6 hin verantwortlich. Dieser f{\"u}r die Proteinfunktion wichtige Prozess wurde durch die Einbringung eines extrinsischen Fluoreszenzschalters, basierend auf der H-Dimerbildung, mit der Stopped-Flow-Technik untersucht. Es wurde gezeigt, dass die NTDs 104 mit einer Rate von 3 x 10^8 M-1 s-1 assoziieren und somit nahezu das Geschwindigkeitslimit der Protein-Protein Assoziation erreicht wird. Zwei geladenen Seitenketten, der D39 und D40, kommt eine entscheidende Funktion in dem Prozess zu, da eine Mutation dieser die Assoziation verhindert. Des Weiteren wurde gezeigt, dass sich die NTD auf eine Erh{\"o}hung der Ionenst{\"a}rke entgegengesetzt zu anderen Proteinen verh{\"a}lt: die Dissoziation wird beschleunigt, die Assoziation nicht beeinflusst. Gleiches Verhalten wurde auf den einzelnen Austausch der {\"u}brigen protonierbaren Aminos{\"a}ureseitenketten hin beobachtet, ausgenommen die Mutation der E119, welche die Dissoziation verlangsamt. Daher scheint der makromolekulare Dipol, der auf Grund der Ladungsverteilung in der NTD entsteht, die Assoziation maßgeblich zu beeinflussen. Glutamatrezeptoren sind an der schnellen synaptischen Signalweiterleitung im Nervensys-tem von Vertebraten beteiligt. Die Konformationen der Ligandenbindungsdom{\"a}ne (LBD) haben dabei entscheidende Auswirkungen auf die Funktion des Gesamtrezeptors. Diese wurden mit einer Kombination aus photoinduziertem Elektronentransfer und Fluoreszenzkorrelationsspektroskopie untersucht. Mit dieser Methode wurde ein dynamisches Bild der gebundenen sowie ungebundenen Form der AMPA-spezifischen Glutamatrezeptor 2-LBD gezeigt. Es wurde zudem gezeigt, dass sich die Dynamiken in Abh{\"a}ngigkeit der Bindung von den Agonisten Glutamat und AMPA, dem partiellen Agonisten Kainate oder Cyclothiazid (CTZ), welches eine Dimerisierung der LBDs bewirkt, unterschiedlich ver{\"a}ndern. Dies k{\"o}nnte eine Auswirkung auf die Funktion der Rezeptoren haben. Die Anwendung der Fluoreszenzl{\"o}schmechanismen der H-Dimerbildung und des photoinduzierten Elektronentransfers in dieser Arbeit hat gezeigt, dass diese die M{\"o}glichkeit bieten, unterschiedlichste Fragestellungen zu beantworten und so Einblicke in dynamische Funktionsweisen von Proteinen er{\"o}ffnen. Kombiniert mit etablierten Fluoreszenzmethoden ist es so m{\"o}glich quantitativ Kinetiken auf unterschiedlichen Zeitskalen zu untersuchen.}, subject = {Protein-Protein-Wechselwirkung}, language = {de} } @phdthesis{Bertram2005, author = {Bertram, Helge}, title = {Bioinformatische Identifikation von Dom{\"a}nenunterschieden bei Parasit und Wirt am Beispiel der Malaria}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17188}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Diese Arbeit untersucht zellul{\"a}re Netzwerke mit dem Ziel, die so gewonnenen Einsichten medizinisch beziehungsweise biotechnologisch zu nutzen. Hierzu m{\"u}ssen zun{\"a}chst Proteindom{\"a}nen und wichtige regulatorische RNA Elemente erkannt werden. Dies geschieht f{\"u}r regulatorische Elemente in Nukleins{\"a}uren am Beispiel von Iron Responsive Elements (IREs) in Staphylococcus aureus, wobei sich solche Elemente in viel versprechender N{\"a}he zu exprimierten Sequenzen finden lassen (T. Dandekar, F. Du, H. Bertram (2001) Nonlinear Analysis 47(1): 225-34). Noch bedeutsamer als Ziele zur Medikamentenentwicklung gegen Parasiten sind Dom{\"a}nenunterschiede in Struktur und Sequenz bei Proteinen (T. Dandekar, F. Du, H. Bertram (2001) Nonlinear Analysis 47(1): 225-34). Ihre Identifikation wird am Beispiel eines potentiellen Transportproteins in Plasmodium falciparum exemplarisch dargestellt. Anschließend wird das Zusammenwirken von regulatorischen Elementen und Dom{\"a}nen in Netzwerken betrachtet (einschließlich experimenteller Daten). Dies kann einerseits zu allgemeineren Schlussfolgerungen {\"u}ber das Netzwerkverhalten f{\"u}hren, andererseits f{\"u}r konkrete Anwendungen genutzt werden. Als Beispiel w{\"a}hlten wir hier Redoxnetzwerke und die Bek{\"a}mpfung von Plasmodien als Verursacher der Malaria. Da das gesamte Redoxnetzwerk einer lebenden Zelle mit Methoden der pH Wert Messung nur unzureichend zu erfassen ist, werden als alternative Messmethode f{\"u}r dieses Netzwerk Mikrokristalle der Glutathionreduktase als Indikatorsystem nach digitaler Verst{\"a}rkung experimentell genutzt (H. Bertram, M. A. Keese, C. Boulin, R. H. Schirmer, R. Pepperkok, T. Dandekar (2002) Chemical Nanotechnology Talks III - Nano for Life Sciences). Um komplexe Redoxnetzwerke auch bioinformatisch zu modulieren, werden Verfahren der metabolischen Fluxanalyse vorgestellt und verbessert, um insbesondere ihrer Verzahnung besser gerecht zu werden und solche Netzwerke mit m{\"o}glichst wenig elementaren Flussmoden zutreffend beschreiben zu k{\"o}nnen. Die Reduktion der Anzahl von Elementarmoden bei sehr großen metabolischen Netzwerken einer Zelle gelingt hier mit Hilfe unterschiedlicher Methoden und f{\"u}hrt zu einer vereinfachten Darstellungsm{\"o}glichkeit komplexer Stoffwechselwege von Metaboliten. Dabei dient bei jeder dieser Methoden die biochemisch sinnvolle Definition von externen Metaboliten als Grundlage (T. Dandekar, F. Moldenhauer, S. Bulik, H. Bertram, S. Schuster (2003) Biosystems 70(3): 255-70). Allgemeiner werden Verfahren der Proteindom{\"a}nenklassifikation sowie neue Strategien gegen mikrobielle Erreger betrachtet. In Bezug auf automatisierte Einteilung von Proteinen in Dom{\"a}nen wird ein neues System von Taylor (2002b) mit bekannten Systemen verglichen, die in unterschiedlichem Umfang menschlichen Eingriffs bed{\"u}rfen (H. Bertram, T. Dandekar (2002) Chemtracts 15: 735-9). Außerdem wurde neben einer Arbeit {\"u}ber die verschiedenen Methoden aus den Daten eines Genoms Informationen {\"u}ber das metabolische Netzwerk der Zelle zu erlangen (H. Bertram, T. Dandekar (2004) it 46(1): 5-11) auch eine {\"U}bersicht {\"u}ber die Schwerpunkte der Bioinformatik in W{\"u}rzburg zusammengestellt (H. Bertram, S. Balthasar, T. Dandekar (2003) Bioforum 1-2: 26-7). Schließlich wird beschrieben, wie die Pathogenomik und Virulenz von Bakterien der bioinformatischen Analyse zug{\"a}nglich gemacht werden k{\"o}nnen (H. Bertram, S. Balthasar, T. Dandekar (2003) Bioforum Eur. 3: 157-9). Im letzten Teil wird die metabolische Fluxanalyse zur Identifikation neuer Strategien zur Bek{\"a}mpfung von Plasmodien dargestellt: Beim Vergleich der Stoffwechselwege mit Glutathion und Thioredoxin in Plasmodium falciparum, Anopheles und Mensch geht es darum, gezielte St{\"o}rungen im Stoffwechsel des Malariaerregers auszul{\"o}sen und dabei den Wirt zu schonen. Es ergeben sich einige interessante Ansatzpunkte, deren medizinische Nutzung experimentell angestrebt werden kann.}, subject = {Plasmodium falciparum}, language = {de} }