@phdthesis{Schuetz2005, author = {Sch{\"u}tz, Monika}, title = {Dynamik und Funktion der HMG-Proteine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15627}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {HMG-Proteine sind Architekturelemente des Chromatins und regulieren durch ihre Bindung an das Chromatin auf verschiedene Weise DNA-abh{\"a}ngige Prozesse wie Replikation, Transkription und DNA-Reparatur. Um zu verstehen, wie HMG-Proteine ihre vielf{\"a}ltigen Funktionen erf{\"u}llen k{\"o}nnen, wurde mit Hilfe von EGFP- und DsRed2-Fusionsproteinen ihre Funktion in vivo untersucht. Im Wesentlichen wurde dabei mit Hilfe von Bleichtechniken ihr dynamisches Verhalten charakterisiert. Daneben wurde f{\"u}r die HMGN-Proteine ihr bislang unbekanntes Expressionsverhalten in Tumorzellen bestimmt. So konnte f{\"u}r die HMGN-Proteine gezeigt werden, dass bestimmte Tumorzelllinien (HT-29, FTC-133, MCF-7, RPMI 8226, 697, Ishikawa, LNCap) eine relativ erh{\"o}hte Expression von HMGN2 aufweisen, die mit der Tumordifferenzierung korreliert. Eine relativ verringerte Expression von HMGN1 steht dagegen in Mammakarzinomen und Non-Hodgkin-Lymphomen in direktem Zusammenhang mit der Aggressivit{\"a}t der Tumore. Somit kann die HMGN-Expression bei diesen Tumoren als diagnostischer Marker verwendet werden. FRAP-Analysen mit EGFP-Fusionsproteinen f{\"u}hrten zu der Erkenntnis, dass HMGN1, HMGN2, HMGA1a, HMGA1b und HMGB1 sich sehr schnell durch den Zellkern bewegen und nur transient an das Chromatin gebunden sind. Es konnte gezeigt werden, dass die spezifischen DNA/Chromatin-Bindungsmotive im Wesentlichen entscheiden, wo die Bindung der HMG-Proteine in vivo erfolgt, ihre Verweildauer im Euchromatin, Heterochromatin und zellzyklusabh{\"a}ngig dann aber durch Modifikationen (Phosphorylierungen, Acetylierungen) reguliert wird. Dies wurde beispielhaft durch punktmutierte und deletierte Fusionsproteine, sowie durch Inkubation der Zellen mit spezifischen Drogen f{\"u}r die HMGA1a-Proteine gezeigt. FRAP-Analysen haben außerdem gezeigt, dass die Spleißvarianten hHMGA1a und hHMGA1b unterschiedliche kinetische Parameter besitzen. Dies zeigt, dass beiden Varianten unterschiedliche Funktionen zugesprochen werden k{\"o}nnen. Die gefundenen spezifischen, transienten Verweildauern der einzelnen HMG-Proteine f{\"u}hren zu einem Modell eines dynamischen Chromatin-Netzwerkes, wobei alle HMG-Proteine in Wechselwirkungen innerhalb eines dynamischen Chromatinprotein-Cocktails DNA-abh{\"a}ngige Prozesse regulieren k{\"o}nnen. Die jeweiligen, wie hier gezeigt, durch Modifikationen regulierten Verweildauern der HMG-Proteine bestimmen dar{\"u}ber, welche anderen Chromatinproteine wie lange am Chromatin verbleiben und bestimmte Funktionen, wie beispielsweise die Modifikation der Core-Histone, {\"u}bernehmen k{\"o}nnen. Die dynamischen Parameter einzelner HMG-Proteine erkl{\"a}ren so, wie diese Proteine ihre vielf{\"a}ltigen Funktionen als Architekturelemente und bei der Regulation DNA-abh{\"a}ngiger Prozesse erf{\"u}llen k{\"o}nnen. Einige Vertreter, wie die HMGB1-Proteine, bewegen sich so schnell durch den Zellkern, dass ihre kinetischen Parameter durch das beschr{\"a}nkte zeitliche Aufl{\"o}sungsverm{\"o}gen konfokaler Mikroskope der {\"a}lteren Generation nicht erfassbar sind. Die Bestimmung von Dosis-Wirkungs-Beziehungen von Drogen, welche die kinetischen Parameter von HMGB1-Proteinen beeinflussen k{\"o}nnen, ist inzwischen mit Mikroskopen der neuen Generation m{\"o}glich. Im Verlaufe der Arbeit zeigte sich, dass andere verwendete Fluorophore wie DsRed2 die kinetischen Eigenschaften von HMG-Fusionsproteinen beeinflussen k{\"o}nnen. Durch eine erh{\"o}hte Verweildauer k{\"o}nnen auch sehr transiente Interaktionen sichtbar gemacht werden. Wie gezeigt wurde, kann eine erh{\"o}hte Verweildauer aber auch zur Verdr{\"a}ngung anderer Proteine f{\"u}hren, die die gleichen Bindungsstellen benutzen und so eine Modulation des Chromatins bewirken. Die Nutzung von DsRed-Fluorophoren erm{\"o}glicht interessante neue Erkenntnisse. Diese m{\"u}ssen aber stets vor dem Hintergrund eines ver{\"a}nderten dynamischen Verhaltens der Fusionsproteine interpretiert werden. Zusammengenommen liefern die hier vorgestellten Ergebnisse zur Dynamik der HMG-Proteine grundlegende Informationen, die zur Kl{\"a}rung ihrer Funktion bei Chromatinmodulationen, etwa bei Differenzierungsprozessen oder der Entstehung von Tumorzellen entscheidend beitragen. Die Erkenntnis, dass diese Proteine lediglich transiente Interaktionen mit ihren Bindungspartnern eingehen k{\"o}nnen, sind im Hinblick auf die Behandlung von Tumoren, bei denen HMG-Proteine im Vergleich zu Normalgewebe h{\"a}ufig {\"u}berexprimiert sind, von großer Bedeutung.}, subject = {HMG-Proteine}, language = {de} }