@phdthesis{Staus2021, author = {Staus, Madlen}, title = {Glutathione-dependent reprogramming in melanoma}, doi = {10.25972/OPUS-16842}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168424}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {These days, treatment of melanoma patients relies on targeted therapy with BRAF/MEK inhibitors and on immunotherapy. About half of all patients initially respond to existing therapies. Nevertheless, the identification of alternative therapies for melanoma patients with intrinsic or acquired resistance is of great importance. In melanoma, antioxidants play an essential role in the maintenance of the redox homeostasis. Therefore, disruption of the redox homeostasis is regarded as highly therapeutically relevant and is the focus of the present work. An adequate supply of cysteine is essential for the production of the most important intracellular antioxidants, such as glutathione. In the present work, it was investigated whether the depletion of cysteine and glutathione is therapeutically useful. Depletion of glutathione in melanoma cells could be achieved by blocking cysteine supply, glutathione synthesis, and NADPH regeneration. As expected, this led to an increased level of reactive oxygen species (ROS). Surprisingly, however, these changes did not impair the proliferation and survival of the melanoma cells. In contrast, glutathione depletion led to cellular reprogramming which was characterized by the induction of mesenchymal genes and the repression of differentiation markers (phenotypic switch). This was accompanied by an increased migration and invasion potential which was favored by the induction of the transcription factor FOSL1. To study in vivo reprogramming, Gclc, the first and rate-limiting enzyme in glutathione synthesis, was knocked out by CRISPR/Cas9 in murine melanoma cells. The cells were devoid of glutathione, but were fully viable and showed a phenotypic switch, the latter only in MITF-expressing B16F1 cells and not in MITF-deficient D4M3A.781 cells. Following subcutaneous injection into immunocompetent C57BL/6 mice, Gclc knockout B16F1 cells grew more aggressively and resulted in an earlier tumor onset than B16F1 control cells. In summary, this work demonstrates that inhibition of cysteine supply and thus, glutathione synthesis leads to cellular reprogramming in melanoma. In this context, melanoma cells show metastatic capabilities, promoting a more aggressive form of the disease.}, subject = {Melanom}, language = {en} }