@article{TooKellerSickeletal.2018, author = {Too, Chin Chin and Keller, Alexander and Sickel, Wiebke and Lee, Sui Mae and Yule, Catherine M.}, title = {Microbial Community Structure in a Malaysian Tropical Peat Swamp Forest: The Influence of Tree Species and Depth}, series = {Frontiers in Microbiology}, volume = {9}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2018.02859}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229000}, year = {2018}, abstract = {Tropical peat swamp forests sequester globally significant stores of carbon in deep layers of waterlogged, anoxic, acidic and nutrient-depleted peat. The roles of microbes in supporting these forests through the formation of peat, carbon sequestration and nutrient cycling are virtually unknown. This study investigated physicochemical peat properties and microbial diversity between three dominant tree species: Shorea uliginosa (Dipterocarpaceae), Koompassia malaccensis (legumes associated with nitrogen-fixing bacteria), Eleiodoxa conferta (palm) and depths (surface, 45 and 90 cm) using microbial 16S rRNA gene amplicon sequencing. Water pH, oxygen, nitrogen, phosphorus, total phenolic contents and C/N ratio differed significantly between depths, but not tree species. Depth also strongly influenced microbial diversity and composition, while both depth and tree species exhibited significant impact on the archaeal communities. Microbial diversity was highest at the surface, where fresh leaf litter accumulates, and nutrient supply is guaranteed. Nitrogen was the core parameter correlating to microbial communities, but the interactive effects from various environmental variables displayed significant correlation to relative abundance of major microbial groups. Proteobacteria was the dominant phylum and the most abundant genus, Rhodoplanes, might be involved in nitrogen fixation. The most abundant methanogens and methanotrophs affiliated, respectively, to families Methanomassiliicoccaceae and Methylocystaceae. Our results demonstrated diverse microbial communities and provide valuable insights on microbial ecology in these extreme ecosystems.}, language = {en} } @article{PrustyGulveGovindetal.2018, author = {Prusty, Bhupesh K. and Gulve, Nitish and Govind, Sheila and Krueger, Gerhard R. F. and Feichtinger, Julia and Larcombe, Lee and Aspinall, Richard and Ablashi, Dharam V. and Toro, Carla T.}, title = {Active HHV-6 Infection of Cerebellar Purkinje Cells in Mood Disorders}, series = {Frontiers in Microbiology}, volume = {9}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2018.01955}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-369222}, year = {2018}, abstract = {Early-life infections and associated neuroinflammation is incriminated in the pathogenesis of various mood disorders. Infection with human roseoloviruses, HHV-6A and HHV-6B, allows viral latency in the central nervous system and other tissues, which can later be activated causing cognitive and behavioral disturbances. Hence, this study was designed to evaluate possible association of HHV-6A and HHV-6B activation with three different groups of psychiatric patients. DNA qPCR, immunofluorescence and FISH studies were carried out in post-mortem posterior cerebellum from 50 cases each of bipolar disorder (BPD), schizophrenia, 15 major depressive disorder (MDD) and 50 appropriate control samples obtained from two well-known brain collections (Stanley Medical Research Institute). HHV-6A and HHV-6B late proteins (indicating active infection) and viral DNA were detected more frequently (p < 0.001 for each virus) in human cerebellum in MDD and BPD relative to controls. These roseolovirus proteins and DNA were found less frequently in schizophrenia cases. Active HHV-6A and HHV-6B infection in cerebellar Purkinje cells were detected frequently in BPD and MDD cases. Furthermore, we found a significant association of HHV-6A infection with reduced Purkinje cell size, suggesting virus-mediated abnormal Purkinje cell function in these disorders. Finally, gene expression analysis of cerebellar tissue revealed changes in pathways reflecting an inflammatory response possibly to HHV-6A infection. Our results provide molecular evidence to support a role for active HHV-6A and HHV-6B infection in BPD and MDD.}, language = {en} } @article{MilaneseMendePaolietal.2019, author = {Milanese, Alessio and Mende, Daniel R and Paoli, Lucas and Salazar, Guillem and Ruscheweyh, Hans-Joachim and Cuenca, Miguelangel and Hingamp, Pascal and Alves, Renato and Costea, Paul I and Coelho, Luis Pedro and Schmidt, Thomas S. B. and Almeida, Alexandre and Mitchell, Alex L and Finn, Robert D. and Huerta-Cepas, Jaime and Bork, Peer and Zeller, Georg and Sunagawa, Shinichi}, title = {Microbial abundance, activity and population genomic profiling with mOTUs2}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-08844-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224089}, year = {2019}, abstract = {Metagenomic sequencing has greatly improved our ability to profile the composition of environmental and host-associated microbial communities. However, the dependency of most methods on reference genomes, which are currently unavailable for a substantial fraction of microbial species, introduces estimation biases. We present an updated and functionally extended tool based on universal (i.e., reference-independent), phylogenetic marker gene (MG)-based operational taxonomic units (mOTUs) enabling the profiling of >7700 microbial species. As more than 30\% of them could not previously be quantified at this taxonomic resolution, relative abundance estimates based on mOTUs are more accurate compared to other methods. As a new feature, we show that mOTUs, which are based on essential housekeeping genes, are demonstrably well-suited for quantification of basal transcriptional activity of community members. Furthermore, single nucleotide variation profiles estimated using mOTUs reflect those from whole genomes, which allows for comparing microbial strain populations (e.g., across different human body sites).}, language = {en} } @article{KrahBuentgenSchaeferetal.2019, author = {Krah, Franz-Sebastian and B{\"u}ntgen, Ulf and Schaefer, Hanno and M{\"u}ller, J{\"o}rg and Andrew, Carrie and Boddy, Lynne and Diez, Jeffrey and Egli, Simon and Freckleton, Robert and Gange, Alan C. and Halvorsen, Rune and Heegaard, Einar and Heideroth, Antje and Heibl, Christoph and Heilmann-Clausen, Jacob and H{\o}iland, Klaus and Kar, Ritwika and Kauserud, H{\aa}vard and Kirk, Paul M. and Kuyper, Thomas W. and Krisai-Greilhuber, Irmgard and Norden, Jenni and Papastefanou, Phillip and Senn-Irlet, Beatrice and B{\"a}ssler, Claus}, title = {European mushroom assemblages are darker in cold climates}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-10767-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224815}, year = {2019}, abstract = {Thermal melanism theory states that dark-colored ectotherm organisms are at an advantage at low temperature due to increased warming. This theory is generally supported for ectotherm animals, however, the function of colors in the fungal kingdom is largely unknown. Here, we test whether the color lightness of mushroom assemblages is related to climate using a dataset of 3.2 million observations of 3,054 species across Europe. Consistent with the thermal melanism theory, mushroom assemblages are significantly darker in areas with cold climates. We further show differences in color phenotype between fungal lifestyles and a lifestyle differentiated response to seasonality. These results indicate a more complex ecological role of mushroom colors and suggest functions beyond thermal adaption. Because fungi play a crucial role in terrestrial carbon and nutrient cycles, understanding the links between the thermal environment, functional coloration and species' geographical distributions will be critical in predicting ecosystem responses to global warming.}, language = {en} } @article{WoodcockGarrattPowneyetal.2019, author = {Woodcock, B. A. and Garratt, M. P. D. and Powney, G. D. and Shaw, R. F. and Osborne, J. L. and Soroka, J. and Lindstr{\"o}m, S. A. M. and Stanley, D. and Ouvrard, P. and Edwards, M. E. and Jauker, F. and McCracken, M. E. and Zou, Y. and Potts, S. G. and Rundl{\"o}f, M. and Noriega, J. A. and Greenop, A. and Smith, H. G. and Bommarco, R. and van der Werf, W. and Stout, J. C. and Steffan-Dewenter, I. and Morandin, L. and Bullock, J. M. and Pywell, R. F.}, title = {Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-09393-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233787}, year = {2019}, abstract = {How insects promote crop pollination remains poorly understood in terms of the contribution of functional trait differences between species. We used meta-analyses to test for correlations between community abundance, species richness and functional trait metrics with oilseed rape yield, a globally important crop. While overall abundance is consistently important in predicting yield, functional divergence between species traits also showed a positive correlation. This result supports the complementarity hypothesis that pollination function is maintained by non-overlapping trait distributions. In artificially constructed communities (mesocosms), species richness is positively correlated with yield, although this effect is not seen under field conditions. As traits of the dominant species do not predict yield above that attributed to the effect of abundance alone, we find no evidence in support of the mass ratio hypothesis. Management practices increasing not just pollinator abundance, but also functional divergence, could benefit oilseed rape agriculture.}, language = {en} } @article{WegertVokuhlCollordetal.2018, author = {Wegert, Jenny and Vokuhl, Christian and Collord, Grace and Del Castillo Velasco-Herrera, Martin and Farndon, Sarah J. and Guzzo, Charlotte and Jorgensen, Mette and Anderson, John and Slater, Olga and Duncan, Catriona and Bausenwein, Sabrina and Streitenberger, Heike and Ziegler, Barbara and Furtw{\"a}ngler, Rhoikos and Graf, Norbert and Stratton, Michael R. and Campbell, Peter J. and Jones, David TW and Koelsche, Christian and Pfister, Stefan M. and Mifsud, William and Sebire, Neil and Sparber-Sauer, Monika and Koscielniak, Ewa and Rosenwald, Andreas and Gessler, Manfred and Behjati, Sam}, title = {Recurrent intragenic rearrangements of EGFR and BRAF in soft tissue tumors of infants}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-04650-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233446}, year = {2018}, abstract = {Soft tissue tumors of infancy encompass an overlapping spectrum of diseases that pose unique diagnostic and clinical challenges. We studied genomes and transcriptomes of cryptogenic congenital mesoblastic nephroma (CMN), and extended our findings to five anatomically or histologically related soft tissue tumors: infantile fibrosarcoma (IFS), nephroblastomatosis, Wilms tumor, malignant rhabdoid tumor, and clear cell sarcoma of the kidney. A key finding is recurrent mutation of EGFR in CMN by internal tandem duplication of the kinase domain, thus delineating CMN from other childhood renal tumors. Furthermore, we identify BRAF intragenic rearrangements in CMN and IFS. Collectively these findings reveal novel diagnostic markers and therapeutic strategies and highlight a prominent role of isolated intragenic rearrangements as drivers of infant tumors.}, language = {en} } @article{VujanićGesslerOomsetal.2018, author = {Vujanić, Gordan M. and Gessler, Manfred and Ooms, Ariadne H. A. G. and Collini, Paola and Coulomb-l'Hermine, Aurore and D'Hooghe, Ellen and de Krijger, Ronald R. and Perotti, Daniela and Pritchard-Jones, Kathy and Vokuhl, Christian and van den Heuvel-Eibrink, Marry M. and Graf, Norbert}, title = {The UMBRELLA SIOP-RTSG 2016 Wilms tumour pathology and molecular biology protocol}, series = {Nature Reviews Urology}, volume = {15}, journal = {Nature Reviews Urology}, organization = {International Society of Paediatric Oncology-Renal Tumour Study Group (SIOP-RTSG)}, doi = {10.1038/s41585-018-0100-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233265}, pages = {693-701}, year = {2018}, abstract = {On the basis of the results of previous national and international trials and studies, the Renal Tumour Study Group of the International Society of Paediatric Oncology (SIOP-RTSG) has developed a new study protocol for paediatric renal tumours: the UMBRELLA SIOP-RTSG 2016 protocol (the UMBRELLA protocol). Currently, the overall outcomes of patients with Wilms tumour are excellent, but subgroups with poor prognosis and increased relapse rates still exist. The identification of these subgroups is of utmost importance to improve treatment stratification, which might lead to reduction of the direct and late effects of chemotherapy. The UMBRELLA protocol aims to validate new prognostic factors, such as blastemal tumour volume and molecular markers, to further improve outcome. To achieve this aim, large, international, high-quality databases are needed, which dictate optimization and international harmonization of specimen handling and comprehensive sampling of biological material, refine definitions and improve logistics for expert review. To promote broad implementation of the UMBRELLA protocol, the updated SIOP-RTSG pathology and molecular biology protocol for Wilms tumours has been outlined, which is a consensus from the SIOP-RTSG pathology panel.}, language = {en} } @article{SommerfeldSenfBumaetal.2018, author = {Sommerfeld, Andreas and Senf, Cornelius and Buma, Brian and D'Amato, Anthony W. and Despr{\´e}s, Tiphaine and D{\´i}az-Hormaz{\´a}bal, Ignacio and Fraver, Shawn and Frelich, Lee E. and Guti{\´e}rrez, {\´A}lvaro G. and Hart, Sarah J. and Harvey, Brian J. and He, Hong S. and Hl{\´a}sny, Tom{\´a}š and Holz, Andr{\´e}s and Kitzberger, Thomas and Kulakowski, Dominik and Lindenmayer, David and Mori, Akira S. and M{\"u}ller, J{\"o}rg and Paritsis, Juan and Perry, George L. W. and Stephens, Scott L. and Svoboda, Miroslav and Turner, Monica G. and Veblen, Thomas T. and Seidl, Rupert}, title = {Patterns and drivers of recent disturbances across the temperate forest biome}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-06788-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239157}, year = {2018}, abstract = {Increasing evidence indicates that forest disturbances are changing in response to global change, yet local variability in disturbance remains high. We quantified this considerable variability and analyzed whether recent disturbance episodes around the globe were consistently driven by climate, and if human influence modulates patterns of forest disturbance. We combined remote sensing data on recent (2001-2014) disturbances with in-depth local information for 50 protected landscapes and their surroundings across the temperate biome. Disturbance patterns are highly variable, and shaped by variation in disturbance agents and traits of prevailing tree species. However, high disturbance activity is consistently linked to warmer and drier than average conditions across the globe. Disturbances in protected areas are smaller and more complex in shape compared to their surroundings affected by human land use. This signal disappears in areas with high recent natural disturbance activity, underlining the potential of climate-mediated disturbance to transform forest landscapes.}, language = {en} } @article{SnaebjornssonSchulze2018, author = {Snaebjornsson, Marteinn T and Schulze, Almut}, title = {Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways}, series = {Experimental \& Molecular Medicine}, volume = {50}, journal = {Experimental \& Molecular Medicine}, doi = {10.1038/s12276-018-0065-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238763}, pages = {1-16}, year = {2018}, abstract = {The metabolic rewiring that occurs during cell transformation is a hallmark of cancer. It is diverse in different cancers as it reflects different combinations of oncogenic drivers, tumor suppressors, and the microenvironment. Metabolic rewiring is essential to cancer as it enables uncontrolled proliferation and adaptation to the fluctuating availability of nutrients and oxygen caused by poor access to the vasculature due to tumor growth and a foreign microenvironment encountered during metastasis. Increasing evidence now indicates that the metabolic state in cancer cells also plays a causal role in tumor growth and metastasis, for example through the action of oncometabolites, which modulate cell signaling and epigenetic pathways to promote malignancy. In addition to altering the metabolic state in cancer cells, some multifunctional enzymes possess non-metabolic functions that also contribute to cell transformation. Some multifunctional enzymes that are highly expressed in cancer, such as pyruvate kinase M2 (PKM2), have non-canonical functions that are co-opted by oncogenic signaling to drive proliferation and inhibit apoptosis. Other multifunctional enzymes that are frequently downregulated in cancer, such as fructose-bisphosphatase 1 (FBP1), are tumor suppressors, directly opposing mitogenic signaling via their non-canonical functions. In some cases, the enzymatic and non-canonical roles of these enzymes are functionally linked, making the modulation of non-metabolic cellular processes dependent on the metabolic state of the cell.}, language = {en} } @article{SelkrigMohammadNgetal.2018, author = {Selkrig, Joel and Mohammad, Farhan and Ng, Soon Hwee and Chua, Jia Yi and Tumkaya, Tayfun and Ho, Joses and Chiang, Yin Ning and Rieger, Dirk and Pettersson, Sven and Helfrich-F{\"o}rster, Charlotte and Yew, Joanne Y. and Claridge-Chang, Adam}, title = {The Drosophila microbiome has a limited influence on sleep, activity, and courtship behaviors}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, doi = {10.1038/s41598-018-28764-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235891}, year = {2018}, abstract = {In animals, commensal microbes modulate various physiological functions, including behavior. While microbiota exposure is required for normal behavior in mammals, it is not known how widely this dependency is present in other animal species. We proposed the hypothesis that the microbiome has a major influence on the behavior of the vinegar fly (Drosophila melanogaster), a major invertebrate model organism. Several assays were used to test the contribution of the microbiome on some well-characterized behaviors: defensive behavior, sleep, locomotion, and courtship in microbe-bearing, control flies and two generations of germ-free animals. None of the behaviors were largely influenced by the absence of a microbiome, and the small or moderate effects were not generalizable between replicates and/or generations. These results refute the hypothesis, indicating that the Drosophila microbiome does not have a major influence over several behaviors fundamental to the animal's survival and reproduction. The impact of commensal microbes on animal behaviour may not be broadly conserved.}, language = {en} } @article{NerreterLetschertGoetzetal.2019, author = {Nerreter, Thomas and Letschert, Sebastian and G{\"o}tz, Ralph and Doose, S{\"o}ren and Danhof, Sophia and Einsele, Hermann and Sauer, Markus and Hudecek, Michael}, title = {Super-resolution microscopy reveals ultra-low CD19 expression on myeloma cells that triggers elimination by CD19 CAR-T}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-10948-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232258}, year = {2019}, abstract = {Immunotherapy with chimeric antigen receptor-engineered T-cells (CAR-T) is under investigation in multiple myeloma. There are reports of myeloma remission after CD19 CAR-T therapy, although CD19 is hardly detectable on myeloma cells by flow cytometry (FC). We apply single molecule-sensitive direct stochastic optical reconstruction microscopy (dSTORM), and demonstrate CD19 expression on a fraction of myeloma cells (10.3-80\%) in 10 out of 14 patients (density: 13-5,000 molecules per cell). In contrast, FC detects CD19 in only 2 of these 10 patients, on a smaller fraction of cells. Treatment with CD19 CAR-T in vitro results in elimination of CD19-positive myeloma cells, including those with <100 CD19 molecules per cell. Similar data are obtained by dSTORM analyses of CD20 expression on myeloma cells and CD20 CAR-T. These data establish a sensitivity threshold for CAR-T and illustrate how super-resolution microscopy can guide patient selection in immunotherapy to exploit ultra-low density antigens.}, language = {en} } @article{MuellerCosentinoFoerstneretal.2018, author = {M{\"u}ller, Laura S. M. and Cosentino, Ra{\´u}l O. and F{\"o}rstner, Konrad U. and Guizetti, Julien and Wedel, Carolin and Kaplan, Noam and Janzen, Christian J. and Arampatzi, Panagiota and Vogel, J{\"o}rg and Steinbiss, Sascha and Otto, Thomas D. and Saliba, Antoine-Emmanuel and Sebra, Robert P. and Siegel, T. Nicolai}, title = {Genome organization and DNA accessibility control antigenic variation in trypanosomes}, series = {Nature}, volume = {563}, journal = {Nature}, doi = {10.1038/s41586-018-0619-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224265}, pages = {121-125}, year = {2018}, abstract = {Many evolutionarily distant pathogenic organisms have evolved similar survival strategies to evade the immune responses of their hosts. These include antigenic variation, through which an infecting organism prevents clearance by periodically altering the identity of proteins that are visible to the immune system of the host1. Antigenic variation requires large reservoirs of immunologically diverse antigen genes, which are often generated through homologous recombination, as well as mechanisms to ensure the expression of one or very few antigens at any given time. Both homologous recombination and gene expression are affected by three-dimensional genome architecture and local DNA accessibility2,3. Factors that link three-dimensional genome architecture, local chromatin conformation and antigenic variation have, to our knowledge, not yet been identified in any organism. One of the major obstacles to studying the role of genome architecture in antigenic variation has been the highly repetitive nature and heterozygosity of antigen-gene arrays, which has precluded complete genome assembly in many pathogens. Here we report the de novo haplotype-specific assembly and scaffolding of the long antigen-gene arrays of the model protozoan parasite Trypanosoma brucei, using long-read sequencing technology and conserved features of chromosome folding4. Genome-wide chromosome conformation capture (Hi-C) reveals a distinct partitioning of the genome, with antigen-encoding subtelomeric regions that are folded into distinct, highly compact compartments. In addition, we performed a range of analyses—Hi-C, fluorescence in situ hybridization, assays for transposase-accessible chromatin using sequencing and single-cell RNA sequencing—that showed that deletion of the histone variants H3.V and H4.V increases antigen-gene clustering, DNA accessibility across sites of antigen expression and switching of the expressed antigen isoform, via homologous recombination. Our analyses identify histone variants as a molecular link between global genome architecture, local chromatin conformation and antigenic variation.}, language = {en} } @article{MercierWolmaransSchubertetal.2019, author = {Mercier, Rebecca and Wolmarans, Annemarie and Schubert, Jonathan and Neuweiler, Hannes and Johnson, Jill L. and LaPointe, Paul}, title = {The conserved NxNNWHW motif in Aha-type co-chaperones modulates the kinetics of Hsp90 ATPase stimulation}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-09299-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224007}, year = {2019}, abstract = {Hsp90 is a dimeric molecular chaperone that is essential for the folding and activation of hundreds of client proteins. Co-chaperone proteins regulate the ATP-driven Hsp90 client activation cycle. Aha-type co-chaperones are the most potent stimulators of the Hsp90 ATPase activity but the relationship between ATPase regulation and in vivo activity is poorly understood. We report here that the most strongly conserved region of Aha-type co-chaperones, the N terminal NxNNWHW motif, modulates the apparent affinity of Hsp90 for nucleotide substrates. The ability of yeast Aha-type co-chaperones to act in vivo is ablated when the N terminal NxNNWHW motif is removed. This work suggests that nucleotide exchange during the Hsp90 functional cycle may be more important than rate of catalysis.}, language = {en} } @article{LuebckeEbbersVolzkeetal.2019, author = {L{\"u}bcke, Paul M. and Ebbers, Meinolf N. B. and Volzke, Johann and Bull, Jana and Kneitz, Susanne and Engelmann, Robby and Lang, Hermann and Kreikemeyer, Bernd and M{\"u}ller-Hilke, Brigitte}, title = {Periodontal treatment prevents arthritis in mice and methotrexate ameliorates periodontal bone loss}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-44512-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237355}, year = {2019}, abstract = {Recent studies indicate a causal relationship between the periodontal pathogen P. gingivalis and rheumatoid arthritis involving the production of autoantibodies against citrullinated peptides. We therefore postulated that therapeutic eradication P. gingivalis may ameliorate rheumatoid arthritis development and here turned to a mouse model in order to challenge our hypothesis. F1 (DBA/1 x B10.Q) mice were orally inoculated with P. gingivalis before collagen-induced arthritis was provoked. Chlorhexidine or metronidazole were orally administered either before or during the induction phase of arthritis and their effects on arthritis progression and alveolar bone loss were compared to intraperitoneally injected methotrexate. Arthritis incidence and severity were macroscopically scored and alveolar bone loss was evaluated via microcomputed tomography. Serum antibody titres against P. gingivalis were quantified by ELISA and microbial dysbiosis following oral inoculation was monitored in stool samples via microbiome analyses. Both, oral chlorhexidine and metronidazole reduced the incidence and ameliorated the severity of collagen-induced arthritis comparable to methotrexate. Likewise, all three therapies attenuated alveolar bone loss. Relative abundance of Porphyromonadaceae was increased after oral inoculation with P. gingivalis and decreased after treatment. This is the first study to describe beneficial effects of non-surgical periodontal treatment on collagen-induced arthritis in mice and suggests that mouthwash with chlorhexidine or metronidazole may also be beneficial for patients with rheumatoid arthritis and a coexisting periodontitis. Methotrexate ameliorated periodontitis in mice, further raising the possibility that methotrexate may also positively impact on the tooth supporting tissues of patients with rheumatoid arthritis.}, language = {en} } @article{LuBoswellBoswelletal.2019, author = {Lu, Yuan and Boswell, Wiliam and Boswell, Mikki and Klotz, Barbara and Kneitz, Susanne and Regneri, Janine and Savage, Markita and Mendoza, Cristina and Postlethwait, John and Warren, Wesley C. and Schartl, Manfred and Walter, Ronald B.}, title = {Application of the Transcriptional Disease Signature (TDSs) to Screen Melanoma-Effective Compounds in a Small Fish Model}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-018-36656-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237322}, year = {2019}, abstract = {Cell culture and protein target-based compound screening strategies, though broadly utilized in selecting candidate compounds, often fail to eliminate candidate compounds with non-target effects and/or safety concerns until late in the drug developmental process. Phenotype screening using intact research animals is attractive because it can help identify small molecule candidate compounds that have a high probability of proceeding to clinical use. Most FDA approved, first-in-class small molecules were identified from phenotypic screening. However, phenotypic screening using rodent models is labor intensive, low-throughput, and very expensive. As a novel alternative for small molecule screening, we have been developing gene expression disease profiles, termed the Transcriptional Disease Signature (TDS), as readout of small molecule screens for therapeutic molecules. In this concept, compounds that can reverse, or otherwise affect known disease-associated gene expression patterns in whole animals may be rapidly identified for more detailed downstream direct testing of their efficacy and mode of action. To establish proof of concept for this screening strategy, we employed a transgenic strain of a small aquarium fish, medaka (Oryzias latipes), that overexpresses the malignant melanoma driver gene xmrk, a mutant egfr gene, that is driven by a pigment cell-specific mitf promoter. In this model, melanoma develops with 100\% penetrance. Using the transgenic medaka malignant melanoma model, we established a screening system that employs the NanoString nCounter platform to quantify gene expression within custom sets of TDS gene targets that we had previously shown to exhibit differential transcription among xmrk-transgenic and wild-type medaka. Compound-modulated gene expression was identified using an internet-accessible custom-built data processing pipeline. The effect of a given drug on the entire TDS profile was estimated by comparing compound-modulated genes in the TDS using an activation Z-score and Kolmogorov-Smirnov statistics. TDS gene probes were designed that target common signaling pathways that include proliferation, development, toxicity, immune function, metabolism and detoxification. These pathways may be utilized to evaluate candidate compounds for potential favorable, or unfavorable, effects on melanoma-associated gene expression. Here we present the logistics of using medaka to screen compounds, as well as, the development of a user-friendly NanoString data analysis pipeline to support feasibility of this novel TDS drug-screening strategy.}, language = {en} } @article{KrausGrimmSeibel2018, author = {Kraus, Michael and Grimm, Clemens and Seibel, J{\"u}rgen}, title = {Reversibility of a Point Mutation Induced Domain Shift: Expanding the Conformational Space of a Sucrose Phosphorylase}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, doi = {10.1038/s41598-018-28802-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224845}, year = {2018}, abstract = {Despite their popularity as enzyme engineering targets structural information about Sucrose Phosphorylases remains scarce. We recently clarified that the Q345F variant of Bifidobacterium adolescentis Sucrose Phosphorylase is able to accept large polyphenolic substrates like resveratrol via a domain shift. Here we present a crystal structure of this variant in a conformation suitable for the accommodation of the donor substrate sucrose in excellent agreement with the wild type structure. Remarkably, this conformation does not feature the previously observed domain shift which is therefore reversible and part of a dynamic process rather than a static phenomenon. This crystallographic snapshot completes our understanding of the catalytic cycle of this useful variant and will allow for a more rational design of further generations of Sucrose Phosphorylase variants.}, language = {en} } @article{KrausBrinkSiegel2019, author = {Kraus, Amelie J. and Brink, Benedikt G. and Siegel, T. Nicolai}, title = {Efficient and specific oligo-based depletion of rRNA}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-48692-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224829}, year = {2019}, abstract = {In most organisms, ribosomal RNA (rRNA) contributes to >85\% of total RNA. Thus, to obtain useful information from RNA-sequencing (RNA-seq) analyses at reasonable sequencing depth, typically, mature polyadenylated transcripts are enriched or rRNA molecules are depleted. Targeted depletion of rRNA is particularly useful when studying transcripts lacking a poly(A) tail, such as some non-coding RNAs (ncRNAs), most bacterial RNAs and partially degraded or immature transcripts. While several commercially available kits allow effective rRNA depletion, their efficiency relies on a high degree of sequence homology between oligonucleotide probes and the target RNA. This restricts the use of such kits to a limited number of organisms with conserved rRNA sequences. In this study we describe the use of biotinylated oligos and streptavidin-coated paramagnetic beads for the efficient and specific depletion of trypanosomal rRNA. Our approach reduces the levels of the most abundant rRNA transcripts to less than 5\% with minimal off-target effects. By adjusting the sequence of the oligonucleotide probes, our approach can be used to deplete rRNAs or other abundant transcripts independent of species. Thus, our protocol provides a useful alternative for rRNA removal where enrichment of polyadenylated transcripts is not an option and commercial kits for rRNA are not available.}, language = {en} } @article{KimAmoresKangetal.2019, author = {Kim, Bo-Mi and Amores, Angel and Kang, Seunghyun and Ahn, Do-Hwan and Kim, Jin-Hyoung and Kim, Il-Chan and Lee, Jun Hyuck and Lee, Sung Gu and Lee, Hyoungseok and Lee, Jungeun and Kim, Han-Woo and Desvignes, Thomas and Batzel, Peter and Sydes, Jason and Titus, Tom and Wilson, Catherine A. and Catchen, Julian M. and Warren, Wesley C. and Schartl, Manfred and Detrich, H. William III and Postlethwait, John H. and Park, Hyun}, title = {Antarctic blackfin icefish genome reveals adaptations to extreme environments}, series = {Nature Ecology \& Evolution}, volume = {3}, journal = {Nature Ecology \& Evolution}, doi = {10.1038/s41559-019-0812-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325811}, pages = {469-478}, year = {2019}, abstract = {Icefishes (suborder Notothenioidei; family Channichthyidae) are the only vertebrates that lack functional haemoglobin genes and red blood cells. Here, we report a high-quality genome assembly and linkage map for the Antarctic blackfin icefish Chaenocephalus aceratus, highlighting evolved genomic features for its unique physiology. Phylogenomic analysis revealed that Antarctic fish of the teleost suborder Notothenioidei, including icefishes, diverged from the stickleback lineage about 77 million years ago and subsequently evolved cold-adapted phenotypes as the Southern Ocean cooled to sub-zero temperatures. Our results show that genes involved in protection from ice damage, including genes encoding antifreeze glycoprotein and zona pellucida proteins, are highly expanded in the icefish genome. Furthermore, genes that encode enzymes that help to control cellular redox state, including members of the sod3 and nqo1 gene families, are expanded, probably as evolutionary adaptations to the relatively high concentration of oxygen dissolved in cold Antarctic waters. In contrast, some crucial regulators of circadian homeostasis (cry and per genes) are absent from the icefish genome, suggesting compromised control of biological rhythms in the polar light environment. The availability of the icefish genome sequence will accelerate our understanding of adaptation to extreme Antarctic environments.}, language = {en} } @article{HinesMaricHinesetal.2018, author = {Hines, Rochelle M. and Maric, Hans Michael and Hines, Dustin J. and Modgil, Amit and Panzanelli, Patrizia and Nakamura, Yasuko and Nathanson, Anna J. and Cross, Alan and Deeb, Tarek and Brandon, Nicholas J. and Davies, Paul and Fritschy, Jean-Marc and Schindelin, Hermann and Moss, Stephen J.}, title = {Developmental seizures and mortality result from reducing GABAA receptor α2-subunit interaction with collybistin}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-05481-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320719}, year = {2018}, abstract = {Fast inhibitory synaptic transmission is mediated by γ-aminobutyric acid type A receptors (GABAARs) that are enriched at functionally diverse synapses via mechanisms that remain unclear. Using isothermal titration calorimetry and complementary methods we demonstrate an exclusive low micromolar binding of collybistin to the α2-subunit of GABAARs. To explore the biological relevance of collybistin-α2-subunit selectivity, we generate mice with a mutation in the α2-subunit-collybistin binding region (Gabra2-1). The mutation results in loss of a distinct subset of inhibitory synapses and decreased amplitude of inhibitory synaptic currents. Gabra2-1 mice have a striking phenotype characterized by increased susceptibility to seizures and early mortality. Surviving Gabra2-1 mice show anxiety and elevations in electroencephalogram δ power, which are ameliorated by treatment with the α2/α3-selective positive modulator, AZD7325. Taken together, our results demonstrate an α2-subunit selective binding of collybistin, which plays a key role in patterned brain activity, particularly during development.}, language = {en} } @article{HennrichRomanovHornetal.2018, author = {Hennrich, Marco L. and Romanov, Natalie and Horn, Patrick and Jaeger, Samira and Eckstein, Volker and Steeples, Violetta and Ye, Fei and Ding, Ximing and Poisa-Beiro, Laura and Mang, Ching Lai and Lang, Benjamin and Boultwood, Jacqueline and Luft, Thomas and Zaugg, Judith B. and Pellagatti, Andrea and Bork, Peer and Aloy, Patrick and Gavin, Anne-Claude and Ho, Anthony D.}, title = {Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-06353-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319877}, year = {2018}, abstract = {Diminishing potential to replace damaged tissues is a hallmark for ageing of somatic stem cells, but the mechanisms remain elusive. Here, we present proteome-wide atlases of age-associated alterations in human haematopoietic stem and progenitor cells (HPCs) and five other cell populations that constitute the bone marrow niche. For each, the abundance of a large fraction of the ~12,000 proteins identified is assessed in 59 human subjects from different ages. As the HPCs become older, pathways in central carbon metabolism exhibit features reminiscent of the Warburg effect, where glycolytic intermediates are rerouted towards anabolism. Simultaneously, altered abundance of early regulators of HPC differentiation reveals a reduced functionality and a bias towards myeloid differentiation. Ageing causes alterations in the bone marrow niche too, and diminishes the functionality of the pathways involved in HPC homing. The data represent a valuable resource for further analyses, and for validation of knowledge gained from animal models.}, language = {en} } @article{HeilSchreiberGoetzetal.2018, author = {Heil, Hannah S. and Schreiber, Benjamin and G{\"o}tz, Ralph and Emmerling, Monika and Dabauvalle, Marie-Christine and Krohne, Georg and H{\"o}fling, Sven and Kamp, Martin and Sauer, Markus and Heinze, Katrin G.}, title = {Sharpening emitter localization in front of a tuned mirror}, series = {Light: Science \& Applications}, volume = {7}, journal = {Light: Science \& Applications}, doi = {10.1038/s41377-018-0104-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228080}, year = {2018}, abstract = {Single-molecule localization microscopy (SMLM) aims for maximized precision and a high signal-to-noise ratio1. Both features can be provided by placing the emitter in front of a metal-dielectric nanocoating that acts as a tuned mirror2,3,4. Here, we demonstrate that a higher photon yield at a lower background on biocompatible metal-dielectric nanocoatings substantially improves SMLM performance and increases the localization precision by up to a factor of two. The resolution improvement relies solely on easy-to-fabricate nanocoatings on standard glass coverslips and is spectrally and spatially tunable by the layer design and wavelength, as experimentally demonstrated for dual-color SMLM in cells.}, language = {en} } @phdthesis{Hahn2024, author = {Hahn, Sarah}, title = {Investigating non-canonical, 5' UTR-dependent translation of MYC and its impact on colorectal cancer development}, doi = {10.25972/OPUS-36420}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-364202}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Colorectal cancer (CRC) is the second most common tumour disease in Germany, with the sequential accumulation of certain mutations playing a decisive role in the transition from adenoma to carcinoma. In particular, deregulation of the Wnt signalling pathway and the associated deregulated expression of the MYC oncoprotein play a crucial role. Targeting MYC thus represents an important therapeutic approach in the treatment of tumours. Since direct inhibition of MYC is challenging, various approaches have been pursued to date to target MYC indirectly. The MYC 5' UTR contains an internal ribosomal entry site (IRES), which has a particular role in the initiation of MYC translation, especially in multiple myeloma. As basis for this work, it was hypothesised on the basis of previous data that translation of MYC potentially occurs via its IRES in CRC as well. Based on this, two IRES inhibitors were tested for their potential to regulate MYC expression in CRC cells. In addition, alternative, 5' UTR-dependent translation of MYC and interacting factors were investigated. EIF3D was identified as a MYC 5' UTR binding protein which has the potential to regulate MYC expression in CRC. The results of this work suggest that there is a link between eIF3D and MYC expression/translation, rendering eIF3D a potential therapeutic target for MYC-driven CRCs.}, subject = {Myc}, language = {en} } @article{GroebnerWorstWeischenfeldtetal.2018, author = {Gr{\"o}bner, Susanne N. and Worst, Barbara C. and Weischenfeldt, Joachim and Buchhalter, Ivo and Kleinheinz, Kortine and Rudneva, Vasilisa A. and Johann, Pascal D. and Balasubramanian, Gnana Prakash and Segura-Wang, Maia and Brabetz, Sebastian and Bender, Sebastian and Hutter, Barbara and Sturm, Dominik and Pfaff, Elke and H{\"u}bschmann, Daniel and Zipprich, Gideon and Heinold, Michael and Eils, J{\"u}rgen and Lawerenz, Christian and Erkek, Serap and Lambo, Sander and Waszak, Sebastian and Blattmann, Claudia and Borkhardt, Arndt and Kuhlen, Michaela and Eggert, Angelika and Fulda, Simone and Gessler, Manfred and Wegert, Jenny and Kappler, Roland and Baumhoer, Daniel and Stefan, Burdach and Kirschner-Schwabe, Renate and Kontny, Udo and Kulozik, Andreas E. and Lohmann, Dietmar and Hettmer, Simone and Eckert, Cornelia and Bielack, Stefan and Nathrath, Michaela and Niemeyer, Charlotte and Richter, G{\"u}nther H. and Schulte, Johannes and Siebert, Reiner and Westermann, Frank and Molenaar, Jan J. and Vassal, Gilles and Witt, Hendrik and Burkhardt, Birgit and Kratz, Christian P. and Witt, Olaf and van Tilburg, Cornelis M. and Kramm, Christof M. and Fleischhack, Gudrun and Dirksen, Uta and Rutkowski, Stefan and Fr{\"u}hwald, Michael and Hoff, Katja von and Wolf, Stephan and Klingebeil, Thomas and Koscielniak, Ewa and Landgraf, Pablo and Koster, Jan and Resnick, Adam C. and Zhang, Jinghui and Liu, Yanling and Zhou, Xin and Waanders, Angela J. and Zwijnenburg, Danny A. and Raman, Pichai and Brors, Benedikt and Weber, Ursula D. and Northcott, Paul A. and Pajtler, Kristian W. and Kool, Marcel and Piro, Rosario M. and Korbel, Jan O. and Schlesner, Matthias and Eils, Roland and Jones, David T. W. and Lichter, Peter and Chavez, Lukas and Zapatka, Marc and Pfister, Stefan M.}, title = {The landscape of genomic alterations across childhood cancers}, series = {Nature}, volume = {555}, journal = {Nature}, organization = {ICGC PedBrain-Seq Project, ICGC MMML-Seq Project,}, doi = {10.1038/nature25480}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229579}, pages = {321-327}, year = {2018}, abstract = {Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8\% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50\% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.}, language = {en} } @article{FranchiniJonesXiongetal.2018, author = {Franchini, Paolo and Jones, Julia C. and Xiong, Peiwen and Kneitz, Susanne and Gompert, Zachariah and Warren, Wesley C. and Walter, Ronald B. and Meyer, Axel and Schartl, Manfred}, title = {Long-term experimental hybridisation results in the evolution of a new sex chromosome in swordtail fish}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-07648-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228396}, year = {2018}, abstract = {The remarkable diversity of sex determination mechanisms known in fish may be fuelled by exceptionally high rates of sex chromosome turnovers or transitions. However, the evolutionary causes and genomic mechanisms underlying this variation and instability are yet to be understood. Here we report on an over 30-year evolutionary experiment in which we tested the genomic consequences of hybridisation and selection between two Xiphophorus fish species with different sex chromosome systems. We find that introgression and imposing selection for pigmentation phenotypes results in the retention of an unexpectedly large maternally derived genomic region. During the hybridisation process, the sex-determining region of the X chromosome from one parental species was translocated to an autosome in the hybrids leading to the evolution of a new sex chromosome. Our results highlight the complexity of factors contributing to patterns observed in hybrid genomes, and we experimentally demonstrate that hybridisation can catalyze rapid evolution of a new sex chromosome.}, language = {en} } @phdthesis{Heimberger2024, author = {Heimberger, Kevin}, title = {Regulation pathways of c-MYC under glutamine-starving conditions in colon carcinoma cells}, doi = {10.25972/OPUS-36331}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-363316}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Colon carcinomas (CRC) are statistically among the most fatal cancer types and hence one of the top reasons for premature mortality in the developed world. CRC cells are characterized by high proliferation rates caused by deregulation of gene transcription of proto-oncogenes and general chromosomal instability. On macroscopic level, CRC cells show a strongly altered nutrient and energy metabolism. This work presents research to understand general links between the metabolism and transcription alteration. Mainly focussing on glutamine dependency, shown in colon carcinoma cells and expression pathways of the pro-proliferation protein c-MYC. Previous studies showed that a depletion of glutamine in the cultivation medium of colon carcinoma cell lines caused a proliferation arrest and a strong decrease of overall c-MYC levels. Re-addition of glutamine quickly replenished c-MYC levels through an unknown mechanism. Several proteins altering this regulation mechanism were identified and proposed as possible starting point for further in detail studies to unveil the precise biochemical pathway controlling c-MYC translation repression and reactivation in a rapid manner. On a transcriptional level the formation of RNA:DNA hybrids, so called R-loops, was observed under glutamine depleted conditions. The introduction and overexpression of RNaseH1, a R-loop degrading enzyme, in combination with an ectopically expressed c-MYC variant, independent of cellular regulation mechanisms by deleting the regulatory 3'-UTR of the c-MYC gene, lead to a high rate of apoptotic cells in culture. Expression of a functionally inactive variant of RNaseH1 abolished this effect. This indicates a regulatory function of R-loops formed during glutamine starvation in the presence of c-MYC protein in a cell. Degradation of R-loops and high c-MYC levels in this stress condition had no imminent effect on the cell cycle progression is CRC cells but disturbed the nucleotide metabolism. Nucleotide triphosphates were strongly reduced in comparison to starving cells without R-loop degradation and proliferating cells. This study proposes a model of a terminal cycle of transcription termination, unregulated initiation and elongation of transcription leading to a depletion of energy resources of cells. This could finally lead to high apoptosis of the cells. Sequencing experiments to determine a coinciding of termination sites and R-loop formation sides failed so far but show a starting point for further studies in this essential survival mechanism involving R-loop formation and c-MYC downregulation.}, subject = {Myc}, language = {en} } @phdthesis{Aroko2024, author = {Aroko, Erick Onyango}, title = {Trans-regulation of \(Trypanosoma\) \(brucei\) variant surface glycoprotein (VSG) mRNA and structural analysis of a \(Trypanosoma\) \(vivax\) VSG using X-ray crystallography}, doi = {10.25972/OPUS-24177}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241773}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {African trypanosomes are unicellular parasites that cause nagana and sleeping sickness in livestock and man, respectively. The major pathogens for the animal disease include Trypanosoma vivax, T. congolense, and T. brucei brucei, whereas T. b. gambiense and T. b. rhodesiense are responsible for human infections. Given that the bloodstream form (BSF) of African trypanosomes is exclusively extracellular, its cell surface forms a critical boundary with the host environment. The cell surface of the BSF African trypanosomes is covered by a dense coat of immunogenic variant surface glycoproteins (VSGs). This surface protein acts as an impenetrable shield that protects the cells from host immune factors and is also involved in antibody clearance and antigenic variation, which collectively ensure that the parasite stays ahead of the host immune system. Gene expression in T. brucei is markedly different from other eukaryotes: most genes are transcribed as long polycistronic units, processed by trans-splicing a 39-nucleotide mini exon at the 5′ and polyadenylation at the 3′ ends of individual genes to generate the mature mRNA. Therefore, gene expression in T. brucei is regulated post-transcriptionally, mainly by the action of RNA binding proteins (RBPs) and conserved elements in the 3′ untranslated regions (UTR) of transcripts. The expression of VSGs is highly regulated, and only a single VSG gene is expressed at a time from one of the ~15 subtelomeric domains termed bloodstream expression sites (BES). When cells are engineered to simultaneously express two VSGs, the total VSG mRNA do not exceed the wild type amounts. This suggests that a robust VSG mRNA balancing mechanism exists in T. brucei. The present study uses inducible and constitutive expression of ectopic VSG genes to show that the endogenous VSG mRNA is regulated only if the second VSG is properly targeted to the ER. Additionally, the endogenous VSG mRNA response is triggered when high amounts of the GFP reporter with a VSG 3′UTR is targeted to the ER. Further evidence that non-VSG ER import signals can efficiently target VSGs to the ER is presented. This study suggests that a robust trans-regulation of the VSG mRNA is elicited at the ER through a feedback loop to keep the VSG transcripts in check and avoid overshooting the secretory pathway capacity. Further, it was shown that induction of expression of the T. vivax VSG ILDat1.2 in T. brucei causes a dual cell cycle arrest, with concomitant upregulation of the protein associated with differentiation (PAD1) expression. It could be shown that T. vivax VSG ILDat1.2 can only be sufficiently expressed in T. brucei after replacing its native GPI signal peptide with that of a T. brucei VSG. Taken together, these data indicate that inefficient VSG GPI anchoring and expression of low levels of the VSG protein can trigger differentiation from slender BSF to stumpy forms. However, a second T. vivax VSG, ILDat2.1, is not expressed in T. brucei even after similar modifications to its GPI signals. An X-ray crystallography approach was utilized to solve the N-terminal domain (NTD) structure of VSG ILDat1.2. This is first structure of a non-T. brucei VSG, and the first of a surface protein of T. vivax to be solved. VSG ILDat1.2 NTD maintains the three-helical bundle scaffold conserved in T. brucei surface proteins. However, it is likely that there are variations in the architecture of the membrane proximal region of the ILDat1.2 NTD and its CTD from T. brucei VSGs. The tractable T. brucei system is presented as a model that can be used to study surface proteins of related trypanosome species, thus creating avenues for further characterization of trypanosome surface coats.}, subject = {Trypanosoma vivax}, language = {en} } @phdthesis{KuklovskyformerFinke2024, author = {Kuklovsky [former Finke], Valerie}, title = {Are some bees smarter than others? An examination of consistent individual differences in the cognitive abilities of honey bees}, doi = {10.25972/OPUS-32301}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323012}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Cognition refers to the ability to of animals to acquire, process, store and use vital information from the environment. Cognitive processes are necessary to predict the future and reduce the uncertainty of the ever-changing environment. Classically, research on animal cognition focuses on decisive cognitive tests to determine the capacity of a species by the testing the ability of a few individuals. This approach views variability between these tested key individuals as unwanted noise and is thus often neglected. However, inter-individual variability provides important insights to behavioral plasticity, cognitive specialization and brain modularity. Honey bees Apis mellifera are a robust and traditional model for the study of learning, memory and cognition due to their impressive capabilities and rich behavioral repertoire. In this thesis I have applied a novel view on the learning abilities of honey bees by looking explicitly at individual differences in a variety of learning tasks. Are some individual bees consistently smarter than some of her sisters? If so, will a smart individual always perform good independent of the time, the context and the cognitive requirements or do bees show distinct isolated 'cognitive modules'? My thesis presents the first comprehensive investigation of consistent individual differences in the cognitive abilities of honey bees. To speak of an individual as behaving consistently, a crucial step is to test the individual multiple times to examine the repeatability of a behavior. I show that free-flying bees remain consistent in a visual discrimination task for three consecutive days. Successively, I explored individual consistency in cognitive proficiency across tasks involving different sensory modalities, contexts and cognitive requirements. I found that free-flying bees show a cognitive specialization between visual and olfactory learning but remained consistent across a simple discrimination task and a complex concept learning task. I wished to further explore individual consistency with respect to tasks of different cognitive complexity, a question that has never been tackled before in an insect. I thus performed a series of four experiments using either visual or olfactory stimuli and a different training context (free-flying and restrained) and tested bees in a discrimination task, reversal learning and negative patterning. Intriguingly, across all these experiments I evidenced the same results: The bees' performances were consistent across the discrimination task and reversal learning and negative patterning respectively. No association was evidenced between reversal learning and negative patterning. After establishing the existence of consistent individual differences in the cognitive proficiency of honey bees I wished to determine factors which could underlie these differences. Since genetic components are known to underlie inter-individual variability in learning abilities, I studied the effects of genetics on consistency in cognitive proficiency by contrasting bees originating from either from a hive with a single patriline (low genetic diversity) or with multiple patrilines (high genetic diversity). These two groups of bees showed differences in the patterns of individually correlated performances, indicating a genetic component accounts for consistent cognitive individuality. Another major factor underlying variability in learning performances is the individual responsiveness to sucrose solution and to visual stimuli, as evidenced by many studies on restrained bees showing a positive correlation between responsiveness to task relevant stimuli and learning performances. I thus tested whether these relationships between sucrose/visual responsiveness and learning performances are applicable for free-flying bees. Free-flying bees were again subjected to reversal learning and negative patterning and subsequently tested in the laboratory for their responsiveness to sucrose and to light. There was no evidence of a positive relationship between sucrose/visual responsiveness and neither performances of free-flying bees in an elemental discrimination, reversal learning and negative patterning. These findings indicate that relationships established between responsiveness to task relevant stimuli and learning proficiency established in the laboratory with restrained bees might not hold true for a completely different behavioral context i.e. for free-flying bees in their natural environment. These results show that the honey bee is an excellent insect model to study consistency in cognitive proficiency and to identify the underlying factors. I mainly discuss the results with respect to the question of brain modularity in insects and the adaptive significance of individuality in cognitive abilities for honey bee colonies. I also provide a proposition of research questions which tie in this theme of consistent cognitive proficiency and could provide fruitful areas for future research.}, subject = {Lernen}, language = {en} } @article{LetunicKhedkarBork2021, author = {Letunic, Ivica and Khedkar, Supriya and Bork, Peer}, title = {SMART: recent updates, new developments and status in 2020}, series = {Nucleic Acids Research}, volume = {49}, journal = {Nucleic Acids Research}, number = {D1}, doi = {10.1093/nar/gkaa937}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-363816}, pages = {D458-D460}, year = {2021}, abstract = {SMART (Simple Modular Architecture Research Tool) is a web resource (https://smart.embl.de) for the identification and annotation of protein domains and the analysis of protein domain architectures. SMART version 9 contains manually curatedmodels formore than 1300 protein domains, with a topical set of 68 new models added since our last update article (1). All the new models are for diverse recombinase families and subfamilies and as a set they provide a comprehensive overview of mobile element recombinases namely transposase, integrase, relaxase, resolvase, cas1 casposase and Xer like cellular recombinase. Further updates include the synchronization of the underlying protein databases with UniProt (2), Ensembl (3) and STRING (4), greatly increasing the total number of annotated domains and other protein features available in architecture analysis mode. Furthermore, SMART's vector-based protein display engine has been extended and updated to use the latest web technologies and the domain architecture analysis components have been optimized to handle the increased number of protein features available.}, language = {en} } @phdthesis{Hartmann2024, author = {Hartmann, Oliver}, title = {Development of somatic modified mouse models of Non-Small cell lung cancer}, doi = {10.25972/OPUS-36340}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-363401}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In 2020, cancer was the leading cause of death worldwide, accounting for nearly 10 million deaths. Lung cancer was the most common cancer, with 2.21 million cases per year in both sexes. This non-homogeneous disease is further subdivided into small cell lung cancer (SCLC, 15\%) and non-small cell lung cancer (NSCLC, 85\%). By 2023, the American Cancer Society estimates that NSCLC will account for 13\% of all new cancer cases and 21\% of all estimated cancer deaths. In recent years, the treatment of patients with NSCLC has improved with the development of new therapeutic interventions and the advent of targeted and personalised therapies. However, these advances have only marginally improved the five-year survival rate, which remains alarmingly low for patients with NSCLC. This observation highlights the importance of having more appropriate experimental and preclinical models to recapitulate, identify and test novel susceptibilities in NSCLC. In recent years, the Trp53fl/fl KRaslsl-G12D/wt mouse model developed by Tuveson, Jacks and Berns has been the main in vivo model used to study NSCLC. This model mimics ADC and SCC to a certain extent. However, it is limited in its ability to reflect the genetic complexity of NSCLC. In this work, we use CRISPR/Cas9 genome editing with targeted mutagenesis and gene deletions to recapitulate the conditional model. By comparing the Trp53fl/fl KRaslsl- G12D/wt with the CRISPR-mediated Trp53mut KRasG12D, we demonstrated that both showed no differences in histopathological features, morphology, and marker expression. Furthermore, next-generation sequencing revealed a very high similarity in their transcriptional profile. Adeno-associated virus-mediated tumour induction and the modular design of the viral vector allow us to introduce additional mutations in a timely manner. CRISPR-mediated mutation of commonly mutated tumour suppressors in NSCLC reliably recapitulated the phenotypes described in patients in the animal model. Lastly, the dual viral approach could induce the formation of lung tumours not only in constitutive Cas9 expressing animals, but also in wildtype animals. Thus, the implementation of CRISPR genome editing can rapidly advance the repertoire of in vivo models for NSCLC research. Furthermore, it can reduce the necessity of extensive breeding.}, subject = {CRISPR/Cas-Methode}, language = {en} } @article{LoosKraussLyonsetal.2021, author = {Loos, Jacqueline and Krauss, Jochen and Lyons, Ashley and F{\"o}st, Stephanie and Ohlendorf, Constanze and Racky, Severin and R{\"o}der, Marina and Hudel, Lennart and Herfert, Volker and Tscharntke, Teja}, title = {Local and landscape responses of biodiversity in calcareous grasslands}, series = {Biodiversity and Conservation}, volume = {30}, journal = {Biodiversity and Conservation}, number = {8-9}, issn = {0960-3115}, doi = {10.1007/s10531-021-02201-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-308595}, pages = {2415-2432}, year = {2021}, abstract = {Across Europe, calcareous grasslands become increasingly fragmented and their quality deteriorates through abandonment and land use intensification, both affecting biodiversity. Here, we investigated local and landscape effects on diversity patterns of several taxonomic groups in a landscape of highly fragmented calcareous grassland remnants. We surveyed 31 grassland fragments near G{\"o}ttingen, Germany, in spring and summer 2017 for vascular plants, butterflies and birds, with sampling effort adapted to fragment area. Through regression modelling, we tested relationships between species richness and fragment size (from 314 to 51,395 m\(^2\)), successional stage, habitat connectivity and the per cent cover of arable land in the landscape at several radii. We detected 283 plant species, 53 butterfly species and 70 bird species. Of these, 59 plant species, 19 butterfly species and 9 bird species were grassland specialists. Larger fragments supported twice the species richness of plants than small ones, and hosted more species of butterflies, but not of birds. Larger grassland fragments contained more grassland specialist plants, but not butterfly or bird specialists. Increasing amounts of arable land in the landscape from 20 to 90\% was related to the loss of a third of species of plants, and less so, of butterflies, but not of birds. Per cent cover of arable land negatively correlated to richness of grassland specialist plants and butterflies, but positively to grassland specialist birds. We found no effect by successional stages and habitat connectivity. Our multi-taxa approach highlights the need for conservation management at the local scale, complemented by measures at the landscape scale.}, language = {en} } @article{EckertBohnSpaethe2022, author = {Eckert, Johanna and Bohn, Manuel and Spaethe, Johannes}, title = {Does quantity matter to a stingless bee?}, series = {Animal Cognition}, volume = {25}, journal = {Animal Cognition}, number = {3}, issn = {1435-9448}, doi = {10.1007/s10071-021-01581-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-307696}, pages = {617-629}, year = {2022}, abstract = {Quantitative information is omnipresent in the world and a wide range of species has been shown to use quantities to optimize their decisions. While most studies have focused on vertebrates, a growing body of research demonstrates that also insects such as honeybees possess basic quantitative abilities that might aid them in finding profitable flower patches. However, it remains unclear if for insects, quantity is a salient feature relative to other stimulus dimensions, or if it is only used as a "last resort" strategy in case other stimulus dimensions are inconclusive. Here, we tested the stingless bee Trigona fuscipennis, a species representative of a vastly understudied group of tropical pollinators, in a quantity discrimination task. In four experiments, we trained wild, free-flying bees on stimuli that depicted either one or four elements. Subsequently, bees were confronted with a choice between stimuli that matched the training stimulus either in terms of quantity or another stimulus dimension. We found that bees were able to discriminate between the two quantities, but performance differed depending on which quantity was rewarded. Furthermore, quantity was more salient than was shape. However, quantity did not measurably influence the bees' decisions when contrasted with color or surface area. Our results demonstrate that just as honeybees, small-brained stingless bees also possess basic quantitative abilities. Moreover, invertebrate pollinators seem to utilize quantity not only as "last resort" but as a salient stimulus dimension. Our study contributes to the growing body of knowledge on quantitative cognition in invertebrate species and adds to our understanding of the evolution of numerical cognition.}, language = {en} } @article{DunceMilburnGurusaranetal.2018, author = {Dunce, James M. and Milburn, Amy E. and Gurusaran, Manickam and da Cruz, Irene and Sen, Lee T. and Benavente, Ricardo and Davies, Owen R.}, title = {Structural basis of meiotic telomere attachment to the nuclear envelope by MAJIN-TERB2-TERB1}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-07794-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226416}, year = {2018}, abstract = {Meiotic chromosomes undergo rapid prophase movements, which are thought to facilitate the formation of inter-homologue recombination intermediates that underlie synapsis, crossing over and segregation. The meiotic telomere complex (MAJIN, TERB1, TERB2) tethers telomere ends to the nuclear envelope and transmits cytoskeletal forces via the LINC complex to drive these rapid movements. Here, we report the molecular architecture of the meiotic telomere complex through the crystal structure of MAJIN-TERB2, together with light and X-ray scattering studies of wider complexes. The MAJIN-TERB2 2:2 hetero-tetramer binds strongly to DNA and is tethered through long flexible linkers to the inner nuclear membrane and two TRF1-binding 1:1 TERB2-TERB1 complexes. Our complementary structured illumination microscopy studies and biochemical findings reveal a telomere attachment mechanism in which MAJIN-TERB2-TERB1 recruits telomere-bound TRF1, which is then displaced during pachytene, allowing MAJIN-TERB2-TERB1 to bind telomeric DNA and form a mature attachment plate.}, language = {en} } @article{DoerkPeterlongoMannermaaetal.2019, author = {D{\"o}rk, Thilo and Peterlongo, Peter and Mannermaa, Arto and Bolla, Manjeet K. and Wang, Qin and Dennis, Joe and Ahearn, Thomas and Andrulis, Irene L. and Anton-Culver, Hoda and Arndt, Volker and Aronson, Kristan J. and Augustinsson, Annelie and Beane Freeman, Laura E. and Beckmann, Matthias W. and Beeghly-Fadiel, Alicia and Behrens, Sabine and Bermisheva, Marina and Blomqvist, Carl and Bogdanova, Natalia V. and Bojesen, Stig E. and Brauch, Hiltrud and Brenner, Hermann and Burwinkel, Barbara and Canzian, Federico and Chan, Tsun L. and Chang-Claude, Jenny and Chanock, Stephen J. and Choi, Ji-Yeob and Christiansen, Hans and Clarke, Christine L. and Couch, Fergus J. and Czene, Kamila and Daly, Mary B. and dos-Santos-Silva, Isabel and Dwek, Miriam and Eccles, Diana M. and Ekici, Arif B. and Eriksson, Mikael and Evans, D. Gareth and Fasching, Peter A. and Figueroa, Jonine and Flyger, Henrik and Fritschi, Lin and Gabrielson, Marike and Gago-Dominguez, Manuela and Gao, Chi and Gapstur, Susan M. and Garc{\´i}a-Closas, Montserrat and Garc{\´i}a-S{\´a}enz, Jos{\´e} A. and Gaudet, Mia M. and Giles, Graham G. and Goldberg, Mark S. and Goldgar, David E. and Guen{\´e}l, Pascal and Haeberle, Lothar and Haimann, Christopher A. and H{\aa}kansson, Niclas and Hall, Per and Hamann, Ute and Hartman, Mikael and Hauke, Jan and Hein, Alexander and Hillemanns, Peter and Hogervorst, Frans B. L. and Hooning, Maartje J. and Hopper, John L. and Howell, Tony and Huo, Dezheng and Ito, Hidemi and Iwasaki, Motoki and Jakubowska, Anna and Janni, Wolfgang and John, Esther M. and Jung, Audrey and Kaaks, Rudolf and Kang, Daehee and Kapoor, Pooja Middha and Khusnutdinova, Elza and Kim, Sung-Won and Kitahara, Cari M. and Koutros, Stella and Kraft, Peter and Kristensen, Vessela N. and Kwong, Ava and Lambrechts, Diether and Le Marchand, Loic and Li, Jingmei and Lindstr{\"o}m, Sara and Linet, Martha and Lo, Wing-Yee and Long, Jirong and Lophatananon, Artitaya and Lubiński, Jan and Manoochehri, Mehdi and Manoukian, Siranoush and Margolin, Sara and Martinez, Elena and Matsuo, Keitaro and Mavroudis, Dimitris and Meindl, Alfons and Menon, Usha and Milne, Roger L. and Mohd Taib, Nur Aishah and Muir, Kenneth and Mulligan, Anna Marie and Neuhausen, Susan L. and Nevanlinna, Heli and Neven, Patrick and Newman, William G. and Offit, Kenneth and Olopade, Olufunmilayo I. and Olshan, Andrew F. and Olson, Janet E. and Olsson, H{\aa}kan and Park, Sue K. and Park-Simon, Tjoung-Won and Peto, Julian and Plaseska-Karanfilska, Dijana and Pohl-Rescigno, Esther and Presneau, Nadege and Rack, Brigitte and Radice, Paolo and Rashid, Muhammad U. and Rennert, Gad and Rennert, Hedy S. and Romero, Atocha and Ruebner, Matthias and Saloustros, Emmanouil and Schmidt, Marjanka K. and Schmutzler, Rita K. and Schneider, Michael O. and Schoemaker, Minouk J. and Scott, Christopher and Shen, Chen-Yang and Shu, Xiao-Ou and Simard, Jaques and Slager, Susan and Smichkoska, Snezhana and Southey, Melissa C. and Spinelli, John J. and Stone, Jennifer and Surowy, Harald and Swerdlow, Anthony J. and Tamimi, Rulla M. and Tapper, William J. and Teo, Soo H. and Terry, Mary Beth and Toland, Amanda E. and Tollenaar, Rob A. E. M. and Torres, Diana and Torres-Mej{\´i}a, Gabriela and Troester, Melissa A. and Truong, Th{\´e}r{\`e}se and Tsugane, Shoichiro and Untch, Michael and Vachon, Celine M. and van den Ouweland, Ans M. W. and van Veen, Elke M. and Vijai, Joseph and Wendt, Camilla and Wolk, Alicja and Yu, Jyh-Cherng and Zheng, Wei and Ziogas, Argyrios and Ziv, Elad and Dunnig, Alison and Pharaoh, Paul D. P. and Schindler, Detlev and Devilee, Peter and Easton, Douglas F.}, title = {Two truncating variants in FANCC and breast cancer risk}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, organization = {ABCTB Investigators, NBCS Collaborators}, doi = {10.1038/s41598-019-48804-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222838}, year = {2019}, abstract = {Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95\%CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.}, language = {en} } @article{DammertBraegelmannOlsenetal.2019, author = {Dammert, Marcel A. and Br{\"a}gelmann, Johannes and Olsen, Rachelle R. and B{\"o}hm, Stefanie and Monhasery, Niloufar and Whitney, Christopher P. and Chalishazar, Milind D. and Tumbrink, Hannah L. and Guthrie, Matthew R. and Klein, Sebastian and Ireland, Abbie S. and Ryan, Jeremy and Schmitt, Anna and Marx, Annika and Ozretić, Luka and Castiglione, Roberta and Lorenz, Carina and Jachimowicz, Ron D. and Wolf, Elmar and Thomas, Roman K. and Poirier, John T. and B{\"u}ttner, Reinhard and Sen, Triparna and Byers, Lauren A. and Reinhardt, H. Christian and Letai, Anthony and Oliver, Trudy G. and Sos, Martin L.}, title = {MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-11371-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223569}, year = {2019}, abstract = {MYC paralogs are frequently activated in small cell lung cancer (SCLC) but represent poor drug targets. Thus, a detailed mapping of MYC-paralog-specific vulnerabilities may help to develop effective therapies for SCLC patients. Using a unique cellular CRISPR activation model, we uncover that, in contrast to MYCN and MYCL, MYC represses BCL2 transcription via interaction with MIZ1 and DNMT3a. The resulting lack of BCL2 expression promotes sensitivity to cell cycle control inhibition and dependency on MCL1. Furthermore, MYC activation leads to heightened apoptotic priming, intrinsic genotoxic stress and susceptibility to DNA damage checkpoint inhibitors. Finally, combined AURK and CHK1 inhibition substantially prolongs the survival of mice bearing MYC-driven SCLC beyond that of combination chemotherapy. These analyses uncover MYC-paralog-specific regulation of the apoptotic machinery with implications for genotype-based selection of targeted therapeutics in SCLC patients.}, language = {en} } @article{SteuerCostaVanderAuweraGlocketal.2019, author = {Steuer Costa, Wagner and Van der Auwera, Petrus and Glock, Caspar and Liewald, Jana F. and Bach, Maximilian and Sch{\"u}ler, Christina and Wabnig, Sebastian and Oranth, Alexandra and Masurat, Florentin and Bringmann, Henrik and Schoofs, Liliane and Stelzer, Ernst H. K. and Fischer, Sabine C. and Gottschalk, Alexander}, title = {A GABAergic and peptidergic sleep neuron as a locomotion stop neuron with compartmentalized Ca2+ dynamics}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-12098-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223273}, year = {2019}, abstract = {Animals must slow or halt locomotion to integrate sensory inputs or to change direction. In Caenorhabditis elegans, the GABAergic and peptidergic neuron RIS mediates developmentally timed quiescence. Here, we show RIS functions additionally as a locomotion stop neuron. RIS optogenetic stimulation caused acute and persistent inhibition of locomotion and pharyngeal pumping, phenotypes requiring FLP-11 neuropeptides and GABA. RIS photoactivation allows the animal to maintain its body posture by sustaining muscle tone, yet inactivating motor neuron oscillatory activity. During locomotion, RIS axonal Ca2+ signals revealed functional compartmentalization: Activity in the nerve ring process correlated with locomotion stop, while activity in a branch correlated with induced reversals. GABA was required to induce, and FLP-11 neuropeptides were required to sustain locomotion stop. RIS attenuates neuronal activity and inhibits movement, possibly enabling sensory integration and decision making, and exemplifies dual use of one cell across development in a compact nervous system.}, language = {en} } @unpublished{HennigPrustyKauferetal.2022, author = {Hennig, Thomas and Prusty, Archana B. and Kaufer, Benedikt and Whisnant, Adam W. and Lodha, Manivel and Enders, Antje and Thomas, Julius and Kasimir, Francesca and Grothey, Arnhild and Herb, Stefanie and J{\"u}rges, Christopher and Meister, Gunter and Erhard, Florian and D{\"o}lken, Lars and Prusty, Bhupesh K.}, title = {Selective inhibition of miRNA 1 processing by a herpesvirus encoded miRNA}, edition = {accepted version}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267862}, year = {2022}, abstract = {Herpesviruses have mastered host cell modulation and immune evasion to augment productive infection, life-long latency and reactivation thereof 1,2. A long appreciated, yet elusively defined relationship exists between the lytic-latent switch and viral non-coding RNAs 3,4. Here, we identify miRNA-mediated inhibition of miRNA processing as a thus far unknown cellular mechanism that human herpesvirus 6A (HHV-6A) exploits to disrupt mitochondrial architecture, evade intrinsic host defense and drive the lytic-latent switch. We demonstrate that virus-encoded miR-aU14 selectively inhibits the processing of multiple miR-30 family members by direct interaction with the respective pri-miRNA hairpin loops. Subsequent loss of miR-30 and activation of the miR-30/p53/Drp1 axis triggers a profound disruption of mitochondrial architecture. This impairs induction of type I interferons and is necessary for both productive infection and virus reactivation. Ectopic expression of miR-aU14 triggered virus reactivation from latency, identifying viral miR-aU14 as a readily drugable master regulator of the herpesvirus lytic-latent switch. Our results show that miRNA-mediated inhibition of miRNA processing represents a generalized cellular mechanism that can be exploited to selectively target individual members of miRNA families. We anticipate that targeting miR-aU14 provides exciting therapeutic options for preventing herpesvirus reactivations in HHV-6-associated disorders.}, language = {en} } @phdthesis{Gaballa2024, author = {Gaballa, Abdallah Hatem Hassan Hosny Ahmed}, title = {PAF1c drives MYC-mediated immune evasion in pancreatic ductal adenocarcinoma}, doi = {10.25972/OPUS-36045}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360459}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The expression of the MYC proto-oncogene is elevated in a large proportion of patients with pancreatic ductal adenocarcinoma (PDAC). Previous findings in PDAC have shown that this increased MYC expression mediates immune evasion and promotes S-phase progression. How these functions are mediated and whether a downstream factor of MYC mediates these functions has remained elusive. Recent studies identifying the MYC interactome revealed a complex network of interaction partners, highlighting the need to identify the oncogenic pathway of MYC in an unbiased manner. In this work, we have shown that MYC ensures genomic stability during S-phase and prevents transcription-replication conflicts. Depletion of MYC and inhibition of ATR kinase showed a synergistic effect to induce DNA damage. A targeted siRNA screen targeting downstream factors of MYC revealed that PAF1c is required for DNA repair and S-phase progression. Recruitment of PAF1c to RNAPII was shown to be MYC dependent. PAF1c was shown to be largely dispensable for cell proliferation and regulation of MYC target genes. Depletion of CTR9, a subunit of PAF1c, caused strong tumor regression in a pancreatic ductal adenocarcinoma model, with long-term survival in a subset of mice. This effect was not due to induction of DNA damage, but to restoration of tumor immune surveillance. Depletion of PAF1c resulted in the release of RNAPII with transcription elongation factors, including SPT6, from the bodies of long genes, promoting full-length transcription of short genes. This resulted in the downregulation of long DNA repair genes and the concomitant upregulation of short genes, including MHC class I genes. These data demonstrate that a balance between long and short gene transcription is essential for tumor progression and that interference with PAF1c levels shifts this balance toward a tumor-suppressive transcriptional program. It also directly links MYC-mediated S-phase progression to immune evasion. Unlike MYC, PAF1c has a stable, known folded structure; therefore, the development of a small molecule targeting PAF1c may disrupt the immune evasive function of MYC while sparing its physiological functions in cellular growth.}, subject = {Myc}, language = {en} } @phdthesis{Amini2024, author = {Amini, Emad}, title = {How central and peripheral clocks and the neuroendocrine system interact to time eclosion behavior in \(Drosophila\) \(melanogaster\)}, doi = {10.25972/OPUS-36130}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-361309}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {To grow larger, insects must shed their old rigid exoskeleton and replace it with a new one. This process is called molting and the motor behavior that sheds the old cuticle is called ecdysis. Holometabolic insects have pupal stages in between their larval and adult forms, during which they perform metamorphosis. The pupal stage ends with eclosion, i.e., the emergence of the adult from the pupal shell. Insects typically eclose at a specific time during the day, likely when abiotic conditions are at their optimum. A newly eclosed insect is fragile and needs time to harden its exoskeleton. Hence, eclosion is regulated by sophisticated developmental and circadian timing mechanisms. In Drosophila melanogaster, eclosion is limited to a daily time window in the morning, regarded as the "eclosion gate". In a population of laboratory flies entrained by light/dark cycles, most of the flies eclose around lights on. This rhythmic eclosion pattern is controlled by the circadian clock and persists even under constant conditions. Developmental timing is under the control of complex hormonal signaling, including the steroid ecdysone, insulin-like peptides, and prothoracicotropic hormone (PTTH). The interactions of the central circadian clock in the brain and a peripheral clock in the prothoracic gland (PG) that produces ecdysone are important for the circadian timing of eclosion. These two clocks are connected by a bilateral pair of peptidergic PTTH neurons (PTTHn) that project to the PG. Before each molt, the ecdysone level rises and then falls shortly before ecdysis. The falling ecdysone level must fall below a certain threshold value for the eclosion gate to open. The activity of PTTHn is inhibited by short neuropeptide F (sNPF) from the small ventrolateral neurons (sLNvs) and inhibition is thought to lead to a decrease in ecdysone production. The general aim of this thesis is to further the understanding of how the circadian clock and neuroendocrinal pathways are coordinated to drive eclosion rhythmicity and to identify when these endocrinal signaling pathways are active. In Chapter I, a series of conditional PTTHn silencing-based behavioral assays, combined with neuronal activity imaging techniques such as non-invasive ARG-Luc show that PTTH signaling is active and required shortly before eclosion and may serve to phase-adjust the activity of the PG at the end of pupal development. Trans-synaptic anatomical stainings identified the sLNvs, dorsal neurons 1 (DN1), dorsal neurons 2 (DN2), and lateral posterior neurons (LPNs) clock neurons as directly upstream of the PTTHn. Eclosion motor behavior is initiated by Ecdysis triggering hormone (ETH) which activates a pair of ventromedial (Vm) neurons to release eclosion hormone (EH) which positively feeds back to the source of ETH, the endocrine Inka cells. In Chapter II trans-synaptic tracing showed that most clock neurons provide input to the Vm and non-canonical EH neurons. Hence, clock can potentially influence the ETH/EH feedback loop. The activity profile of the Inka cells and Vm neurons before eclosion is described. Vm and Inka cells are active around seven hours before eclosion. Interestingly, all EH neurons appear to be exclusively peptidergic. In Chapter III, using chemoconnectomics, PTTHns were found to express receptors for sNPF, allatostatin A (AstA), allatostatin C (AstC), and myosuppressin (Ms), while EH neurons expressed only Ms and AstA receptors. Eclosion assays of flies with impaired AstA, AstC, or Ms signaling do not show arrhythmicity under constant conditions. However, optogenetic activation of the AstA neurons strongly suppresses eclosion. Chapter IV focuses on peripheral ventral' Tracheal dendrite (v'Td) and class IV dendritic arborization (C4da) neurons. The C4da neurons mediate larval light avoidance through endocrine PTTH signaling. The v'Td neurons mainly receive O2/CO2 input from the trachea and are upstream of Vm neurons but are not required for eclosion rhythmicity. Conditional ablation of the C4da neurons or torso (receptor of PTTH) knock-out in the C4da neurons impaired eclosion rhythmicity. Six to seven hours before eclosion, PTTHn, C4da, and Vm neurons are active based on ARG-Luc imaging. Thus, C4da neurons may indirectly connect the PTTHn to the Vm neurons. In summary, this thesis advances our knowledge of the temporal activity and role of PTTH signaling during pupal development and rhythmic eclosion. It further provides a comprehensive characterization of the synaptic and peptidergic inputs from clock neurons to PTTHn and EH neurons. AstA, AstC, and Ms are identified as potential modulators of eclosion circuits and suggest an indirect effect of PTTH signaling on EH signaling via the peripheral sensory C4da neurons.}, subject = {Neuroendokrines System}, language = {en} } @phdthesis{Gabel2024, author = {Gabel, Martin Sebastian}, title = {Behavioural resistance to \(Varroa\) \(destructor\) in the Western honeybee \(Apis\) \(mellifera\) - Mechanisms leading to decreased mite reproduction}, doi = {10.25972/OPUS-36053}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360536}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The Western Honeybee (Apis mellifera) is among the most versatile species in the world. Its adaptability is rooted in thousands of the differently specialized individuals acting jointly together. Thus, bees that are able to handle a certain task or condition well can back up other individuals less capable to do so on the colony level. Vice versa, the latter individuals might perform better in other situations. This evolutionary recipe for success ensures the survival of colonies despite challenging habitat conditions. In this context, the ectoparasitic mite Varroa destructor reflects the most pronounced biotic challenge to honeybees worldwide. Without proper treatment, infested colonies rapidly dwindle and ultimately die. Nevertheless, resistance behaviours against this parasite have evolved in some populations through natural selection, enabling colonies to survive untreated. In this, different behaviours appear to be adapted to the respective habitat conditions and may complement each other. Yet, the why and how of this behavioural response to the mite remains largely unknown. My thesis focuses on the biological background of Varroa-resistance traits in honeybees and presents important findings for the comprehension of this complex host-parasite interaction. Based on this, I draw implications for both, applied bee breeding and scientific investigations in the field of Varroa-resistance. Specifically, I focus on two traits commonly found in resistant and, to a lower degree, also mite-susceptible colonies: decreased mite reproduction and the uncapping and subsequent recapping of sealed brood cells. Examining failures in the reproductive success of mites as a primary mechanism of Varroa-resistance, I was able to link them to specific bee behaviours and external factors. Since mite reproduction and the brood rearing of bees are inevitably connected, I first investigated the effects of brood interruption on the reproductive success of mites. Brood interruption decreased the reproductive success of mites both immediately and in the long term. By examining the causes of reproductive failure, I could show that this was mainly due to an increased share of infertile mites. Furthermore, I proved that interruption in brood rearing significantly increased the expression of recapping behaviour. These findings consequently showed a dynamic modulation of mite reproduction and recapping, as well as a direct effect of brood interruption on both traits. To further elucidate the plasticity in the expression of both traits, I studied mite reproduction, recapping behaviour and infestation levels over the course of three years. The resulting extensive dataset unveiled a significant seasonal variation in mite reproduction and recapping. In addition, I show that recapping decreases the reproductive success of mites by increasing delayed developing female offspring and cells lacking male offspring. By establishing a novel picture-based brood investigation method, I could furthermore show that both the removal of brood cells and recapping activity specifically target brood ages in which mite offspring would be expected. Recapping, however, did not cause infertility of mites. Considering the findings of my first study, this points towards complementary mechanisms. This underlines the importance of increased recapping behaviour and decreased mite reproduction as resistance traits, while at the same time emphasising the challenges of reliable data acquisition. To pave the way for a practical application of these findings in breeding, we then investigated the heritability (i.e., the share of genotypic variation on the observed phenotypic variation) of the accounted traits. By elaborating comparable test protocols and compiling data from over 4,000 colonies, we could, for the first time, demonstrate that recapping of infested cells and decreased reproductive success of mites are heritable (and thus selectable) traits in managed honeybee populations. My thesis proves the importance of recapping and decreased mite reproduction as resistance traits and therefore valuable goals for breeding efforts. In this regard, I shed light on the underlying mechanisms of both traits, and present clear evidence for their interaction and heritability.}, subject = {Varroa destructor}, language = {en} } @article{OsmanogluGuptaAlmasietal.2023, author = {Osmanoglu, {\"O}zge and Gupta, Shishir K. and Almasi, Anna and Yagci, Seray and Srivastava, Mugdha and Araujo, Gabriel H. M. and Nagy, Zoltan and Balkenhol, Johannes and Dandekar, Thomas}, title = {Signaling network analysis reveals fostamatinib as a potential drug to control platelet hyperactivation during SARS-CoV-2 infection}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1285345}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354158}, year = {2023}, abstract = {Introduction Pro-thrombotic events are one of the prevalent causes of intensive care unit (ICU) admissions among COVID-19 patients, although the signaling events in the stimulated platelets are still unclear. Methods We conducted a comparative analysis of platelet transcriptome data from healthy donors, ICU, and non-ICU COVID-19 patients to elucidate these mechanisms. To surpass previous analyses, we constructed models of involved networks and control cascades by integrating a global human signaling network with transcriptome data. We investigated the control of platelet hyperactivation and the specific proteins involved. Results Our study revealed that control of the platelet network in ICU patients is significantly higher than in non-ICU patients. Non-ICU patients require control over fewer proteins for managing platelet hyperactivity compared to ICU patients. Identification of indispensable proteins highlighted key subnetworks, that are targetable for system control in COVID-19-related platelet hyperactivity. We scrutinized FDA-approved drugs targeting indispensable proteins and identified fostamatinib as a potent candidate for preventing thrombosis in COVID-19 patients. Discussion Our findings shed light on how SARS-CoV-2 efficiently affects host platelets by targeting indispensable and critical proteins involved in the control of platelet activity. We evaluated several drugs for specific control of platelet hyperactivity in ICU patients suffering from platelet hyperactivation. The focus of our approach is repurposing existing drugs for optimal control over the signaling network responsible for platelet hyperactivity in COVID-19 patients. Our study offers specific pharmacological recommendations, with drug prioritization tailored to the distinct network states observed in each patient condition. Interactive networks and detailed results can be accessed at https://fostamatinib.bioinfo-wuerz.eu/.}, language = {en} } @article{CarradecPelletierDaSilvaetal.2018, author = {Carradec, Quentin and Pelletier, Eric and Da Silva, Corinne and Alberti, Adriana and Seeleuthner, Yoann and Blanc-Mathieu, Romain and Lima-Mendez, Gipsi and Rocha, Fabio and Tirichine, Leila and Labadie, Karine and Kirilovsky, Amos and Bertrand, Alexis and Engelen, Stefan and Madoui, Mohammed-Amin and M{\´e}heust, Rapha{\"e}l and Poulain, Julie and Romac, Sarah and Richter, Daniel J. and Yoshikawa, Genki and Dimier, C{\´e}line and Kandels-Lewis, Stefanie and Picheral, Marc and Searson, Sarah and Jaillon, Olivier and Aury, Jean-Marc and Karsenti, Eric and Sullivan, Matthew B. and Sunagawa, Shinichi and Bork, Peer and Not, Fabrice and Hingamp, Pascal and Raes, Jeroen and Guidi, Lionel and Ogata, Hiroyuki and de Vargas, Colomban and Iudicone, Daniele and Bowler, Chris and Wincker, Patrick}, title = {A global ocean atlas of eukaryotic gene}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, organization = {Tara Oceans Coordinators}, doi = {10.1038/s41467-017-02342-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222250}, year = {2018}, abstract = {While our knowledge about the roles of microbes and viruses in the ocean has increased tremendously due to recent advances in genomics and metagenomics, research on marine microbial eukaryotes and zooplankton has benefited much less from these new technologies because of their larger genomes, their enormous diversity, and largely unexplored physiologies. Here, we use a metatranscriptomics approach to capture expressed genes in open ocean Tara Oceans stations across four organismal size fractions. The individual sequence reads cluster into 116 million unigenes representing the largest reference collection of eukaryotic transcripts from any single biome. The catalog is used to unveil functions expressed by eukaryotic marine plankton, and to assess their functional biogeography. Almost half of the sequences have no similarity with known proteins, and a great number belong to new gene families with a restricted distribution in the ocean. Overall, the resource provides the foundations for exploring the roles of marine eukaryotes in ocean ecology and biogeochemistry.}, language = {en} } @article{BrunkSputhDooseetal.2018, author = {Brunk, Michael and Sputh, Sebastian and Doose, S{\"o}ren and van de Linde, Sebastian and Terpitz, Ulrich}, title = {HyphaTracker: An ImageJ toolbox for time-resolved analysis of spore germination in filamentous fungi}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-19103-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221691}, year = {2018}, abstract = {The dynamics of early fungal development and its interference with physiological signals and environmental factors is yet poorly understood. Especially computational analysis tools for the evaluation of the process of early spore germination and germ tube formation are still lacking. For the time-resolved analysis of conidia germination of the filamentous ascomycete Fusarium fujikuroi we developed a straightforward toolbox implemented in ImageJ. It allows for processing of microscopic acquisitions (movies) of conidial germination starting with drift correction and data reduction prior to germling analysis. From the image time series germling related region of interests (ROIs) are extracted, which are analysed for their area, circularity, and timing. ROIs originating from germlings crossing other hyphae or the image boundaries are omitted during analysis. Each conidium/hypha is identified and related to its origin, thus allowing subsequent categorization. The efficiency of HyphaTracker was proofed and the accuracy was tested on simulated germlings at different signal-to-noise ratios. Bright-field microscopic images of conidial germination of rhodopsin-deficient F. fujikuroi mutants and their respective control strains were analysed with HyphaTracker. Consistent with our observation in earlier studies the CarO deficient mutant germinated earlier and grew faster than other, CarO expressing strains.}, language = {en} } @article{AnnunziatavandeVlekkertWolfetal.2019, author = {Annunziata, Ida and van de Vlekkert, Diantha and Wolf, Elmar and Finkelstein, David and Neale, Geoffrey and Machado, Eda and Mosca, Rosario and Campos, Yvan and Tillman, Heather and Roussel, Martine F. and Weesner, Jason Andrew and Fremuth, Leigh Ellen and Qiu, Xiaohui and Han, Min-Joon and Grosveld, Gerard C. and d'Azzo, Alessandra}, title = {MYC competes with MiT/TFE in regulating lysosomal biogenesis and autophagy through an epigenetic rheostat}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-11568-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221189}, year = {2019}, abstract = {Coordinated regulation of the lysosomal and autophagic systems ensures basal catabolism and normal cell physiology, and failure of either system causes disease. Here we describe an epigenetic rheostat orchestrated by c-MYC and histone deacetylases that inhibits lysosomal and autophagic biogenesis by concomitantly repressing the expression of the transcription factors MiT/TFE and FOXH1, and that of lysosomal and autophagy genes. Inhibition of histone deacetylases abates c-MYC binding to the promoters of lysosomal and autophagy genes, granting promoter occupancy to the MiT/TFE members, TFEB and TFE3, and/or the autophagy regulator FOXH1. In pluripotent stem cells and cancer, suppression of lysosomal and autophagic function is directly downstream of c-MYC overexpression and may represent a hallmark of malignant transformation. We propose that, by determining the fate of these catabolic systems, this hierarchical switch regulates the adaptive response of cells to pathological and physiological cues that could be exploited therapeutically.}, language = {en} } @article{AlbrechtClassenVollstaedtetal.2018, author = {Albrecht, J{\"o}rg and Classen, Alice and Vollst{\"a}dt, Maximilian G.R. and Mayr, Antonia and Mollel, Neduvoto P. and Schellenberger Costa, David and Dulle, Hamadi I. and Fischer, Markus and Hemp, Andreas and Howell, Kim M. and Kleyer, Michael and Nauss, Thomas and Peters, Marcell K. and Tschapka, Marco and Steffan-Dewenter, Ingolf and B{\"o}hning-Gaese, Katrin and Schleuning, Matthias}, title = {Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-05610-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221056}, pages = {1-10}, year = {2018}, abstract = {Species' functional traits set the blueprint for pair-wise interactions in ecological networks. Yet, it is unknown to what extent the functional diversity of plant and animal communities controls network assembly along environmental gradients in real-world ecosystems. Here we address this question with a unique dataset of mutualistic bird-fruit, bird-flower and insect-flower interaction networks and associated functional traits of 200 plant and 282 animal species sampled along broad climate and land-use gradients on Mt. Kilimanjaro. We show that plant functional diversity is mainly limited by precipitation, while animal functional diversity is primarily limited by temperature. Furthermore, shifts in plant and animal functional diversity along the elevational gradient control the niche breadth and partitioning of the respective other trophic level. These findings reveal that climatic constraints on the functional diversity of either plants or animals determine the relative importance of bottom-up and top-down control in plant-animal interaction networks.}, language = {en} } @unpublished{OdenwaldGabiattiBrauneetal.2024, author = {Odenwald, Johanna and Gabiatti, Bernardo and Braune, Silke and Shen, Siqi and Zoltner, Martin and Kramer, Susanne}, title = {Beyond BioID: Streptavidin outcompetes antibody fluorescence signals in protein localization and readily visualises targets evading immunofluorescence detection}, series = {eLife}, journal = {eLife}, doi = {10.7554/eLife.95028.1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360704}, year = {2024}, abstract = {Immunofluorescence is a common method to localise proteins within their cellular context via fluorophore labelled antibodies and for some applications without alternative. However, some protein targets evade detection due to low protein abundance or accessibility issues. In addition, some imaging methods require a massive reduction in antigen density thus impeding detection of even medium-abundant proteins.Here, we show that the fusion of the target protein to TurboID, a biotin ligase labelling lysine residues in close proximity, and subsequent detection of biotinylation by fluorescent streptavidin offers an "all in one" solution to the above-mentioned restrictions. For a wide range of target proteins tested, the streptavidin signal was significantly stronger than an antibody signal, markedly improving the imaging sensitivity in expansion microscopy and correlative light and electron microscopy, with no loss in resolution. Importantly, proteins within phase-separated regions, such as the central channel of the nuclear pores, the nucleolus or RNA granules, were readily detected with streptavidin, while most antibodies fail to label proteins in these environments. When TurboID is used in tandem with an HA epitope tag, co-probing with streptavidin and anti-HA can be used to map antibody-accessibility to certain cellular regions. As a proof of principle, we mapped antibody access to all trypanosome nuclear pore proteins (NUPs) and found restricted antibody labelling of all FG NUPs of the central channel that are known to be phase-separated, while most non-FG Nups could be labelled. Lastly, we show that streptavidin imaging can resolve dynamic, temporally and spatially distinct sub-complexes and, in specific cases, reveal a history of dynamic protein interaction.In conclusion, streptavidin imaging has major advantages for the detection of lowly abundant or inaccessible proteins and in addition, can provide information on protein interactions and biophysical environment.}, language = {en} } @article{AndreskaLueningschroerWolfetal.2023, author = {Andreska, Thomas and L{\"u}ningschr{\"o}r, Patrick and Wolf, Daniel and McFleder, Rhonda L. and Ayon-Olivas, Maurilyn and Rattka, Marta and Drechsler, Christine and Perschin, Veronika and Blum, Robert and Aufmkolk, Sarah and Granado, Noelia and Moratalla, Rosario and Sauer, Markus and Monoranu, Camelia and Volkmann, Jens and Ip, Chi Wang and Stigloher, Christian and Sendtner, Michael}, title = {DRD1 signaling modulates TrkB turnover and BDNF sensitivity in direct pathway striatal medium spiny neurons}, series = {Cell Reports}, volume = {42}, journal = {Cell Reports}, number = {6}, doi = {10.1016/j.celrep.2023.112575}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349932}, year = {2023}, abstract = {Highlights • Dopamine receptor-1 activation induces TrkB cell-surface expression in striatal neurons • Dopaminergic deficits cause TrkB accumulation and clustering in the ER • TrkB clusters colocalize with cargo receptor SORCS-2 in direct pathway striatal neurons • Intracellular TrkB clusters fail to fuse with lysosomes after dopamine depletion Summary Disturbed motor control is a hallmark of Parkinson's disease (PD). Cortico-striatal synapses play a central role in motor learning and adaption, and brain-derived neurotrophic factor (BDNF) from cortico-striatal afferents modulates their plasticity via TrkB in striatal medium spiny projection neurons (SPNs). We studied the role of dopamine in modulating the sensitivity of direct pathway SPNs (dSPNs) to BDNF in cultures of fluorescence-activated cell sorting (FACS)-enriched D1-expressing SPNs and 6-hydroxydopamine (6-OHDA)-treated rats. DRD1 activation causes enhanced TrkB translocation to the cell surface and increased sensitivity for BDNF. In contrast, dopamine depletion in cultured dSPN neurons, 6-OHDA-treated rats, and postmortem brain of patients with PD reduces BDNF responsiveness and causes formation of intracellular TrkB clusters. These clusters associate with sortilin related VPS10 domain containing receptor 2 (SORCS-2) in multivesicular-like structures, which apparently protects them from lysosomal degradation. Thus, impaired TrkB processing might contribute to disturbed motor function in PD.}, language = {en} } @phdthesis{Dehmer2024, author = {Dehmer, Markus}, title = {A novel USP11-TCEAL1-mediated mechanism protects transcriptional elongation by RNA Polymerase II}, doi = {10.25972/OPUS-36054}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360544}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Deregulated expression of MYC oncoproteins is a driving event in many human cancers. Therefore, understanding and targeting MYC protein-driven mechanisms in tumor biology remain a major challenge. Oncogenic transcription in MYCN-amplified neuroblastoma leads to the formation of the MYCN-BRCA1-USP11 complex that terminates transcription by evicting stalling RNAPII from chromatin. This reduces cellular stress and allows reinitiation of new rounds of transcription. Basically, tumors with amplified MYC genes have a high demand on well orchestration of transcriptional processes-dependent and independent from MYC proteins functions in gene regulation. To date, the cooperation between promoter-proximal termination and transcriptional elongation in cancer cells remains still incomplete in its understanding. In this study the putative role of the dubiquitinase Ubiquitin Specific Protease 11 (USP11) in transcription regulation was further investigated. First, several USP11 interaction partners involved in transcriptional regulation in neuroblastoma cancer cells were identified. In particular, the transcription elongation factor A like 1 (TCEAL1) protein, which assists USP11 to engage protein-protein interactions in a MYCN-dependent manner, was characterized. The data clearly show that TCEAL1 acts as a pro-transcriptional factor for RNA polymerase II (RNAPII)-medi- ated transcription. In detail, TCEAL1 controls the transcription factor S-II (TFIIS), a factor that assists RNAPII to escape from paused sites. The findings claim that TCEAL1 outcompetes the transcription elongation factor TFIIS in a non-catalytic manner on chromatin of highly expressed genes. This is reasoned by the need regulating TFIIS function in transcription. TCEAL1 equili- brates excessive backtracking and premature termination of transcription caused by TFIIS. Collectively, the work shed light on the stoichiometric control of TFIIS demand in transcriptional regulation via the USP11-TCEAL1-USP7 complex. This complex protects RNAPII from TFIIS-mediated termination helping to regulate productive transcription of highly active genes in neuroblastoma.}, subject = {Transkription}, language = {en} } @phdthesis{Schwebs2024, author = {Schwebs, Marie}, title = {Structure and dynamics of the plasma membrane: a single-molecule study in \(Trypanosoma\) \(brucei\)}, doi = {10.25972/OPUS-27569}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275699}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The unicellular, flagellated parasite Trypanosoma brucei is the causative agent of human African sleeping sickness and nagana in livestock. In the last decades, it has become an established eukaryotic model organism in the field of biology, as well as in the interdisciplinary field of biophysics. For instance, the dense variant surface glycoprotein (VSG) coat offers the possibility to study the dynamics of GPI-anchored proteins in the plasma membrane of living cells. The fluidity of the VSG coat is not only an interesting object of study for its own sake, but is critically important for the survival of the parasite in the mammalian host. In order to maintain the integrity of the coat, the entire VSG coat is recycled within a few minutes. This is surprisingly fast for a purely diffusive process with the flagellar pocket (FP) as the sole site for endo- and exocytosis. Previous studies characterising VSG dynamics using FRAP reported diffusion coefficients that were not sufficient to to enable fast turnover based on passive VSG randomisation on the trypanosome surface. In this thesis, live-cell single-molecule fluorescence microscopy (SMFM) was employed to elucidate whether VSG diffusion coefficients were priorly underestimated or whether directed forces could be involved to bias VSGs towards the entrance of the FP. Embedding the highly motile trypanosomes in thermo-stable hydrogels facilitated the investigation of VSG dynamics on living trypanosomes at the mammalian host's temperature of 37°C. To allow for a spatial correlation of the VSG dynamics to the FP entrance, a cell line was employed harbouring a fluorescently labelled structure as a reference. Sequential two-colour SMFM was then established to allow for recording and registration of the dynamic and static single-molecule information. In order to characterise VSG dynamics, an algorithm to obtain reliable information from short trajectories was adapted (shortTrAn). It allowed for the quantification of the local dynamics in two distinct scenarios: diffusion and directed motion. The adaptation of the algorithm to the VSG data sets required the introduction of an additional projection filter. The algorithm was further extended to take into account the localisation errors inherent to single-particle tracking. The results of the quantification of diffusion and directed motion were presented in maps of the trypanosome surface, including an outline generated from a super-resolved static structure as a reference. Information on diffusion was displayed in one map, an ellipse plot. The colour code represented the local diffusion coefficient, while the shape of the ellipses provided an indication of the diffusion behaviour (aniso- or isotropic diffusion). The eccentricity of the ellipses was used to quantify deviations from isotropic diffusion. Information on directed motion was shown in three maps: A velocity map, representing the amplitude of the local velocities in a colour code. A quiver plot, illustrating the orientation of directed motion, and a third map which indicated the relative standard error of the local velocities colour-coded. Finally, a guideline based on random walk simulations was used to identify which of the two motion scenarios dominated locally. Application of the guideline to the VSG dynamics analysed by shortTrAn yielded supermaps that showed the locally dominant motion mode colour-coded. I found that VSG dynamics are dominated by diffusion, but several times faster than previously determined. The diffusion behaviour was additionally characterised by spatial heterogeneity. Moreover, isolated regions exhibiting the characteristics of round and elongated traps were observed on the cell surface. Additionally, VSG dynamics were studied with respect to the entrance of the FP. VSG dynamics in this region displayed similar characteristics compared to the remainder of the cell surface and forces biasing VSGs into the FP were not found. Furthermore, I investigated a potential interference of the attachment of the cytoskeleton to the plasma membrane with the dynamics of VSGs which are anchored to the outer leaflet of the membrane. Preliminary experiments were conducted on osmotically swollen trypanosomes and trypanosomes depleted for a microtubule-associated protein anchoring the subpellicular microtubule cytoskeleton to the plasma membrane. The measurements revealed a trend that detachment of the cytoskeleton could be associated with a reduction in the VSG diffusion coefficient and a loss of elongated traps. The latter could be an indication that these isolated regions were caused by underlying structures associated with the cytoskeleton. The measurements on cells with an intact cytoskeleton were complemented by random walk simulations of VSG dynamics with the newly determined diffusion coefficient on long time scales not accessible in experiments. Simulations showed that passive VSG randomisation is fast enough to allow for a turnover of the full VSG coat within a few minutes. According to an estimate based on the known rate of endocytosis and the newly determined VSG diffusion coefficient, the majority of exocytosed VSGs could escape from the FP to the cell surface without being immediately re-endocytosed.}, subject = {Trypanosoma brucei}, language = {en} } @article{MeiserMohammadiVogeletal.2023, author = {Meiser, Elisabeth and Mohammadi, Reza and Vogel, Nicolas and Holcman, David and Fenz, Susanne F.}, title = {Experiments in micro-patterned model membranes support the narrow escape theory}, series = {Communications Physics}, volume = {6}, journal = {Communications Physics}, doi = {10.1038/s42005-023-01443-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358121}, year = {2023}, abstract = {The narrow escape theory (NET) predicts the escape time distribution of Brownian particles confined to a domain with reflecting borders except for one small window. Applications include molecular activation events in cell biology and biophysics. Specifically, the mean first passage time τ can be analytically calculated from the size of the domain, the escape window, and the diffusion coefficient of the particles. In this study, we systematically tested the NET in a disc by variation of the escape opening. Our model system consisted of micro-patterned lipid bilayers. For the measurement of τ, we imaged diffusing fluorescently-labeled lipids using single-molecule fluorescence microscopy. We overcame the lifetime limitation of fluorescent probes by re-scaling the measured time with the fraction of escaped particles. Experiments were complemented by matching stochastic numerical simulations. To conclude, we confirmed the NET prediction in vitro and in silico for the disc geometry in the limit of small escape openings, and we provide a straightforward solution to determine τ from incomplete experimental traces.}, language = {en} } @article{MunawarZhouPrommersbergeretal.2023, author = {Munawar, Umair and Zhou, Xiang and Prommersberger, Sabrina and Nerreter, Silvia and Vogt, Cornelia and Steinhardt, Maximilian J. and Truger, Marietta and Mersi, Julia and Teufel, Eva and Han, Seungbin and Haertle, Larissa and Banholzer, Nicole and Eiring, Patrick and Danhof, Sophia and Navarro-Aguadero, Miguel Angel and Fernandez-Martin, Adrian and Ortiz-Ruiz, Alejandra and Barrio, Santiago and Gallardo, Miguel and Valeri, Antonio and Castellano, Eva and Raab, Peter and Rudert, Maximilian and Haferlach, Claudia and Sauer, Markus and Hudecek, Michael and Martinez-Lopez, J. and Waldschmidt, Johannes and Einsele, Hermann and Rasche, Leo and Kort{\"u}m, K. Martin}, title = {Impaired FADD/BID signaling mediates cross-resistance to immunotherapy in Multiple Myeloma}, series = {Communications Biology}, volume = {6}, journal = {Communications Biology}, doi = {10.1038/s42003-023-05683-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357609}, year = {2023}, abstract = {The treatment landscape in multiple myeloma (MM) is shifting from genotoxic drugs to immunotherapies. Monoclonal antibodies, immunoconjugates, T-cell engaging antibodies and CART cells have been incorporated into routine treatment algorithms, resulting in improved response rates. Nevertheless, patients continue to relapse and the underlying mechanisms of resistance remain poorly understood. While Impaired death receptor signaling has been reported to mediate resistance to CART in acute lymphoblastic leukemia, this mechanism yet remains to be elucidated in context of novel immunotherapies for MM. Here, we describe impaired death receptor signaling as a novel mechanism of resistance to T-cell mediated immunotherapies in MM. This resistance seems exclusive to novel immunotherapies while sensitivity to conventional anti-tumor therapies being preserved in vitro. As a proof of concept, we present a confirmatory clinical case indicating that the FADD/BID axis is required for meaningful responses to novel immunotherapies thus we report impaired death receptor signaling as a novel resistance mechanism to T-cell mediated immunotherapy in MM.}, language = {en} }