@article{RedlichMartinWendeetal.2018, author = {Redlich, Sarah and Martin, Emily A. and Wende, Beate and Steffan-Dewenter, Ingolf}, title = {Landscape heterogeneity rather than crop diversity mediates bird diversity in agricultural landscapes}, series = {PLoS ONE}, volume = {13}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0200438}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177110}, pages = {e0200438}, year = {2018}, abstract = {Crop diversification has been proposed as farm management tool that could mitigate the externalities of conventional farming while reducing productivity-biodiversity trade-offs. Yet evidence for the acclaimed biodiversity benefits of landscape-level crop diversity is ambiguous. Effects may strongly depend on spatial scale and the level of landscape heterogeneity (e.g. overall habitat diversity). At the same time, contrasting within-taxon responses obscure benefits to specific functional groups (i.e. species with shared characteristics or requirements) if studied at the community level. The objectives of this study were to 1) disentangle the relative effects of crop diversity and landscape heterogeneity on avian species richness across five spatial scales ranging from 250 to 3000 m radii around focal winter wheat fields; and 2) assess whether functional groups (feeding guild, conservation status, habitat preference, nesting behaviour) determine the strength and direction of responses to crop diversity and landscape heterogeneity. In central Germany, 14 landscapes were selected along independent gradients of crop diversity (annual arable crops) and landscape heterogeneity. Bird species richness in each landscape was estimated using four point counts throughout the breeding season. We found no effects of landscape-level crop diversity on bird richness and functional groups. Instead, landscape heterogeneity was strongly associated with increased total bird richness across all spatial scales. In particular, insect-feeding and non-farmland birds were favoured in heterogeneous landscapes, as were species not classified as endangered or vulnerable on the regional Red List. Crop-nesting farmland birds, however, were less species-rich in these landscapes. Accordingly, crop diversification may be less suitable for conserving avian diversity and associated ecosystem services (e.g. biological pest control), although confounding interactions with management intensity need yet to be confirmed. In contrast, enhancement of landscape heterogeneity by increasing perennial habitat diversity, reducing field sizes and the amount of cropland has the potential to benefit overall bird richness. Specialist farmland birds, however, may require more targeted management approaches.}, language = {en} } @article{RuedenauerWoehrleSpaetheetal.2018, author = {Ruedenauer, Fabian A. and W{\"o}hrle, Christine and Spaethe, Johannes and Leonhardt, Sara D.}, title = {Do honeybees (Apis mellifera) differentiate between different pollen types?}, series = {PLoS ONE}, volume = {13}, journal = {PLoS ONE}, number = {11}, doi = {10.1371/journal.pone.0205821}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177537}, pages = {e0205821}, year = {2018}, abstract = {Bees receive nectar and pollen as reward for pollinating plants. Pollen of different plant species varies widely in nutritional composition. In order to select pollen of appropriate nutritional quality, bees would benefit if they could distinguish different pollen types. Whether they rely on visual, olfactory and/or chemotactile cues to distinguish between different pollen types, has however been little studied. In this study, we examined whether and how Apis mellifera workers differentiate between almond and apple pollen. We used differential proboscis extension response conditioning with olfactory and chemotactile stimulation, in light and darkness, and in summer and winter bees. We found that honeybees were only able to differentiate between different pollen types, when they could use both chemotactile and olfactory cues. Visual cues further improved learning performance. Summer bees learned faster than winter bees. Our results thus highlight the importance of multisensory information for pollen discrimination.}, language = {en} } @article{KropfRoessler2018, author = {Kropf, Jan and R{\"o}ssler, Wolfgang}, title = {In-situ recording of ionic currents in projection neurons and Kenyon cells in the olfactory pathway of the honeybee}, series = {PLoS ONE}, volume = {13}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0191425}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175869}, pages = {e0191425}, year = {2018}, abstract = {The honeybee olfactory pathway comprises an intriguing pattern of convergence and divergence: ~60.000 olfactory sensory neurons (OSN) convey olfactory information on ~900 projection neurons (PN) in the antennal lobe (AL). To transmit this information reliably, PNs employ relatively high spiking frequencies with complex patterns. PNs project via a dual olfactory pathway to the mushroom bodies (MB). This pathway comprises the medial (m-ALT) and the lateral antennal lobe tract (l-ALT). PNs from both tracts transmit information from a wide range of similar odors, but with distinct differences in coding properties. In the MBs, PNs form synapses with many Kenyon cells (KC) that encode odors in a spatially and temporally sparse way. The transformation from complex information coding to sparse coding is a well-known phenomenon in insect olfactory coding. Intrinsic neuronal properties as well as GABAergic inhibition are thought to contribute to this change in odor representation. In the present study, we identified intrinsic neuronal properties promoting coding differences between PNs and KCs using in-situ patch-clamp recordings in the intact brain. We found very prominent K+ currents in KCs clearly differing from the PN currents. This suggests that odor coding differences between PNs and KCs may be caused by differences in their specific ion channel properties. Comparison of ionic currents of m- and l-ALT PNs did not reveal any differences at a qualitative level.}, language = {en} } @article{HesselbachScheiner2018, author = {Hesselbach, Hannah and Scheiner, Ricarda}, title = {Effects of the novel pesticide flupyradifurone (Sivanto) on honeybee taste and cognition}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {4954}, doi = {10.1038/s41598-018-23200-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175853}, year = {2018}, abstract = {Due to intensive agriculture honeybees are threatened by various pesticides. The use of one group of them, the neonicotinoids, was recently restricted by the European Union. These chemicals bind to the nicotinic acetylcholine receptor (nAchR) in the honeybee brain. Recently, Bayer AG released a new pesticide by the name of "Sivanto" against sucking insects. It is assumed to be harmless for honeybees, although its active ingredient, flupyradifurone, binds nAchR similar to the neonicotinoids. We investigated if this pesticide affects the taste for sugar and cognitive performance in honeybee foragers. These bees are directly exposed to the pesticide while foraging for pollen or nectar. Our results demonstrate that flupyradifurone can reduce taste and appetitive learning performance in honeybees foraging for pollen and nectar, although only the highest concentration had significant effects. Most likely, honeybee foragers will not be exposed to these high concentrations. Therefore, the appropriate use of this pesticide is considered safe for honeybees, at least with respect to the behaviors studied here.}, language = {en} } @article{SarukhanyanShityakovDandekar2018, author = {Sarukhanyan, Edita and Shityakov, Sergey and Dandekar, Thomas}, title = {In silico designed Axl receptor blocking drug candidates against Zika virus infection}, series = {ACS Omega}, volume = {3}, journal = {ACS Omega}, number = {5}, doi = {10.1021/acsomega.8b00223}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176739}, pages = {5281-5290}, year = {2018}, abstract = {After a large outbreak in Brazil, novel drugs against Zika virus became extremely necessary. Evaluation of virus-based pharmacological strategies concerning essential host factors brought us to the idea that targeting the Axl receptor by blocking its dimerization function could be critical for virus entry. Starting from experimentally validated compounds, such as RU-301, RU-302, warfarin, and R428, we identified a novel compound 2′ (R428 derivative) to be the most potent for this task amongst a number of alternative compounds and leads. The improved affinity of compound 2′ was confirmed by molecular docking as well as molecular dynamics simulation techniques using implicit solvation models. The current study summarizes a new possibility for inhibition of the Axl function as a potential target for future antiviral therapies.}, language = {en} } @article{SchartlSchoriesWatamatsuetal.2018, author = {Schartl, Manfred and Schories, Susanne and Watamatsu, Yuko and Nagao, Yusuke and Hashimoto, Hisashi and Bertin, Chlo{\´e} and Mourot, Brigitte and Schmidt, Cornelia and Wilhelm, Dagmar and Centanin, Lazaro and Guiguen, Yann and Herpin, Amaury}, title = {Sox5 is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements}, series = {BMC Biology}, volume = {16}, journal = {BMC Biology}, number = {16}, doi = {10.1186/s12915-018-0485-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175827}, year = {2018}, abstract = {Background: Sex determination relies on a hierarchically structured network of genes, and is one of the most plastic processes in evolution. The evolution of sex-determining genes within a network, by neo- or sub-functionalization, also requires the regulatory landscape to be rewired to accommodate these novel gene functions. We previously showed that in medaka fish, the regulatory landscape of the master male-determining gene dmrt1bY underwent a profound rearrangement, concomitantly with acquiring a dominant position within the sex-determining network. This rewiring was brought about by the exaptation of a transposable element (TE) called Izanagi, which is co-opted to act as a silencer to turn off the dmrt1bY gene after it performed its function in sex determination. Results: We now show that a second TE, Rex1, has been incorporated into Izanagi. The insertion of Rex1 brought in a preformed regulatory element for the transcription factor Sox5, which here functions in establishing the temporal and cell-type-specific expression pattern of dmrt1bY. Mutant analysis demonstrates the importance of Sox5 in the gonadal development of medaka, and possibly in mice, in a dmrt1bY-independent manner. Moreover, Sox5 medaka mutants have complete female-to-male sex reversal. Conclusions: Our work reveals an unexpected complexity in TE-mediated transcriptional rewiring, with the exaptation of a second TE into a network already rewired by a TE. We also show a dual role for Sox5 during sex determination: first, as an evolutionarily conserved regulator of germ-cell number in medaka, and second, by de novo regulation of dmrt1 transcriptional activity during primary sex determination due to exaptation of the Rex1 transposable element.}, language = {en} } @article{AnelliOrdasKneitzetal.2018, author = {Anelli, Viviana and Ordas, Anita and Kneitz, Susanne and Sagredo, Leonel Munoz and Gourain, Victor and Schartl, Manfred and Meijer, Annemarie H. and Mione, Marina}, title = {Ras-Induced miR-146a and 193a Target Jmjd6 to Regulate Melanoma Progression}, series = {Frontiers in Genetics}, volume = {9}, journal = {Frontiers in Genetics}, number = {675}, issn = {1664-8021}, doi = {10.3389/fgene.2018.00675}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196963}, year = {2018}, abstract = {Ras genes are among the most commonly mutated genes in human cancer; yet our understanding of their oncogenic activity at the molecular mechanistic level is incomplete. To identify downstream events that mediate ras-induced cellular transformation in vivo, we analyzed global microRNA expression in three different models of Ras-induction and tumor formation in zebrafish. Six microRNAs were found increased in Ras-induced melanoma, glioma and in an inducible model of ubiquitous Ras expression. The upregulation of the microRNAs depended on the activation of the ERK and AKT pathways and to a lesser extent, on mTOR signaling. Two Ras-induced microRNAs (miR-146a and 193a) target Jmjd6, inducing downregulation of its mRNA and protein levels at the onset of Ras expression during melanoma development. However, at later stages of melanoma progression, jmjd6 levels were found elevated. The dynamic of Jmjd6 levels during progression of melanoma in the zebrafish model suggests that upregulation of the microRNAs targeting Jmjd6 may be part of an anti-cancer response. Indeed, triple transgenic fish engineered to express a microRNA-resistant Jmjd6 from the onset of melanoma have increased tumor burden, higher infiltration of leukocytes and shorter melanoma-free survival. Increased JMJD6 expression is found in several human cancers, including melanoma, suggesting that the up-regulation of Jmjd6 is a critical event in tumor progression. The following link has been created to allow review of record GSE37015: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jjcrbiuicyyqgpc\&acc=GSE37015.}, language = {en} } @article{JarickBertscheStahletal.2018, author = {Jarick, Marcel and Bertsche, Ute and Stahl, Mark and Schultz, Daniel and Methling, Karen and Lalk, Michael and Stigloher, Christian and Steger, Mirco and Schlosser, Andreas and Ohlsen, Knut}, title = {The serine/threonine kinase Stk and the phosphatase Stp regulate cell wall synthesis in Staphylococcus aureus}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {13693}, doi = {10.1038/s41598-018-32109-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177333}, year = {2018}, abstract = {The cell wall synthesis pathway producing peptidoglycan is a highly coordinated and tightly regulated process. Although the major components of bacterial cell walls have been known for decades, the complex regulatory network controlling peptidoglycan synthesis and many details of the cell division machinery are not well understood. The eukaryotic-like serine/threonine kinase Stk and the cognate phosphatase Stp play an important role in cell wall biosynthesis and drug resistance in S. aureus. We show that stp deletion has a pronounced impact on cell wall synthesis. Deletion of stp leads to a thicker cell wall and decreases susceptibility to lysostaphin. Stationary phase Δstp cells accumulate peptidoglycan precursors and incorporate higher amounts of incomplete muropeptides with non-glycine, monoglycine and monoalanine interpeptide bridges into the cell wall. In line with this cell wall phenotype, we demonstrate that the lipid II:glycine glycyltransferase FemX can be phosphorylated by the Ser/Thr kinase Stk in vitro. Mass spectrometric analyses identify Thr32, Thr36 and Ser415 as phosphoacceptors. The cognate phosphatase Stp dephosphorylates these phosphorylation sites. Moreover, Stk interacts with FemA and FemB, but is unable to phosphorylate them. Our data indicate that Stk and Stp modulate cell wall synthesis and cell division at several levels.}, language = {en} } @article{SchenkKraussHolzschuh2018, author = {Schenk, Mariela and Krauss, Jochen and Holzschuh, Andrea}, title = {Desynchronizations in bee-plant interactions cause severe fitness losses in solitary bees}, series = {Journal of Animal Ecology}, volume = {87}, journal = {Journal of Animal Ecology}, number = {1}, doi = {10.1111/1365-2656.12694}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228533}, pages = {139-149}, year = {2018}, abstract = {1. Global warming can disrupt mutualistic interactions between solitary bees and plants when increasing temperature differentially changes the timing of interacting partners. One possible scenario is for insect phenology to advance more rapidly than plant phenology. 2. However, empirical evidence for fitness consequences due to temporal mismatches is lacking for pollinators and it remains unknown if bees have developed strategies to mitigate fitness losses following temporal mismatches. 3. We tested the effect of temporal mismatches on the fitness of three spring-emerging solitary bee species, including one pollen specialist. Using flight cages, we simulated (i) a perfect synchronization (from a bee perspective): bees and flowers occur simultaneously, (ii) a mismatch of 3days and (iii) a mismatch of 6days, with bees occurring earlier than flowers in the latter two cases. 4. A mismatch of 6days caused severe fitness losses in all three bee species, as few bees survived without flowers. Females showed strongly reduced activity and reproductive output compared to synchronized bees. Fitness consequences of a 3-day mismatch were species-specific. Both the early-spring species Osmia cornuta and the mid-spring species Osmia bicornis produced the same number of brood cells after a mismatch of 3days as under perfect synchronization. However, O.cornuta decreased the number of female offspring, whereas O.bicornis spread the brood cells over fewer nests, which may increase offspring mortality, e.g. due to parasitoids. The late-spring specialist Osmia brevicornis produced fewer brood cells even after a mismatch of 3days. Additionally, our results suggest that fitness losses after temporal mismatches are higher during warm than cold springs, as the naturally occurring temperature variability revealed that warm temperatures during starvation decreased the survival rate of O.bicornis. 5. We conclude that short temporal mismatches can cause clear fitness losses in solitary bees. Although our results suggest that bees have evolved species-specific strategies to mitigate fitness losses after temporal mismatches, the bees were not able to completely compensate for impacts on their fitness after temporal mismatches with their food resources.}, subject = {pollination}, language = {en} } @article{RasaNoraKrukleHenningetal.2018, author = {Rasa, Santa and Nora-Krukle, Zaiga and Henning, Nina and Eliassen, Eva and Shikova, Evelina and Harrer, Thomas and Scheibenbogen, Carmen and Murovska, Modra and Prusty, Bhupesh K.}, title = {Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)}, series = {Journal of Translational Medicine}, volume = {16}, journal = {Journal of Translational Medicine}, number = {268}, doi = {10.1186/s12967-018-1644-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224960}, pages = {1-25}, year = {2018}, abstract = {Background and main text: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and controversial clinical condition without having established causative factors. Increasing numbers of cases during past decade have created awareness among patients as well as healthcare professionals. Chronic viral infection as a cause of ME/CFS has long been debated. However, lack of large studies involving well-designed patient groups and validated experimental set ups have hindered our knowledge about this disease. Moreover, recent developments regarding molecular mechanism of pathogenesis of various infectious agents cast doubts over validity of several of the past studies. Conclusions: This review aims to compile all the studies done so far to investigate various viral agents that could be associated with ME/CFS. Furthermore, we suggest strategies to better design future studies on the role of viral infections in ME/CFS.}, language = {en} } @article{CoelhoKultimaCosteaetal.2018, author = {Coelho, Luis Pedro and Kultima, Jens Roat and Costea, Paul Igor and Fournier, Coralie and Pan, Yuanlong and Czarnecki-Maulden, Gail and Hayward, Matthew Robert and Forslund, Sofia K. and Schmidt, Thomas Sebastian Benedikt and Descombes, Patrick and Jackson, Janet R. and Li, Qinghong and Bork, Peer}, title = {Similarity of the dog and human gut microbiomes in gene content and response to diet}, series = {Microbiome}, volume = {6}, journal = {Microbiome}, doi = {10.1186/s40168-018-0450-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223177}, year = {2018}, abstract = {Background Gut microbes influence their hosts in many ways, in particular by modulating the impact of diet. These effects have been studied most extensively in humans and mice. In this work, we used whole genome metagenomics to investigate the relationship between the gut metagenomes of dogs, humans, mice, and pigs. Results We present a dog gut microbiome gene catalog containing 1,247,405 genes (based on 129 metagenomes and a total of 1.9 terabasepairs of sequencing data). Based on this catalog and taxonomic abundance profiling, we show that the dog microbiome is closer to the human microbiome than the microbiome of either pigs or mice. To investigate this similarity in terms of response to dietary changes, we report on a randomized intervention with two diets (high-protein/low-carbohydrate vs. lower protein/higher carbohydrate). We show that diet has a large and reproducible effect on the dog microbiome, independent of breed or sex. Moreover, the responses were in agreement with those observed in previous human studies. Conclusions We conclude that findings in dogs may be predictive of human microbiome results. In particular, a novel finding is that overweight or obese dogs experience larger compositional shifts than lean dogs in response to a high-protein diet.}, language = {en} } @article{AdamDeimelPardoMedinaetal.2018, author = {Adam, Alexander and Deimel, Stephan and Pardo-Medina, Javier and Garc{\´i}a-Mart{\´i}nez, Jorge and Konte, Tilen and Lim{\´o}n, M. Carmen and Avalos, Javier and Terpitz, Ulrich}, title = {Protein activity of the \(Fusarium\) \(fujikuroi\) rhodopsins CarO and OpsA and their relation to fungus-plant interaction}, series = {International Journal of Molecular Sciences}, volume = {19}, journal = {International Journal of Molecular Sciences}, number = {1}, issn = {1422-0067}, doi = {10.3390/ijms19010215}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285125}, year = {2018}, abstract = {Fungi possess diverse photosensory proteins that allow them to perceive different light wavelengths and to adapt to changing light conditions in their environment. The biological and physiological roles of the green light-sensing rhodopsins in fungi are not yet resolved. The rice plant pathogen Fusarium fujikuroi exhibits two different rhodopsins, CarO and OpsA. CarO was previously characterized as a light-driven proton pump. We further analyzed the pumping behavior of CarO by patch-clamp experiments. Our data show that CarO pumping activity is strongly augmented in the presence of the plant hormone indole-3-acetic acid and in sodium acetate, in a dose-dependent manner under slightly acidic conditions. By contrast, under these and other tested conditions, the Neurospora rhodopsin (NR)-like rhodopsin OpsA did not exhibit any pump activity. Basic local alignment search tool (BLAST) searches in the genomes of ascomycetes revealed the occurrence of rhodopsin-encoding genes mainly in phyto-associated or phytopathogenic fungi, suggesting a possible correlation of the presence of rhodopsins with fungal ecology. In accordance, rice plants infected with a CarO-deficient F. fujikuroi strain showed more severe bakanae symptoms than the reference strain, indicating a potential role of the CarO rhodopsin in the regulation of plant infection by this fungus.}, language = {en} } @article{AlbrechtClassenVollstaedtetal.2018, author = {Albrecht, J{\"o}rg and Classen, Alice and Vollst{\"a}dt, Maximilian G.R. and Mayr, Antonia and Mollel, Neduvoto P. and Schellenberger Costa, David and Dulle, Hamadi I. and Fischer, Markus and Hemp, Andreas and Howell, Kim M. and Kleyer, Michael and Nauss, Thomas and Peters, Marcell K. and Tschapka, Marco and Steffan-Dewenter, Ingolf and B{\"o}hning-Gaese, Katrin and Schleuning, Matthias}, title = {Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-05610-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221056}, pages = {1-10}, year = {2018}, abstract = {Species' functional traits set the blueprint for pair-wise interactions in ecological networks. Yet, it is unknown to what extent the functional diversity of plant and animal communities controls network assembly along environmental gradients in real-world ecosystems. Here we address this question with a unique dataset of mutualistic bird-fruit, bird-flower and insect-flower interaction networks and associated functional traits of 200 plant and 282 animal species sampled along broad climate and land-use gradients on Mt. Kilimanjaro. We show that plant functional diversity is mainly limited by precipitation, while animal functional diversity is primarily limited by temperature. Furthermore, shifts in plant and animal functional diversity along the elevational gradient control the niche breadth and partitioning of the respective other trophic level. These findings reveal that climatic constraints on the functional diversity of either plants or animals determine the relative importance of bottom-up and top-down control in plant-animal interaction networks.}, language = {en} } @article{CarradecPelletierDaSilvaetal.2018, author = {Carradec, Quentin and Pelletier, Eric and Da Silva, Corinne and Alberti, Adriana and Seeleuthner, Yoann and Blanc-Mathieu, Romain and Lima-Mendez, Gipsi and Rocha, Fabio and Tirichine, Leila and Labadie, Karine and Kirilovsky, Amos and Bertrand, Alexis and Engelen, Stefan and Madoui, Mohammed-Amin and M{\´e}heust, Rapha{\"e}l and Poulain, Julie and Romac, Sarah and Richter, Daniel J. and Yoshikawa, Genki and Dimier, C{\´e}line and Kandels-Lewis, Stefanie and Picheral, Marc and Searson, Sarah and Jaillon, Olivier and Aury, Jean-Marc and Karsenti, Eric and Sullivan, Matthew B. and Sunagawa, Shinichi and Bork, Peer and Not, Fabrice and Hingamp, Pascal and Raes, Jeroen and Guidi, Lionel and Ogata, Hiroyuki and de Vargas, Colomban and Iudicone, Daniele and Bowler, Chris and Wincker, Patrick}, title = {A global ocean atlas of eukaryotic gene}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, organization = {Tara Oceans Coordinators}, doi = {10.1038/s41467-017-02342-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222250}, year = {2018}, abstract = {While our knowledge about the roles of microbes and viruses in the ocean has increased tremendously due to recent advances in genomics and metagenomics, research on marine microbial eukaryotes and zooplankton has benefited much less from these new technologies because of their larger genomes, their enormous diversity, and largely unexplored physiologies. Here, we use a metatranscriptomics approach to capture expressed genes in open ocean Tara Oceans stations across four organismal size fractions. The individual sequence reads cluster into 116 million unigenes representing the largest reference collection of eukaryotic transcripts from any single biome. The catalog is used to unveil functions expressed by eukaryotic marine plankton, and to assess their functional biogeography. Almost half of the sequences have no similarity with known proteins, and a great number belong to new gene families with a restricted distribution in the ocean. Overall, the resource provides the foundations for exploring the roles of marine eukaryotes in ocean ecology and biogeochemistry.}, language = {en} } @article{BrunkSputhDooseetal.2018, author = {Brunk, Michael and Sputh, Sebastian and Doose, S{\"o}ren and van de Linde, Sebastian and Terpitz, Ulrich}, title = {HyphaTracker: An ImageJ toolbox for time-resolved analysis of spore germination in filamentous fungi}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-19103-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221691}, year = {2018}, abstract = {The dynamics of early fungal development and its interference with physiological signals and environmental factors is yet poorly understood. Especially computational analysis tools for the evaluation of the process of early spore germination and germ tube formation are still lacking. For the time-resolved analysis of conidia germination of the filamentous ascomycete Fusarium fujikuroi we developed a straightforward toolbox implemented in ImageJ. It allows for processing of microscopic acquisitions (movies) of conidial germination starting with drift correction and data reduction prior to germling analysis. From the image time series germling related region of interests (ROIs) are extracted, which are analysed for their area, circularity, and timing. ROIs originating from germlings crossing other hyphae or the image boundaries are omitted during analysis. Each conidium/hypha is identified and related to its origin, thus allowing subsequent categorization. The efficiency of HyphaTracker was proofed and the accuracy was tested on simulated germlings at different signal-to-noise ratios. Bright-field microscopic images of conidial germination of rhodopsin-deficient F. fujikuroi mutants and their respective control strains were analysed with HyphaTracker. Consistent with our observation in earlier studies the CarO deficient mutant germinated earlier and grew faster than other, CarO expressing strains.}, language = {en} } @article{DunceMilburnGurusaranetal.2018, author = {Dunce, James M. and Milburn, Amy E. and Gurusaran, Manickam and da Cruz, Irene and Sen, Lee T. and Benavente, Ricardo and Davies, Owen R.}, title = {Structural basis of meiotic telomere attachment to the nuclear envelope by MAJIN-TERB2-TERB1}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-07794-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226416}, year = {2018}, abstract = {Meiotic chromosomes undergo rapid prophase movements, which are thought to facilitate the formation of inter-homologue recombination intermediates that underlie synapsis, crossing over and segregation. The meiotic telomere complex (MAJIN, TERB1, TERB2) tethers telomere ends to the nuclear envelope and transmits cytoskeletal forces via the LINC complex to drive these rapid movements. Here, we report the molecular architecture of the meiotic telomere complex through the crystal structure of MAJIN-TERB2, together with light and X-ray scattering studies of wider complexes. The MAJIN-TERB2 2:2 hetero-tetramer binds strongly to DNA and is tethered through long flexible linkers to the inner nuclear membrane and two TRF1-binding 1:1 TERB2-TERB1 complexes. Our complementary structured illumination microscopy studies and biochemical findings reveal a telomere attachment mechanism in which MAJIN-TERB2-TERB1 recruits telomere-bound TRF1, which is then displaced during pachytene, allowing MAJIN-TERB2-TERB1 to bind telomeric DNA and form a mature attachment plate.}, language = {en} } @article{FranchiniJonesXiongetal.2018, author = {Franchini, Paolo and Jones, Julia C. and Xiong, Peiwen and Kneitz, Susanne and Gompert, Zachariah and Warren, Wesley C. and Walter, Ronald B. and Meyer, Axel and Schartl, Manfred}, title = {Long-term experimental hybridisation results in the evolution of a new sex chromosome in swordtail fish}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-07648-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228396}, year = {2018}, abstract = {The remarkable diversity of sex determination mechanisms known in fish may be fuelled by exceptionally high rates of sex chromosome turnovers or transitions. However, the evolutionary causes and genomic mechanisms underlying this variation and instability are yet to be understood. Here we report on an over 30-year evolutionary experiment in which we tested the genomic consequences of hybridisation and selection between two Xiphophorus fish species with different sex chromosome systems. We find that introgression and imposing selection for pigmentation phenotypes results in the retention of an unexpectedly large maternally derived genomic region. During the hybridisation process, the sex-determining region of the X chromosome from one parental species was translocated to an autosome in the hybrids leading to the evolution of a new sex chromosome. Our results highlight the complexity of factors contributing to patterns observed in hybrid genomes, and we experimentally demonstrate that hybridisation can catalyze rapid evolution of a new sex chromosome.}, language = {en} } @article{HennrichRomanovHornetal.2018, author = {Hennrich, Marco L. and Romanov, Natalie and Horn, Patrick and Jaeger, Samira and Eckstein, Volker and Steeples, Violetta and Ye, Fei and Ding, Ximing and Poisa-Beiro, Laura and Mang, Ching Lai and Lang, Benjamin and Boultwood, Jacqueline and Luft, Thomas and Zaugg, Judith B. and Pellagatti, Andrea and Bork, Peer and Aloy, Patrick and Gavin, Anne-Claude and Ho, Anthony D.}, title = {Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-06353-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319877}, year = {2018}, abstract = {Diminishing potential to replace damaged tissues is a hallmark for ageing of somatic stem cells, but the mechanisms remain elusive. Here, we present proteome-wide atlases of age-associated alterations in human haematopoietic stem and progenitor cells (HPCs) and five other cell populations that constitute the bone marrow niche. For each, the abundance of a large fraction of the ~12,000 proteins identified is assessed in 59 human subjects from different ages. As the HPCs become older, pathways in central carbon metabolism exhibit features reminiscent of the Warburg effect, where glycolytic intermediates are rerouted towards anabolism. Simultaneously, altered abundance of early regulators of HPC differentiation reveals a reduced functionality and a bias towards myeloid differentiation. Ageing causes alterations in the bone marrow niche too, and diminishes the functionality of the pathways involved in HPC homing. The data represent a valuable resource for further analyses, and for validation of knowledge gained from animal models.}, language = {en} } @article{HinesMaricHinesetal.2018, author = {Hines, Rochelle M. and Maric, Hans Michael and Hines, Dustin J. and Modgil, Amit and Panzanelli, Patrizia and Nakamura, Yasuko and Nathanson, Anna J. and Cross, Alan and Deeb, Tarek and Brandon, Nicholas J. and Davies, Paul and Fritschy, Jean-Marc and Schindelin, Hermann and Moss, Stephen J.}, title = {Developmental seizures and mortality result from reducing GABAA receptor α2-subunit interaction with collybistin}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-05481-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320719}, year = {2018}, abstract = {Fast inhibitory synaptic transmission is mediated by γ-aminobutyric acid type A receptors (GABAARs) that are enriched at functionally diverse synapses via mechanisms that remain unclear. Using isothermal titration calorimetry and complementary methods we demonstrate an exclusive low micromolar binding of collybistin to the α2-subunit of GABAARs. To explore the biological relevance of collybistin-α2-subunit selectivity, we generate mice with a mutation in the α2-subunit-collybistin binding region (Gabra2-1). The mutation results in loss of a distinct subset of inhibitory synapses and decreased amplitude of inhibitory synaptic currents. Gabra2-1 mice have a striking phenotype characterized by increased susceptibility to seizures and early mortality. Surviving Gabra2-1 mice show anxiety and elevations in electroencephalogram δ power, which are ameliorated by treatment with the α2/α3-selective positive modulator, AZD7325. Taken together, our results demonstrate an α2-subunit selective binding of collybistin, which plays a key role in patterned brain activity, particularly during development.}, language = {en} } @article{GroebnerWorstWeischenfeldtetal.2018, author = {Gr{\"o}bner, Susanne N. and Worst, Barbara C. and Weischenfeldt, Joachim and Buchhalter, Ivo and Kleinheinz, Kortine and Rudneva, Vasilisa A. and Johann, Pascal D. and Balasubramanian, Gnana Prakash and Segura-Wang, Maia and Brabetz, Sebastian and Bender, Sebastian and Hutter, Barbara and Sturm, Dominik and Pfaff, Elke and H{\"u}bschmann, Daniel and Zipprich, Gideon and Heinold, Michael and Eils, J{\"u}rgen and Lawerenz, Christian and Erkek, Serap and Lambo, Sander and Waszak, Sebastian and Blattmann, Claudia and Borkhardt, Arndt and Kuhlen, Michaela and Eggert, Angelika and Fulda, Simone and Gessler, Manfred and Wegert, Jenny and Kappler, Roland and Baumhoer, Daniel and Stefan, Burdach and Kirschner-Schwabe, Renate and Kontny, Udo and Kulozik, Andreas E. and Lohmann, Dietmar and Hettmer, Simone and Eckert, Cornelia and Bielack, Stefan and Nathrath, Michaela and Niemeyer, Charlotte and Richter, G{\"u}nther H. and Schulte, Johannes and Siebert, Reiner and Westermann, Frank and Molenaar, Jan J. and Vassal, Gilles and Witt, Hendrik and Burkhardt, Birgit and Kratz, Christian P. and Witt, Olaf and van Tilburg, Cornelis M. and Kramm, Christof M. and Fleischhack, Gudrun and Dirksen, Uta and Rutkowski, Stefan and Fr{\"u}hwald, Michael and Hoff, Katja von and Wolf, Stephan and Klingebeil, Thomas and Koscielniak, Ewa and Landgraf, Pablo and Koster, Jan and Resnick, Adam C. and Zhang, Jinghui and Liu, Yanling and Zhou, Xin and Waanders, Angela J. and Zwijnenburg, Danny A. and Raman, Pichai and Brors, Benedikt and Weber, Ursula D. and Northcott, Paul A. and Pajtler, Kristian W. and Kool, Marcel and Piro, Rosario M. and Korbel, Jan O. and Schlesner, Matthias and Eils, Roland and Jones, David T. W. and Lichter, Peter and Chavez, Lukas and Zapatka, Marc and Pfister, Stefan M.}, title = {The landscape of genomic alterations across childhood cancers}, series = {Nature}, volume = {555}, journal = {Nature}, organization = {ICGC PedBrain-Seq Project, ICGC MMML-Seq Project,}, doi = {10.1038/nature25480}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229579}, pages = {321-327}, year = {2018}, abstract = {Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8\% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50\% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.}, language = {en} } @article{HeilSchreiberGoetzetal.2018, author = {Heil, Hannah S. and Schreiber, Benjamin and G{\"o}tz, Ralph and Emmerling, Monika and Dabauvalle, Marie-Christine and Krohne, Georg and H{\"o}fling, Sven and Kamp, Martin and Sauer, Markus and Heinze, Katrin G.}, title = {Sharpening emitter localization in front of a tuned mirror}, series = {Light: Science \& Applications}, volume = {7}, journal = {Light: Science \& Applications}, doi = {10.1038/s41377-018-0104-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228080}, year = {2018}, abstract = {Single-molecule localization microscopy (SMLM) aims for maximized precision and a high signal-to-noise ratio1. Both features can be provided by placing the emitter in front of a metal-dielectric nanocoating that acts as a tuned mirror2,3,4. Here, we demonstrate that a higher photon yield at a lower background on biocompatible metal-dielectric nanocoatings substantially improves SMLM performance and increases the localization precision by up to a factor of two. The resolution improvement relies solely on easy-to-fabricate nanocoatings on standard glass coverslips and is spectrally and spatially tunable by the layer design and wavelength, as experimentally demonstrated for dual-color SMLM in cells.}, language = {en} }