@article{ElHajjDittrichBoecketal.2016, author = {El Hajj, Nady and Dittrich, Marcus and B{\"o}ck, Julia and Kraus, Theo F. J. and Nanda, Indrajit and M{\"u}ller, Tobias and Seidmann, Larissa and Tralau, Tim and Galetzka, Danuta and Schneider, Eberhard and Haaf, Thomas}, title = {Epigenetic dysregulation in the developing Down syndrome cortex}, series = {Epigenetics}, volume = {11}, journal = {Epigenetics}, number = {8}, doi = {10.1080/15592294.2016.1192736}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191239}, pages = {563-578}, year = {2016}, abstract = {Using Illumina 450K arrays, 1.85\% of all analyzed CpG sites were significantly hypermethylated and 0.31\% hypomethylated in fetal Down syndrome (DS) cortex throughout the genome. The methylation changes on chromosome 21 appeared to be balanced between hypo- and hyper-methylation, whereas, consistent with prior reports, all other chromosomes showed 3-11times more hyper- than hypo-methylated sites. Reduced NRSF/REST expression due to upregulation of DYRK1A (on chromosome 21q22.13) and methylation of REST binding sites during early developmental stages may contribute to this genome-wide excess of hypermethylated sites. Upregulation of DNMT3L (on chromosome 21q22.4) could lead to de novo methylation in neuroprogenitors, which then persists in the fetal DS brain where DNMT3A and DNMT3B become downregulated. The vast majority of differentially methylated promoters and genes was hypermethylated in DS and located outside chromosome 21, including the protocadherin gamma (PCDHG) cluster on chromosome 5q31, which is crucial for neural circuit formation in the developing brain. Bisulfite pyrosequencing and targeted RNA sequencing showed that several genes of PCDHG subfamilies A and B are hypermethylated and transcriptionally downregulated in fetal DS cortex. Decreased PCDHG expression is expected to reduce dendrite arborization and growth in cortical neurons. Since constitutive hypermethylation of PCDHG and other genes affects multiple tissues, including blood, it may provide useful biomarkers for DS brain development and pharmacologic targets for therapeutic interventions.}, language = {en} } @article{MederKoenigOzretićetal.2016, author = {Meder, Lydia and K{\"o}nig, Katharina and Ozretić, Luka and Schultheis, Anne M. and Ueckeroth, Frank and Ade, Carsten P. and Albus, Kerstin and Boehm, Diana and Rommerscheidt-Fuss, Ursula and Florin, Alexandra and Buhl, Theresa and Hartmann, Wolfgang and Wolf, J{\"u}rgen and Merkelbach-Bruse, Sabine and Eilers, Martin and Perner, Sven and Heukamp, Lukas C. and Buettner, Reinhard}, title = {NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas}, series = {International Journal of Cancer}, volume = {138}, journal = {International Journal of Cancer}, number = {4}, doi = {10.1002/ijc.29835}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190853}, pages = {927-938}, year = {2016}, abstract = {Small cell lung cancers (SCLCs) and extrapulmonary small cell cancers (SCCs) are very aggressive tumors arising de novo as primary small cell cancer with characteristic genetic lesions in RB1 and TP53. Based on murine models, neuroendocrine stem cells of the terminal bronchioli have been postulated as the cellular origin of primary SCLC. However, both in lung and many other organs, combined small cell/non-small cell tumors and secondary transitions from non-small cell carcinomas upon cancer therapy to neuroendocrine and small cell tumors occur. We define features of "small cell-ness" based on neuroendocrine markers, characteristic RB1 and TP53 mutations and small cell morphology. Furthermore, here we identify a pathway driving the pathogenesis of secondary SCLC involving inactivating NOTCH mutations, activation of the NOTCH target ASCL1 and canonical WNT-signaling in the context of mutual bi-allelic RB1 and TP53 lesions. Additionaly, we explored ASCL1 dependent RB inactivation by phosphorylation, which is reversible by CDK5 inhibition. We experimentally verify the NOTCH-ASCL1-RB-p53 signaling axis in vitro and validate its activation by genetic alterations in vivo. We analyzed clinical tumor samples including SCLC, SCC and pulmonary large cell neuroendocrine carcinomas and adenocarcinomas using amplicon-based Next Generation Sequencing, immunohistochemistry and fluorescence in situ hybridization. In conclusion, we identified a novel pathway underlying rare secondary SCLC which may drive small cell carcinomas in organs other than lung, as well.}, language = {en} } @article{BlaettnerDasPaprotkaetal.2016, author = {Bl{\"a}ttner, Sebastian and Das, Sudip and Paprotka, Kerstin and Eilers, Ursula and Krischke, Markus and Kretschmer, Dorothee and Remmele, Christian W. and Dittrich, Marcus and M{\"u}ller, Tobias and Schuelein-Voelk, Christina and Hertlein, Tobias and Mueller, Martin J. and Huettel, Bruno and Reinhardt, Richard and Ohlsen, Knut and Rudel, Thomas and Fraunholz, Martin J.}, title = {Staphylococcus aureus Exploits a Non-ribosomal Cyclic Dipeptide to Modulate Survival within Epithelial Cells and Phagocytes}, series = {PLoS Pathogens}, volume = {12}, journal = {PLoS Pathogens}, number = {9}, doi = {10.1371/journal.ppat.1005857}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180380}, year = {2016}, abstract = {Community-acquired (CA) Staphylococcus aureus cause various diseases even in healthy individuals. Enhanced virulence of CA-strains is partly attributed to increased production of toxins such as phenol-soluble modulins (PSM). The pathogen is internalized efficiently by mammalian host cells and intracellular S. aureus has recently been shown to contribute to disease. Upon internalization, cytotoxic S. aureus strains can disrupt phagosomal membranes and kill host cells in a PSM-dependent manner. However, PSM are not sufficient for these processes. Here we screened for factors required for intracellular S. aureus virulence. We infected escape reporter host cells with strains from an established transposon mutant library and detected phagosomal escape rates using automated microscopy. We thereby, among other factors, identified a non-ribosomal peptide synthetase (NRPS) to be required for efficient phagosomal escape and intracellular survival of S. aureus as well as induction of host cell death. By genetic complementation as well as supplementation with the synthetic NRPS product, the cyclic dipeptide phevalin, wild-type phenotypes were restored. We further demonstrate that the NRPS is contributing to virulence in a mouse pneumonia model. Together, our data illustrate a hitherto unrecognized function of the S. aureus NRPS and its dipeptide product during S. aureus infection.}, language = {en} } @article{FischerHelfrichFoersterPeschel2016, author = {Fischer, Robin and Helfrich-F{\"o}rster, Charlotte and Peschel, Nicolai}, title = {GSK-3 Beta Does Not Stabilize Cryptochrome in the Circadian Clock of Drosophila}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0146571}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180370}, year = {2016}, abstract = {Cryptochrome (CRY) is the primary photoreceptor of Drosophila's circadian clock. It resets the circadian clock by promoting light-induced degradation of the clock protein Timeless (TIM) in the proteasome. Under constant light, the clock stops because TIM is absent, and the flies become arrhythmic. In addition to TIM degradation, light also induces CRY degradation. This depends on the interaction of CRY with several proteins such as the E3 ubiquitin ligases Jetlag (JET) and Ramshackle (BRWD3). However, CRY can seemingly also be stabilized by interaction with the kinase Shaggy (SGG), the GSK-3 beta fly orthologue. Consequently, flies with SGG overexpression in certain dorsal clock neurons are reported to remain rhythmic under constant light. We were interested in the interaction between CRY, Ramshackle and SGG and started to perform protein interaction studies in S2 cells. To our surprise, we were not able to replicate the results, that SGG overexpression does stabilize CRY, neither in S2 cells nor in the relevant clock neurons. SGG rather does the contrary. Furthermore, flies with SGG overexpression in the dorsal clock neurons became arrhythmic as did wild-type flies. Nevertheless, we could reproduce the published interaction of SGG with TIM, since flies with SGG overexpression in the lateral clock neurons shortened their free-running period. We conclude that SGG does not directly interact with CRY but rather with TIM. Furthermore we could demonstrate, that an unspecific antibody explains the observed stabilization effects on CRY.}, language = {en} } @article{VieraElMerahbiNieswandtetal.2016, author = {Viera, Jonathan Trujillo and El-Merahbi, Rabih and Nieswandt, Bernhard and Stegner, David and Sumara, Grzegorz}, title = {Phospholipases D1 and D2 Suppress Appetite and Protect against Overweight}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0157607}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179729}, year = {2016}, abstract = {Obesity is a major risk factor predisposing to the development of peripheral insulin resistance and type 2 diabetes (T2D). Elevated food intake and/or decreased energy expenditure promotes body weight gain and acquisition of adipose tissue. Number of studies implicated phospholipase D (PLD) enzymes and their product, phosphatidic acid (PA), in regulation of signaling cascades controlling energy intake, energy dissipation and metabolic homeostasis. However, the impact of PLD enzymes on regulation of metabolism has not been directly determined so far. In this study we utilized mice deficient for two major PLD isoforms, PLD1 and PLD2, to assess the impact of these enzymes on regulation of metabolic homeostasis. We showed that mice lacking PLD1 or PLD2 consume more food than corresponding control animals. Moreover, mice deficient for PLD2, but not PLD1, present reduced energy expenditure. In addition, deletion of either of the PLD enzymes resulted in development of elevated body weight and increased adipose tissue content in aged animals. Consistent with the fact that elevated content of adipose tissue predisposes to the development of hyperlipidemia and insulin resistance, characteristic for the pre-diabetic state, we observed that Pld1\(^{-/-}\) and Pld2\(^{-/-}\) mice present elevated free fatty acids (FFA) levels and are insulin as well as glucose intolerant. In conclusion, our data suggest that deficiency of PLD1 or PLD2 activity promotes development of overweight and diabetes.}, language = {en} } @article{HartelGloggerJonesetal.2016, author = {Hartel, Andreas J.W. and Glogger, Marius and Jones, Nicola G. and Abuillan, Wasim and Batram, Christopher and Hermann, Anne and Fenz, Susanne F. and Tanaka, Motomu and Engstler, Markus}, title = {N-glycosylation enables high lateral mobility of GPI-anchored proteins at a molecular crowding threshold}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms12870}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171368}, year = {2016}, abstract = {The protein density in biological membranes can be extraordinarily high, but the impact of molecular crowding on the diffusion of membrane proteins has not been studied systematically in a natural system. The diversity of the membrane proteome of most cells may preclude systematic studies. African trypanosomes, however, feature a uniform surface coat that is dominated by a single type of variant surface glycoprotein (VSG). Here we study the density-dependence of the diffusion of different glycosylphosphatidylinositol-anchored VSG-types on living cells and in artificial membranes. Our results suggest that a specific molecular crowding threshold (MCT) limits diffusion and hence affects protein function. Obstacles in the form of heterologous proteins compromise the diffusion coefficient and the MCT. The trypanosome VSG-coat operates very close to its MCT. Importantly, our experiments show that N-linked glycans act as molecular insulators that reduce retarding intermolecular interactions allowing membrane proteins to function correctly even when densely packed.}, language = {en} } @article{PetersHempAppelhansetal.2016, author = {Peters, Marcell K. and Hemp, Andreas and Appelhans, Tim and Behler, Christina and Classen, Alice and Detsch, Florian and Ensslin, Andreas and Ferger, Stefan W. and Frederiksen, Sara B. and Gebert, Frederike and Haas, Michael and Helbig-Bonitz, Maria and Hemp, Claudia and Kindeketa, William J. and Mwangomo, Ephraim and Ngereza, Christine and Otte, Insa and R{\"o}der, Juliane and Rutten, Gemma and Costa, David Schellenberger and Tardanico, Joseph and Zancolli, Giulia and Deckert, J{\"u}rgen and Eardley, Connal D. and Peters, Ralph S. and R{\"o}del, Mark-Oliver and Schleuning, Matthias and Ssymank, Axel and Kakengi, Victor and Zhang, Jie and B{\"o}hning-Gaese, Katrin and Brandl, Roland and Kalko, Elisabeth K.V. and Kleyer, Michael and Nauss, Thomas and Tschapka, Marco and Fischer, Markus and Steffan-Dewenter, Ingolf}, title = {Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms13736}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169374}, year = {2016}, abstract = {The factors determining gradients of biodiversity are a fundamental yet unresolved topic in ecology. While diversity gradients have been analysed for numerous single taxa, progress towards general explanatory models has been hampered by limitations in the phylogenetic coverage of past studies. By parallel sampling of 25 major plant and animal taxa along a 3.7 km elevational gradient on Mt. Kilimanjaro, we quantify cross-taxon consensus in diversity gradients and evaluate predictors of diversity from single taxa to a multi-taxa community level. While single taxa show complex distribution patterns and respond to different environmental factors, scaling up diversity to the community level leads to an unambiguous support for temperature as the main predictor of species richness in both plants and animals. Our findings illuminate the influence of taxonomic coverage for models of diversity gradients and point to the importance of temperature for diversification and species coexistence in plant and animal communities.}, language = {en} } @article{KilincEhrigPessianetal.2016, author = {Kilinc, Mehmet Okyay and Ehrig, Klaas and Pessian, Maysam and Minev, Boris R. and Szalay, Aladar A.}, title = {Colonization of xenograft tumors by oncolytic vaccinia virus (VACV) results in enhanced tumor killing due to the involvement of myeloid cells}, series = {Journal of Translational Medicine}, volume = {14}, journal = {Journal of Translational Medicine}, number = {340}, doi = {10.1186/s12967-016-1096-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168914}, year = {2016}, abstract = {Background The mechanisms by which vaccinia virus (VACV) interacts with the innate immune components are complex and involve different mechanisms. iNOS-mediated NO production by myeloid cells is one of the central antiviral mechanisms and this study aims to investigate specifically whether iNOS-mediated NO production by myeloid cells, is involved in tumor eradication following the virus treatment. Methods Human colon adenocarcinoma (HCT-116) xenograft tumors were infected by VACV. Infiltration of iNOS\(^{+}\) myeloid cell population into the tumor, and virus titer was monitored following the treatment. Single-cell suspensions were stained for qualitative and quantitative flow analysis. The effect of different myeloid cell subsets on tumor growth and colonization were investigated by depletion studies. Finally, in vitro culture experiments were carried out to study NO production and tumor cell killing. Student's t test was used for comparison between groups in all of the experiments. Results Infection of human colon adenocarcinoma (HCT-116) xenograft tumors by VACV has led to recruitment of many CD11b\(^{+}\) ly6G\(^{+}\) myeloid-derived suppressor cells (MDSCs), with enhanced iNOS expression in the tumors, and to an increased intratumoral virus titer between days 7 and 10 post-VACV therapy. In parallel, both single and multiple rounds of iNOS-producing cell depletions caused very rapid tumor growth within the same period after virus injection, indicating that VACV-induced iNOS\(^{+}\) MDSCs could be an important antitumor effector component. A continuous blockade of iNOS by its specific inhibitor, L-NIL, showed similar tumor growth enhancement 7-10 days post-infection. Finally, spleen-derived iNOS+ MDSCs isolated from virus-injected tumor bearing mice produced higher amounts of NO and effectively killed HCT-116 cells in in vitro transwell experiments. Conclusions We initially hypothesized that NO could be one of the factors that limits active spreading of the virus in the cancerous tissue. In contrast to our initial hypothesis, we observed that PMN-MDSCs were the main producer of NO through iNOS and NO provided a beneficial antitumor effect, The results strongly support an important novel role for VACV infection in the tumor microenvironment. VACV convert tumor-promoting MDSCs into tumor-killing cells by inducing higher NO production.}, language = {en} } @article{JoschinskiBeerHelfrichFoersteretal.2016, author = {Joschinski, Jens and Beer, Katharina and Helfrich-F{\"o}rster, Charlotte and Krauss, Jochen}, title = {Pea Aphids (Hemiptera: Aphididae) Have Diurnal Rhythms When Raised Independently of a Host Plant}, series = {Journal of Insect Science}, volume = {16}, journal = {Journal of Insect Science}, number = {1}, doi = {10.1093/jisesa/iew013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168783}, pages = {31}, year = {2016}, abstract = {Seasonal timing is assumed to involve the circadian clock, an endogenous mechanism to track time and measure day length. Some debate persists, however, and aphids were among the first organisms for which circadian clock involvement was questioned. Inferences about links to phenology are problematic, as the clock itself is little investigated in aphids. For instance, it is unknown whether aphids possess diurnal rhythms at all. Possibly, the close interaction with host plants prevents independent measurements of rhythmicity. We reared the pea aphid Acyrthosiphon pisum (Harris) on an artificial diet, and recorded survival, moulting, and honeydew excretion. Despite their plant-dependent life style, aphids were independently rhythmic under light-dark conditions. This first demonstration of diurnal aphid rhythms shows that aphids do not simply track the host plant's rhythmicity.}, language = {en} } @article{HackerEscalonaEspinosaConsalvoetal.2016, author = {Hacker, Ulrich T. and Escalona-Espinosa, Laura and Consalvo, Nicola and Goede, Valentin and Schiffmann, Lars and Scherer, Stefan J. and Hedge, Priti and Van Cutsem, Eric and Coutelle, Oliver and B{\"u}ning, Hildegard}, title = {Evaluation of Angiopoietin-2 as a biomarker in gastric cancer: results from the randomised phase III AVAGAST trial}, series = {British Journal of Cancer}, volume = {114}, journal = {British Journal of Cancer}, number = {8}, doi = {10.1038/bjc.2016.30}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189578}, pages = {855-862}, year = {2016}, abstract = {Background: In the phase III AVAGAST trial, the addition of bevacizumab to chemotherapy improved progression-free survival (PFS) but not overall survival (OS) in patients with advanced gastric cancer. We studied the role of Angiopoietin-2 (Ang-2), a key driver of tumour angiogenesis, metastasis and resistance to antiangiogenic treatment, as a biomarker. Methods: Previously untreated, advanced gastric cancer patients were randomly assigned to receive bevacizumab (n = 387) or placebo (n = 387) in combination with chemotherapy. Plasma collected at baseline and at progression was analysed by ELISA. The role of Ang-2 as a prognostic and a predictive biomarker of bevacizumab efficacy was studied using a Cox proportional hazards model. Logistic regression analysis was applied for correlations with metastasis. Results: Median baseline plasma Ang-2 levels were lower in Asian (2143 pg ml\(^-\)\(^1\)) vs non-Asian patients (3193 pg ml\(^-\)\(^1\)), P<0.0001. Baseline plasma Ang-2 was identified as an independent prognostic marker for OS but did not predict bevacizumab efficacy alone or in combination with baseline VEGF. Baseline plasma Ang-2 correlated with the frequency of liver metastasis (LM) at any time: Odds ratio per 1000 pg ml\(^-\)\(^1\) increase: 1.19; 95\% CI 1.10-1.29; P<0.0001 (non-Asians) and 1.37; 95\% CI 1.13-1.64; P = 0.0010 (Asians). Conclusions: Baseline plasma Ang-2 is a novel prognostic biomarker for OS in advanced gastric cancer strongly associated with LM. Differences in Ang-2 mediated vascular response may, in part, account for outcome differences between Asian and non-Asian patients; however, data have to be further validated. Ang-2 is a promising drug target in gastric cancer.}, language = {en} } @article{AurastGradlPernesetal.2016, author = {Aurast, Anna and Gradl, Tobias and Pernes, Stefan and Pielstr{\"o}m, Steffen}, title = {Big Data und Smart Data in den Geisteswissenschaften}, series = {Bibliothek Forschung und Praxis}, volume = {40}, journal = {Bibliothek Forschung und Praxis}, number = {2}, issn = {1865-7648}, doi = {10.1515/bfp-2016-0033}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195237}, pages = {200-206}, year = {2016}, abstract = {Kein Abstract verf{\"u}gbar.}, language = {de} } @article{BeerSteffanDewenterHaerteletal.2016, author = {Beer, Katharina and Steffan-Dewenter, Ingolf and H{\"a}rtel, Stephan and Helfrich-F{\"o}rster, Charlotte}, title = {A new device for monitoring individual activity rhythms of honey bees reveals critical effects of the social environment on behavior}, series = {Journal of Comparative Physiology A}, volume = {202}, journal = {Journal of Comparative Physiology A}, number = {8}, doi = {10.1007/s00359-016-1103-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188030}, pages = {555-565}, year = {2016}, abstract = {Chronobiological studies of individual activity rhythms in social insects can be constrained by the artificial isolation of individuals from their social context. We present a new experimental set-up that simultaneously measures the temperature rhythm in a queen-less but brood raising mini colony and the walking activity rhythms of singly kept honey bees that have indirect social contact with it. Our approach enables monitoring of individual bees in the social context of a mini colony under controlled laboratory conditions. In a pilot experiment, we show that social contact with the mini colony improves the survival of monitored young individuals and affects locomotor activity patterns of young and old bees. When exposed to conflicting Zeitgebers consisting of a light-dark (LD) cycle that is phase-delayed with respect to the mini colony rhythm, rhythms of young and old bees are socially synchronized with the mini colony rhythm, whereas isolated bees synchronize to the LD cycle. We conclude that the social environment is a stronger Zeitgeber than the LD cycle and that our new experimental set-up is well suited for studying the mechanisms of social entrainment in honey bees.}, language = {en} } @article{YadavSelvarajBenderetal.2016, author = {Yadav, Preeti and Selvaraj, Bhuvaneish T. and Bender, Florian L. P. and Behringer, Marcus and Moradi, Mehri and Sivadasan, Rajeeve and Dombert, Benjamin and Blum, Robert and Asan, Esther and Sauer, Markus and Julien, Jean-Pierre and Sendtner, Michael}, title = {Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling}, series = {Acta Neuropathologica}, volume = {132}, journal = {Acta Neuropathologica}, number = {1}, doi = {10.1007/s00401-016-1564-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188234}, pages = {93-110}, year = {2016}, abstract = {In neurons, microtubules form a dense array within axons, and the stability and function of this microtubule network is modulated by neurofilaments. Accumulation of neurofilaments has been observed in several forms of neurodegenerative diseases, but the mechanisms how elevated neurofilament levels destabilize axons are unknown so far. Here, we show that increased neurofilament expression in motor nerves of pmn mutant mice, a model of motoneuron disease, causes disturbed microtubule dynamics. The disease is caused by a point mutation in the tubulin-specific chaperone E (Tbce) gene, leading to an exchange of the most C-terminal amino acid tryptophan to glycine. As a consequence, the TBCE protein becomes instable which then results in destabilization of axonal microtubules and defects in axonal transport, in particular in motoneurons. Depletion of neurofilament increases the number and regrowth of microtubules in pmn mutant motoneurons and restores axon elongation. This effect is mediated by interaction of neurofilament with the stathmin complex. Accumulating neurofilaments associate with stathmin in axons of pmn mutant motoneurons. Depletion of neurofilament by Nefl knockout increases Stat3-stathmin interaction and stabilizes the microtubules in pmn mutant motoneurons. Consequently, counteracting enhanced neurofilament expression improves axonal maintenance and prolongs survival of pmn mutant mice. We propose that this mechanism could also be relevant for other neurodegenerative diseases in which neurofilament accumulation and loss of microtubules are prominent features.}, language = {en} } @article{BemmBeckerLarischetal.2016, author = {Bemm, Felix and Becker, Dirk and Larisch, Christina and Kreuzer, Ines and Escalante-Perez, Maria and Schulze, Waltraud X. and Ankenbrand, Markus and Van de Weyer, Anna-Lena and Krol, Elzbieta and Al-Rasheid, Khaled A. and Mith{\"o}fer, Axel and Weber, Andreas P. and Schultz, J{\"o}rg and Hedrich, Rainer}, title = {Venus flytrap carnivorous lifestyle builds on herbivore defense strategies}, series = {Genome Research}, volume = {26}, journal = {Genome Research}, number = {6}, doi = {10.1101/gr.202200.115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188799}, pages = {812-825}, year = {2016}, abstract = {Although the concept of botanical carnivory has been known since Darwin's time, the molecular mechanisms that allow animal feeding remain unknown, primarily due to a complete lack of genomic information. Here, we show that the transcriptomic landscape of the Dionaea trap is dramatically shifted toward signal transduction and nutrient transport upon insect feeding, with touch hormone signaling and protein secretion prevailing. At the same time, a massive induction of general defense responses is accompanied by the repression of cell death-related genes/processes. We hypothesize that the carnivory syndrome of Dionaea evolved by exaptation of ancient defense pathways, replacing cell death with nutrient acquisition.}, language = {en} } @article{KupperStigloherFeldhaaretal.2016, author = {Kupper, Maria and Stigloher, Christian and Feldhaar, Heike and Gross, Roy}, title = {Distribution of the obligate endosymbiont Blochmannia floridanus and expression analysis of putative immune genes in ovaries of the carpenter ant Camponotus floridanus}, series = {Arthropod Structure \& Development}, volume = {45}, journal = {Arthropod Structure \& Development}, number = {5}, doi = {10.1016/j.asd.2016.09.004}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187482}, pages = {475-487}, year = {2016}, abstract = {The bacterial endosymbiont Blochmannia floridanus of the carpenter ant Camponotus floridanus contributes to its hosts' ontogeny via nutritional upgrading during metamorphosis. This primary endosymbiosis is essential for both partners and vertical transmission of the endosymbionts is guaranteed by bacterial infestation of oocytes. Here we present a detailed analysis of the presence and localisation of B. floridanus in the ants' ovaries obtained by FISH and TEM analyses. The most apical part of the germarium harbouring germ-line stem cells (GSCs) is not infected by the bacteria. The bacteria are detectable for the first time in lower parts of the germarium when cystocytes undergo the 4th and 5th division and B. floridanus infects somatic cells lying under the basal lamina surrounding the ovarioles. With the beginning of cystocyte differentiation, the endosymbionts are exclusively transported from follicle cells into the growing oocytes. This infestation of the oocytes by bacteria very likely involves exocytosis endocytosis processes between follicle cells and the oocytes. Nurse cells were never found to harbour the endosymbionts. Furthermore we present first gene expression data in C floridanus ovaries. These data indicate a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission.}, language = {en} } @article{ChagtaiZillDaineseetal.2016, author = {Chagtai, Tasnim and Zill, Christina and Dainese, Linda and Wegert, Jenny and Savola, Suvi and Popov, Sergey and Mifsud, William and Vujanic, Gordan and Sebire, Neil and Le Bouc, Yves and Ambros, Peter F. and Kager, Leo and O`Sullivan, Maureen J. and Blaise, Annick and Bergeron, Christophe and Holmquist Mengelbier, Linda and Gisselsson, David and Kool, Marcel and Tytgat, Godelieve A.M. and van den Heuvel-Eibrink, Marry M. and Graf, Norbert and van Tinteren, Harm and Coulomb, Aurore and Gessler, Manfred and Williams, Richard Dafydd and Pritchard-Jones, Kathy}, title = {Gain of 1q As a Prognostic Biomarker in Wilms Tumors (WTs) Treated With Preoperative Chemotherapy in the International Society of Paediatric Oncology (SIOP) WT 2001 Trial: a SIOP Renal Tumours Biology Consortium Study}, series = {Journal of Clinical Oncology}, volume = {34}, journal = {Journal of Clinical Oncology}, number = {26}, doi = {10.1200/JCO.2015.66.0001}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187478}, pages = {3195-3205}, year = {2016}, abstract = {Purpose Wilms tumor (WT) is the most common pediatric renal tumor. Treatment planning under International Society of Paediatric Oncology (SIOP) protocols is based on staging and histologic assessment of response to preoperative chemotherapy. Despite high overall survival (OS), many relapses occur in patients without specific risk factors, and many successfully treated patients are exposed to treatments with significant risks of late effects. To investigate whether molecular biomarkers could improve risk stratification, we assessed 1q status and other potential copy number biomarkers in a large WT series. Materials and Methods WT nephrectomy samples from 586 SIOP WT 2001 patients were analyzed using a multiplex ligation-dependent probe amplification (MLPA) assay that measured the copy number of 1q and other regions of interest. Results One hundred sixty-seven (28\%) of 586 WTs had 1q gain. Five-year event-free survival (EFS) was 75.0\% in patients with 1q gain (95\% CI, 68.5\% to 82.0\%) and 88.2\% in patients without gain (95\% CI, 85.0\% to 91.4\%). OS was 88.4\% with gain (95\% CI, 83.5\% to 93.6\%) and 94.4\% without gain (95\% CI, 92.1\% to 96.7\%). In univariable analysis, 1q gain was associated with poorer EFS (P<.001; hazard ratio, 2.33) and OS (P=.01; hazard ratio, 2.16). The association of 1q gain with poorer EFS retained significance in multivariable analysis adjusted for 1p and 16q loss, sex, stage, age, and histologic risk group. Gain of 1q remained associated with poorer EFS in tumor subsets limited to either intermediate-risk localized disease or nonanaplastic localized disease. Other notable aberrations associated with poorer EFS included MYCN gain and TP53 loss. Conclusion Gain of 1q is a potentially valuable prognostic biomarker in WT, in addition to histologic response to preoperative chemotherapy and tumor stage.}, language = {en} } @article{HolzschuhDaineseGonzalezVaroetal.2016, author = {Holzschuh, Andrea and Dainese, Matteo and Gonzalez-Varo, Juan P. and Mudri-Stojnic, Sonja and Riedinger, Verena and Rundl{\"o}f, Maj and Scheper, Jeroen and Wickens, Jennifer B. and Wickens, Victoria J. and Bommarco, Riccardo and Kleijn, David and Potts, Simon G. and Roberts, Stuart P. M. and Smith, Henrik G. and Vil{\`a}, Montserrat and Vujic, Ante and Steffan-Dewenter, Ingolf}, title = {Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe}, series = {Ecology Letters}, volume = {19}, journal = {Ecology Letters}, number = {10}, doi = {10.1111/ele.12657}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187356}, pages = {1228-1236}, year = {2016}, abstract = {Mass-flowering crops (MFCs) are increasingly cultivated and might influence pollinator communities in MFC fields and nearby semi-natural habitats (SNHs). Across six European regions and 2 years, we assessed how landscape-scale cover of MFCs affected pollinator densities in 408 MFC fields and adjacent SNHs. In MFC fields, densities of bumblebees, solitary bees, managed honeybees and hoverflies were negatively related to the cover of MFCs in the landscape. In SNHs, densities of bumblebees declined with increasing cover of MFCs but densities of honeybees increased. The densities of all pollinators were generally unrelated to the cover of SNHs in the landscape. Although MFC fields apparently attracted pollinators from SNHs, in landscapes with large areas of MFCs they became diluted. The resulting lower densities might negatively affect yields of pollinator- dependent crops and the reproductive success of wild plants. An expansion of MFCs needs to be accompanied by pollinator-supporting practices in agricultural landscapes.}, language = {en} } @article{MarkertBritzProppertetal.2016, author = {Markert, Sebastian Matthias and Britz, Sebastian and Proppert, Sven and Lang, Marietta and Witvliet, Daniel and Mulcahy, Ben and Sauer, Markus and Zhen, Mei and Bessereau, Jean-Louis and Stigloher, Christian}, title = {Filling the gap: adding super-resolution to array tomography for correlated ultrastructural and molecular identification of electrical synapses at the C. elegans connectome}, series = {Neurophotonics}, volume = {3}, journal = {Neurophotonics}, number = {4}, doi = {10.1117/1.NPh.3.4.041802}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187292}, pages = {041802}, year = {2016}, abstract = {Correlating molecular labeling at the ultrastructural level with high confidence remains challenging. Array tomography (AT) allows for a combination of fluorescence and electron microscopy (EM) to visualize subcellular protein localization on serial EM sections. Here, we describe an application for AT that combines near-native tissue preservation via high-pressure freezing and freeze substitution with super-resolution light microscopy and high-resolution scanning electron microscopy (SEM) analysis on the same section. We established protocols that combine SEM with structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM). We devised a method for easy, precise, and unbiased correlation of EM images and super-resolution imaging data using endogenous cellular landmarks and freely available image processing software. We demonstrate that these methods allow us to identify and label gap junctions in Caenorhabditis elegans with precision and confidence, and imaging of even smaller structures is feasible. With the emergence of connectomics, these methods will allow us to fill in the gap-acquiring the correlated ultrastructural and molecular identity of electrical synapses.}, language = {en} } @article{ScharawIskarOrietal.2016, author = {Scharaw, Sandra and Iskar, Murat and Ori, Alessandro and Boncompain, Gaelle and Laketa, Vibor and Poser, Ina and Lundberg, Emma and Perez, Franck and Beck, Martin and Bork, Peer and Pepperkok, Rainer}, title = {The endosomal transcriptional regulator RNF11 integrates degradation and transport of EGFR}, series = {Journal of Cell Biology}, volume = {215}, journal = {Journal of Cell Biology}, number = {4}, doi = {10.1083/jcb.201601090}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186731}, pages = {543-558}, year = {2016}, abstract = {Stimulation of cells with epidermal growth factor (EGF) induces internalization and partial degradation of the EGF receptor (EGFR) by the endo-lysosomal pathway. For continuous cell functioning, EGFR plasma membrane levels are maintained by transporting newly synthesized EGFRs to the cell surface. The regulation of this process is largely unknown. In this study, we find that EGF stimulation specifically increases the transport efficiency of newly synthesized EGFRs from the endoplasmic reticulum to the plasma membrane. This coincides with an up-regulation of the inner coat protein complex II (COP II) components SEC23B, SEC24B, and SEC24D, which we show to be specifically required for EGFR transport. Up-regulation of these COP II components requires the transcriptional regulator RNF11, which localizes to early endosomes and appears additionally in the cell nucleus upon continuous EGF stimulation. Collectively, our work identifies a new regulatory mechanism that integrates the degradation and transport of EGFR in order to maintain its physiological levels at the plasma membrane.}, language = {en} } @article{BertChmielewskaBergmannetal.2016, author = {Bert, Bettina and Chmielewska, Justyna and Bergmann, Sven and Busch, Maximilian and Driever, Wolfgang and Finger-Baier, Karin and H{\"o}ßler, Johanna and K{\"o}hler, Almut and Leich, Nora and Misgeld, Thomas and N{\"o}ldner, Torsten and Reiher, Annegret and Schartl, Manfred and Seebach-Sproedt, Anja and Thumberger, Thomas and Sch{\"o}nfelder, Gilbert and Grune, Barbara}, title = {Considerations for a European animal welfare standard to evaluate adverse phenotypes in teleost fish}, series = {The EMBO Journal}, volume = {35}, journal = {The EMBO Journal}, number = {11}, doi = {10.15252/embj.201694448}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188783}, pages = {1151-1154}, year = {2016}, abstract = {No abstract available.}, language = {en} } @article{SchneiderDittrichBoecketal.2016, author = {Schneider, Eberhard and Dittrich, Marcus and B{\"o}ck, Julia and Nanda, Indrajit and M{\"u}ller, Tobias and Seidmann, Larissa and Tralau, Tim and Galetzka, Danuta and El Hajj, Nady and Haaf, Thomas}, title = {CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development}, series = {Gene}, volume = {592}, journal = {Gene}, number = {1}, doi = {10.1016/j.gene.2016.07.058}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186936}, pages = {110-118}, year = {2016}, abstract = {Normal human brain development is dependent on highly dynamic epigenetic processes for spatial and temporal gene regulation. Recent work identified wide-spread changes in DNA methylation during fetal brain development. We profiled CpG methylation in frontal cortex of 27 fetuses from gestational weeks 12-42, using Illumina 450K methylation arrays. Sites showing genome-wide significant correlation with gestational age were compared to a publicly available data set from gestational weeks 3-26. Altogether, we identified 2016 matching developmentally regulated differentially methylated positions (m-dDMPs): 1767 m-dDMPs were hypermethylated and 1149 hypomethylated during fetal development. M-dDMPs are underrepresented in CpG islands and gene promoters, and enriched in gene bodies. They appear to cluster in certain chromosome regions. M-dDMPs are significantly enriched in autism-associated genes and CpGs. Our results promote the idea that reduced methylation dynamics during fetal brain development may predispose to autism. In addition, m-dDMPs are enriched in genes with human-specific brain expression patterns and/or histone modifications. Collectively, we defined a subset of dDMPs exhibiting constant methylation changes from early to late pregnancy. The same epigenetic mechanisms involving methylation changes in cis-regulatory regions may have been adopted for human brain evolution and ontogeny.}, language = {en} } @article{DotterweichSchlegelmilchKelleretal.2016, author = {Dotterweich, Julia and Schlegelmilch, Katrin and Keller, Alexander and Geyer, Beate and Schneider, Doris and Zeck, Sabine and Tower, Robert J. J. and Ebert, Regina and Jakob, Franz and Sch{\"u}tze, Norbert}, title = {Contact of myeloma cells induces a characteristic transcriptome signature in skeletal precursor cells-implications for myeloma bone disease}, series = {Bone}, volume = {93}, journal = {Bone}, doi = {10.1016/j.bone.2016.08.006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186688}, pages = {155-166}, year = {2016}, abstract = {Physical interaction of skeletal precursors with multiple myeloma cells has been shown to suppress their osteogenic potential while favoring their tumor-promoting features. Although several transcriptome analyses of myeloma patient-derived mesenchymal stem cells have displayed differences compared to their healthy counterparts, these analyses insufficiently reflect the signatures mediated by tumor cell contact, vary due to different methodologies, and lack results in lineage-committed precursors. To determine tumor cell contact-mediated changes on skeletal precursors, we performed transcriptome analyses of mesenchymal stem cells and osteogenic precursor cells cultured in contact with the myeloma cell line INA-6. Comparative analyses confirmed dysregulation of genes which code for known disease-relevant factors and additionally revealed upregulation of genes that are associated with plasma cell homing, adhesion, osteoclastogenesis, and angiogenesis. Osteoclast-derived coupling factors, a dysregulated adipogenic potential, and an imbalance in favor of anti-anabolic factors may play a role in the hampered osteoblast differentiation potential of mesenchymal stem cells. Angiopoietin-Like 4 (ANGPTL4) was selected from a list of differentially expressed genes as a myeloma cell contact-dependent target in skeletal precursor cells which warranted further functional analyses. Adhesion assays with full-length ANGPTL4-coated plates revealed a potential role of this protein in INA6 cell attachment. This study expands knowledge of the myeloma cell contact-induced signature in the stromal compartment of myelomatous bones and thus offers potential targets that may allow detection and treatment of myeloma bone disease at an early stage.}, language = {en} } @article{HassounaOttWuestefeldetal.2016, author = {Hassouna, I. and Ott, C. and W{\"u}stefeld, L. and Offen, N. and Neher, R. A. and Mitkovski, M. and Winkler, D. and Sperling, S. and Fries, L. and Goebbels, S. and Vreja, I. C. and Hagemeyer, N. and Dittrich, M. and Rossetti, M. F. and Kr{\"o}hnert, K. and Hannke, K. and Boretius, S. and Zeug, A. and H{\"o}schen, C. and Dandekar, T. and Dere, E. and Neher, E. and Rizzoli, S. O. and Nave, K.-A. and Sir{\´e}n, A.-L. and Ehrenreich, H.}, title = {Revisiting adult neurogenesis and the role of erythropoietin for neuronal and oligodendroglial differentiation in the hippocampus}, series = {Molecular Psychiatry}, volume = {21}, journal = {Molecular Psychiatry}, number = {12}, doi = {10.1038/mp.2015.212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186669}, pages = {1752-1767}, year = {2016}, abstract = {Recombinant human erythropoietin (EPO) improves cognitive performance in neuropsychiatric diseases ranging from schizophrenia and multiple sclerosis to major depression and bipolar disease. This consistent EPO effect on cognition is independent of its role in hematopoiesis. The cellular mechanisms of action in brain, however, have remained unclear. Here we studied healthy young mice and observed that 3-week EPO administration was associated with an increased number of pyramidal neurons and oligodendrocytes in the hippocampus of similar to 20\%. Under constant cognitive challenge, neuron numbers remained elevated until >6 months of age. Surprisingly, this increase occurred in absence of altered cell proliferation or apoptosis. After feeding a \(^{15}\)N-leucine diet, we used nanoscopic secondary ion mass spectrometry, and found that in EPO-treated mice, an equivalent number of neurons was defined by elevated \(^{15}\)N-leucine incorporation. In EPO-treated NG2-Cre-ERT2 mice, we confirmed enhanced differentiation of preexisting oligodendrocyte precursors in the absence of elevated DNA synthesis. A corresponding analysis of the neuronal lineage awaits the identification of suitable neuronal markers. In cultured neurospheres, EPO reduced Sox9 and stimulated miR124, associated with advanced neuronal differentiation. We are discussing a resulting working model in which EPO drives the differentiation of non-dividing precursors in both (NG2+) oligodendroglial and neuronal lineages. As endogenous EPO expression is induced by brain injury, such a mechanism of adult neurogenesis may be relevant for central nervous system regeneration.}, language = {en} } @article{VazeHelfrichFoerster2016, author = {Vaze, Koustubh M. and Helfrich-F{\"o}rster, Charlotte}, title = {Drosophila ezoana uses an hour-glass or highly damped circadian clock for measuring night length and inducing diapause}, series = {Physiological Entomology}, volume = {41}, journal = {Physiological Entomology}, number = {4}, doi = {10.1111/phen.12165}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204278}, pages = {378-389}, year = {2016}, abstract = {Insects inhabiting the temperate zones measure seasonal changes in day or night length to enter the overwintering diapause. Diapause induction occurs after the duration of the night exceeds a critical night length (CNL). Our understanding of the time measurement mechanisms is continuously evolving subsequent to B{\"u}nning's proposal that circadian systems play the clock role in photoperiodic time measurement (B{\"u}nning, 1936). Initially, the photoperiodic clocks were considered to be either based on circadian oscillators or on simple hour-glasses, depending on 'positive' or 'negative' responses in Nanda-Hamner and B{\"u}nsow experiments (Nanda \& Hammer, 1958; B{\"u}nsow, 1960). However, there are also species whose responses can be regarded as neither 'positive', nor as 'negative', such as the Northern Drosophila species Drosophila ezoana, which is investigated in the present study. In addition, modelling efforts show that the 'positive' and 'negative' Nanda-Hamner responses can also be provoked by circadian oscillators that are damped to different degrees: animals with highly sustained circadian clocks will respond 'positive' and those with heavily damped circadian clocks will respond 'negative'. In the present study, an experimental assay is proposed that characterizes the photoperiodic oscillators by determining the effects of non-24-h light/dark cycles (T-cycles) on critical night length. It is predicted that there is (i) a change in the critical night length as a function of T-cycle period in sustained-oscillator-based clocks and (ii) a fxed night-length measurement (i.e. no change in critical night length) in damped-oscillator-based clocks. Drosophila ezoana flies show a critical night length of approximately 7 h irrespective of T-cycle period, suggesting a damped-oscillator-based photoperiodic clock. The conclusion is strengthened by activity recordings revealing that the activity rhythm of D. ezoana flies also dampens in constant darkness.}, language = {en} } @article{DiaoMoussetHorsburghetal.2016, author = {Diao, Wenwen and Mousset, Mathilde and Horsburgh, Gavin J. and Vermeulen, Cornelis J. and Johannes, Frank and van de Zande, Louis and Ritchie, Michael G. and Schmitt, Thomas and Beukeboom, Leo W.}, title = {Quantitative Trait Locus Analysis of Mating Behavior and Male Sex Pheromones in Nasonia Wasps}, series = {G3: Genes Genomes Genetics}, volume = {6}, journal = {G3: Genes Genomes Genetics}, number = {6}, doi = {10.1534/g3.116.029074}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165412}, pages = {1549-1562}, year = {2016}, abstract = {A major focus in speciation genetics is to identify the chromosomal regions and genes that reduce hybridization and gene flow. We investigated the genetic architecture of mating behavior in the parasitoid wasp species pair Nasonia giraulti and Nasonia oneida that exhibit strong prezygotic isolation. Behavioral analysis showed that N. oneida females had consistently higher latency times, and broke off the mating sequence more often in the mounting stage when confronted with N. giraulti males compared with males of their own species. N. oneida males produce a lower quantity of the long-range male sex pheromone (4R,5S)-5-hydroxy-4-decanolide (RS-HDL). Crosses between the two species yielded hybrid males with various pheromone quantities, and these males were used in mating trials with females of either species to measure female mate discrimination rates. A quantitative trait locus (QTL) analysis involving 475 recombinant hybrid males (F2), 2148 reciprocally backcrossed females (F3), and a linkage map of 52 equally spaced neutral single nucleotide polymorphism (SNP) markers plus SNPs in 40 candidate mating behavior genes revealed four QTL for male pheromone amount, depending on partner species. Our results demonstrate that the RS-HDL pheromone plays a role in the mating system of N. giraulti and N. oneida, but also that additional communication cues are involved in mate choice. No QTL were found for female mate discrimination, which points at a polygenic architecture of female choice with strong environmental influences.}, language = {en} } @article{KonteTerpitzPlemenitaš2016, author = {Konte, Tilen and Terpitz, Ulrich and Plemenitaš, Ana}, title = {Reconstruction of the High-Osmolarity Glycerol (HOG) Signaling Pathway from the Halophilic Fungus Wallemia ichthyophaga in Saccharomyces cerevisiae}, series = {Frontiers in Microbiology}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2016.00901}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165214}, year = {2016}, abstract = {The basidiomycetous fungus Wallemia ichthyophaga grows between 1.7 and 5.1 M NaCl and is the most halophilic eukaryote described to date. Like other fungi, W. ichthyophaga detects changes in environmental salinity mainly by the evolutionarily conserved high-osmolarity glycerol (HOG) signaling pathway. In Saccharomyces cerevisiae, the HOG pathway has been extensively studied in connection to osmotic regulation, with a valuable knock-out strain collection established. In the present study, we reconstructed the architecture of the HOG pathway of W. ichthyophaga in suitable S. cerevisiae knock-out strains, through heterologous expression of the W. ichthyophaga HOG pathway proteins. Compared to S. cerevisiae, where the Pbs2 (ScPbs2) kinase of the HOG pathway is activated via the SHO1 and SLN1 branches, the interactions between the W. ichthyophaga Pbs2 (WiPbs2) kinase and the W. ichthyophaga SHO1 branch orthologs are not conserved: as well as evidence of poor interactions between the WiSho1 Src-homology 3 (SH3) domain and the WiPbs2 proline-rich motif, the absence of a considerable part of the osmosensing apparatus in the genome of W. ichthyophaga suggests that the SHO1 branch components are not involved in HOG signaling in this halophilic fungus. In contrast, the conserved activation of WiPbs2 by the S. cerevisiae ScSsk2/ScSsk22 kinase and the sensitivity of W. ichthyophaga cells to fludioxonil, emphasize the significance of two-component (SLN1-like) signaling via Group III histidine kinase. Combined with protein modeling data, our study reveals conserved and non-conserved protein interactions in the HOG signaling pathway of W. ichthyophaga and therefore significantly improves the knowledge of hyperosmotic signal processing in this halophilic fungus.}, language = {en} } @article{HeldBerzHensgenetal.2016, author = {Held, Martina and Berz, Annuska and Hensgen, Ronja and Muenz, Thomas S. and Scholl, Christina and R{\"o}ssler, Wolfgang and Homberg, Uwe and Pfeiffer, Keram}, title = {Microglomerular Synaptic Complexes in the Sky-Compass Network of the Honeybee Connect Parallel Pathways from the Anterior Optic Tubercle to the Central Complex}, series = {Frontiers in Behavioral Neuroscience}, volume = {10}, journal = {Frontiers in Behavioral Neuroscience}, number = {186}, doi = {10.3389/fnbeh.2016.00186}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165080}, year = {2016}, abstract = {While the ability of honeybees to navigate relying on sky-compass information has been investigated in a large number of behavioral studies, the underlying neuronal system has so far received less attention. The sky-compass pathway has recently been described from its input region, the dorsal rim area (DRA) of the compound eye, to the anterior optic tubercle (AOTU). The aim of this study is to reveal the connection from the AOTU to the central complex (CX). For this purpose, we investigated the anatomy of large microglomerular synaptic complexes in the medial and lateral bulbs (MBUs/LBUs) of the lateral complex (LX). The synaptic complexes are formed by tubercle-lateral accessory lobe neuron 1 (TuLAL1) neurons of the AOTU and GABAergic tangential neurons of the central body's (CB) lower division (TL neurons). Both TuLAL1 and TL neurons strongly resemble neurons forming these complexes in other insect species. We further investigated the ultrastructure of these synaptic complexes using transmission electron microscopy. We found that single large presynaptic terminals of TuLAL1 neurons enclose many small profiles (SPs) of TL neurons. The synaptic connections between these neurons are established by two types of synapses: divergent dyads and divergent tetrads. Our data support the assumption that these complexes are a highly conserved feature in the insect brain and play an important role in reliable signal transmission within the sky-compass pathway.}, language = {en} } @article{MenaDiegelmannWegeneretal.2016, author = {Mena, Wilson and Diegelmann, S{\"o}ren and Wegener, Christian and Ewer, John}, title = {Stereotyped responses of Drosophila peptidergic neuronal ensemble depend on downstream neuromodulators}, series = {eLife}, volume = {5}, journal = {eLife}, doi = {10.7554/eLife.19686}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165003}, pages = {e19686}, year = {2016}, abstract = {Neuropeptides play a key role in the regulation of behaviors and physiological responses including alertness, social recognition, and hunger, yet, their mechanism of action is poorly understood. Here, we focus on the endocrine control ecdysis behavior, which is used by arthropods to shed their cuticle at the end of every molt. Ecdysis is triggered by ETH (Ecdysis triggering hormone), and we show that the response of peptidergic neurons that produce CCAP (crustacean cardioactive peptide), which are key targets of ETH and control the onset of ecdysis behavior, depends fundamentally on the actions of neuropeptides produced by other direct targets of ETH and released in a broad paracrine manner within the CNS; by autocrine influences from the CCAP neurons themselves; and by inhibitory actions mediated by GABA. Our findings provide insights into how this critical insect behavior is controlled and general principles for understanding how neuropeptides organize neuronal activity and behaviors.}, language = {en} } @article{DrakulićFeldhaarLisičićetal.2016, author = {Drakulić, Sanja and Feldhaar, Heike and Lisičić, Duje and Mioč, Mia and Cizelj, Ivan and Seiler, Michael and Spatz, Theresa and R{\"o}del, Mark-Oliver}, title = {Population-specific effects of developmental temperature on body condition and jumping performance of a widespread European frog}, series = {Ecology and Evolution}, volume = {6}, journal = {Ecology and Evolution}, number = {10}, doi = {10.1002/ece3.2113}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164960}, pages = {3115-3128}, year = {2016}, abstract = {All physiological processes of ectotherms depend on environmental temperature. Thus, adaptation of physiological mechanisms to the thermal environments is important for achieving optimal performance and fitness. The European Common Frog, Rana temporaria, is widely distributed across different thermal habitats. This makes it an exceptional model for studying the adaptations to different thermal conditions. We raised tadpoles from Germany and Croatia at two constant temperature treatments (15°C, 20°C), and under natural temperature fluctuations (in outdoor treatments), and tested how different developmental temperatures affected developmental traits, that is, length of larval development, morphometrics, and body condition, as well as jumping performance of metamorphs. Our results revealed population-specific differences in developmental time, body condition, and jumping performance. Croatian frogs developed faster in all treatments, were heavier, in better body condition, and had longer hind limbs and better jumping abilities than German metamorphs. The populations further differed in thermal sensitivity of jumping performance. While metamorphs from Croatia increased their jumping performance with higher temperatures, German metamorphs reached their performance maximum at lower temperatures. These population-specific differences in common environments indicate local genetic adaptation, with southern populations being better adapted to higher temperatures than those from north of the Alps.}, language = {en} } @article{JonesFrucianoKelleretal.2016, author = {Jones, Julia C. and Fruciano, Carmelo and Keller, Anja and Schartl, Manfred and Meyer, Axel}, title = {Evolution of the elaborate male intromittent organ of Xiphophorus fishes}, series = {Ecology and Evolution}, volume = {6}, journal = {Ecology and Evolution}, number = {20}, doi = {10.1002/ece3.2396}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164956}, pages = {7207-7220}, year = {2016}, abstract = {Internally fertilizing animals show a remarkable diversity in male genital morphology that is associated with sexual selection, and these traits are thought to be evolving particularly rapidly. Male fish in some internally fertilizing species have "gonopodia," highly modified anal fins that are putatively important for sexual selection. However, our understanding of the evolution of genital diversity remains incomplete. Contrary to the prediction that male genital traits evolve more rapidly than other traits, here we show that gonopodial traits and other nongonopodial traits exhibit similar evolutionary rates of trait change and also follow similar evolutionary models in an iconic genus of poeciliid fish (Xiphophorus spp.). Furthermore, we find that both mating and nonmating natural selection mechanisms are unlikely to be driving the diverse Xiphophorus gonopodial morphology. Putative holdfast features of the male genital organ do not appear to be influenced by water flow, a candidate selective force in aquatic habitats. Additionally, interspecific divergence in gonopodial morphology is not significantly higher between sympatric species, than between allopatric species, suggesting that male genitals have not undergone reproductive character displacement. Slower rates of evolution in gonopodial traits compared with a subset of putatively sexually selected nongenital traits suggest that different selection mechanisms may be acting on the different trait types. Further investigations of this elaborate trait are imperative to determine whether it is ultimately an important driver of speciation.}, language = {en} } @article{GattoSchulzeNielsen2016, author = {Gatto, Francesco and Schulze, Almut and Nielsen, Jens}, title = {Systematic Analysis Reveals that Cancer Mutations Converge on Deregulated Metabolism of Arachidonate and Xenobiotics}, series = {Cell Reports}, volume = {16}, journal = {Cell Reports}, number = {3}, doi = {10.1016/j.celrep.2016.06.038}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164814}, pages = {878-895}, year = {2016}, abstract = {Mutations are the basis of the clonal evolution of most cancers. Nevertheless, a systematic analysis of whether mutations are selected in cancer because they lead to the deregulation of specific biological processes independent of the type of cancer is still lacking. In this study, we correlated the genome and transcriptome of 1,082 tumors. We found that nine commonly mutated genes correlated with substantial changes in gene expression, which primarily converged on metabolism. Further network analyses circumscribed the convergence to a network of reactions, termed AraX, that involves the glutathione- and oxygen-mediated metabolism of arachidonic acid and xenobiotics. In an independent cohort of 4,462 samples, all nine mutated genes were consistently correlated with the deregulation of AraX. Among all of the metabolic pathways, AraX deregulation represented the strongest predictor of patient survival. These findings suggest that oncogenic mutations drive a selection process that converges on the deregulation of the AraX network.}, language = {en} } @article{ShenChalopinGarciaetal.2016, author = {Shen, Yingjia and Chalopin, Domitille and Garcia, Tzintzuni and Boswell, Mikki and Boswell, William and Shiryev, Sergey A. and Agarwala, Richa and Volff, Jean-Nicolas and Postlethwait, John H. and Schartl, Manfred and Minx, Patrick and Warren, Wesley C. and Walter, Ronald B.}, title = {X. couchianus and X. hellerii genome models provide genomic variation insight among Xiphophorus species}, series = {BMC Genomics}, volume = {17}, journal = {BMC Genomics}, doi = {10.1186/s12864-015-2361-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164582}, pages = {37}, year = {2016}, abstract = {Background Xiphophorus fishes are represented by 26 live-bearing species of tropical fish that express many attributes (e.g., viviparity, genetic and phenotypic variation, ecological adaptation, varied sexual developmental mechanisms, ability to produce fertile interspecies hybrids) that have made attractive research models for over 85 years. Use of various interspecies hybrids to investigate the genetics underlying spontaneous and induced tumorigenesis has resulted in the development and maintenance of pedigreed Xiphophorus lines specifically bred for research. The recent availability of the X. maculatus reference genome assembly now provides unprecedented opportunities for novel and exciting comparative research studies among Xiphophorus species. Results We present sequencing, assembly and annotation of two new genomes representing Xiphophorus couchianus and Xiphophorus hellerii. The final X. couchianus and X. hellerii assemblies have total sizes of 708 Mb and 734 Mb and correspond to 98 \% and 102 \% of the X. maculatus Jp 163 A genome size, respectively. The rates of single nucleotide change range from 1 per 52 bp to 1 per 69 bp among the three genomes and the impact of putatively damaging variants are presented. In addition, a survey of transposable elements allowed us to deduce an ancestral TE landscape, uncovered potential active TEs and document a recent burst of TEs during evolution of this genus. Conclusions Two new Xiphophorus genomes and their corresponding transcriptomes were efficiently assembled, the former using a novel guided assembly approach. Three assembled genome sequences within this single vertebrate order of new world live-bearing fishes will accelerate our understanding of relationship between environmental adaptation and genome evolution. In addition, these genome resources provide capability to determine allele specific gene regulation among interspecies hybrids produced by crossing any of the three species that are known to produce progeny predisposed to tumor development.}, language = {en} } @article{daCruzRodriguezCasuriagaSantinaqueetal.2016, author = {da Cruz, Irene and Rodr{\´i}guez-Casuriaga, Rosana and Santi{\~n}aque, Frederico F. and Far{\´i}as, Joaquina and Curti, Gianni and Capoano, Carlos A. and Folle, Gustavo A. and Benavente, Ricardo and Sotelo-Silveira, Jos{\´e} Roberto and Geisinger, Adriana}, title = {Transcriptome analysis of highly purified mouse spermatogenic cell populations: gene expression signatures switch from meiotic-to postmeiotic-related processes at pachytene stage}, series = {BMC Genomics}, volume = {17}, journal = {BMC Genomics}, doi = {10.1186/s12864-016-2618-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164574}, pages = {294}, year = {2016}, abstract = {Background Spermatogenesis is a complex differentiation process that involves the successive and simultaneous execution of three different gene expression programs: mitotic proliferation of spermatogonia, meiosis, and spermiogenesis. Testicular cell heterogeneity has hindered its molecular analyses. Moreover, the characterization of short, poorly represented cell stages such as initial meiotic prophase ones (leptotene and zygotene) has remained elusive, despite their crucial importance for understanding the fundamentals of meiosis. Results We have developed a flow cytometry-based approach for obtaining highly pure stage-specific spermatogenic cell populations, including early meiotic prophase. Here we combined this methodology with next generation sequencing, which enabled the analysis of meiotic and postmeiotic gene expression signatures in mouse with unprecedented reliability. Interestingly, we found that a considerable number of genes involved in early as well as late meiotic processes are already on at early meiotic prophase, with a high proportion of them being expressed only for the short time lapse of lepto-zygotene stages. Besides, we observed a massive change in gene expression patterns during medium meiotic prophase (pachytene) when mostly genes related to spermiogenesis and sperm function are already turned on. This indicates that the transcriptional switch from meiosis to post-meiosis takes place very early, during meiotic prophase, thus disclosing a higher incidence of post-transcriptional regulation in spermatogenesis than previously reported. Moreover, we found that a good proportion of the differential gene expression in spermiogenesis corresponds to up-regulation of genes whose expression starts earlier, at pachytene stage; this includes transition protein-and protamine-coding genes, which have long been claimed to switch on during spermiogenesis. In addition, our results afford new insights concerning X chromosome meiotic inactivation and reactivation. Conclusions This work provides for the first time an overview of the time course for the massive onset and turning off of the meiotic and spermiogenic genetic programs. Importantly, our data represent a highly reliable information set about gene expression in pure testicular cell populations including early meiotic prophase, for further data mining towards the elucidation of the molecular bases of male reproduction in mammals.}, language = {en} } @article{DePalmaAbrahamczykAizenetal.2016, author = {De Palma, Adriana and Abrahamczyk, Stefan and Aizen, Marcelo A. and Albrecht, Matthias and Basset, Yves and Bates, Adam and Blake, Robin J. and Boutin, C{\´e}line and Bugter, Rob and Connop, Stuart and Cruz-L{\´o}pez, Leopoldo and Cunningham, Saul A. and Darvill, Ben and Diek{\"o}tter, Tim and Dorn, Silvia and Downing, Nicola and Entling, Martin H. and Farwig, Nina and Felicioli, Antonio and Fonte, Steven J. and Fowler, Robert and Franzen, Markus Franz{\´e}n and Goulson, Dave and Grass, Ingo and Hanley, Mick E. and Hendrix, Stephen D. and Herrmann, Farina and Herzog, Felix and Holzschuh, Andrea and Jauker, Birgit and Kessler, Michael and Knight, M. E. and Kruess, Andreas and Lavelle, Patrick and Le F{\´e}on, Violette and Lentini, Pia and Malone, Louise A. and Marshall, Jon and Mart{\´i}nez Pach{\´o}n, Eliana and McFrederick, Quinn S. and Morales, Carolina L. and Mudri-Stojnic, Sonja and Nates-Parra, Guiomar and Nilsson, Sven G. and {\"O}ckinger, Erik and Osgathorpe, Lynne and Parra-H, Alejandro and Peres, Carlos A. and Persson, Anna S. and Petanidou, Theodora and Poveda, Katja and Power, Eileen F. and Quaranta, Marino and Quintero, Carolina and Rader, Romina and Richards, Miriam H. and Roulston, T'ai and Rousseau, Laurent and Sadler, Jonathan P. and Samneg{\aa}rd, Ulrika and Schellhorn, Nancy A. and Sch{\"u}epp, Christof and Schweiger, Oliver and Smith-Pardo, Allan H. and Steffan-Dewenter, Ingolf and Stout, Jane C. and Tonietto, Rebecca K. and Tscharntke, Teja and Tylianakis, Jason M. and Verboven, Hans A. F. and Vergara, Carlos H. and Verhulst, Jort and Westphal, Catrin and Yoon, Hyung Joo and Purvis, Andy}, title = {Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep31153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167642}, pages = {31153}, year = {2016}, abstract = {Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.}, language = {en} } @article{DeelemanReinholdMillerFloren2016, author = {Deeleman-Reinhold, Christa L. and Miller, Jeremy and Floren, Andreas}, title = {Depreissia decipiens, an enigmatic canopy spider from Borneo revisited (Araneae, Salticidae), with remarks on the distribution and diversity of canopy spiders in Sabah, Borneo}, series = {ZooKeys}, volume = {556}, journal = {ZooKeys}, doi = {10.3897/zookeys.556.6174}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168342}, pages = {1-17}, year = {2016}, abstract = {Depreissia is a little known genus comprising two hymenopteran-mimicking species, one found in Central Africa and one in the north of Borneo. The male of D. decipiens is redescribed, the female is described for the first time. The carapace is elongated, dorsally flattened and rhombus-shaped, the rear of the thorax laterally depressed and transformed, with a pair of deep pits; the pedicel is almost as long as the abdomen. The male palp is unusual, characterized by the transverse deeply split membranous tegulum separating a ventral part which bears a sclerotized tegular apophysis and a large dagger-like retrodirected median apophysis. The female epigyne consists of one pair of large adjacent spermathecae and very long copulatory ducts arising posteriorly and rising laterally alongside the spermathecae continuing in several vertical and horizontal coils over the anterior surface. Relationships within the Salticidae are discussed and an affinity with the Cocalodinae is suggested. Arguments are provided for a hypothesis that D. decipiens is not ant-mimicking as was previously believed, but is a mimic of polistinine wasps. The species was found in the canopy in the Kinabalu area only, in primary and old secondary rainforest at 200-700 m.a.s.l. Overlap of canopy-dwelling spider species with those in the understorey are discussed and examples of species richness and endemism in the canopy are highlighted. Canopy fogging is a very efficient method of collecting for most arthropods. The canopy fauna adds an extra dimension to the known biodiversity of the tropical rainforest. In southeast Asia, canopy research has been neglected, inhibiting evaluation of comparative results of this canopy project with that from other regions. More use of fogging as a collecting method would greatly improve insight into the actual species richness and species distribution in general.}, language = {en} } @article{SchlinkertLudwigBataryetal.2016, author = {Schlinkert, Hella and Ludwig, Martin and Bat{\´a}ry, P{\´e}ter and Holzschuh, Andrea and Kov{\´a}cs-Hosty{\´a}nszki, Anik{\´o} and Tscharntke, Teja and Fischer, Christina}, title = {Forest specialist and generalist small mammals in forest edges and hedges}, series = {Wildlife Biology}, volume = {22}, journal = {Wildlife Biology}, number = {3}, doi = {10.2981/wlb.00176}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168333}, pages = {86-94}, year = {2016}, abstract = {Agricultural intensification often leads to fragmentation of natural habitats, such as forests, and thereby negatively affects forest specialist species. However, human introduced habitats, such as hedges, may counteract negative effects of forest fragmentation and increase dispersal, particularly of forest specialists. We studied effects of habitat type (forest edge versus hedge) and hedge isolation from forests (connected versus isolated hedge) in agricultural landscapes on abundance, species richness and community composition of mice, voles and shrews in forest edges and hedges. Simultaneously to these effects of forest edge/hedge type we analysed impacts of habitat structure, namely percentage of bare ground and forest edge/hedge width, on abundance, species richness and community composition of small mammals. Total abundance and forest specialist abundance (both driven by the most abundant species Myodes glareolus, bank vole) were higher in forest edges than in hedges, while hedge isolation had no effect. In contrast, abundance of habitat generalists was higher in isolated compared to connected hedges, with no effect of habitat type (forest edge versus hedge). Species richness as well as abundance of the most abundant habitat generalist Sorex araneus (common shrew), were not affected by habitat type or hedge isolation. Decreasing percentage of bare ground and increasing forest edge/hedge width was associated with increased abundance of forest specialists, while habitat structure was unrelated to species richness or abundance of any other group. Community composition was driven by forest specialists, which exceeded habitat generalist abundance in forest edges and connected hedges, while abundances were similar to each other in isolated hedges. Our results show that small mammal forest specialists prefer forest edges as habitats over hedges, while habitat generalists are able to use unoccupied ecological niches in isolated hedges. Consequently even isolated hedges can be marginal habitats for forest specialists and habitat generalists and thereby may increase regional farmland biodiversity.}, language = {en} } @article{BiscottiGerdolCanapaetal.2016, author = {Biscotti, Maria Assunta and Gerdol, Marco and Canapa, Adriana and Forconi, Mariko and Olmo, Ettore and Pallavicini, Alberto and Barucca, Marco and Schartl, Manfred}, title = {The Lungfish Transcriptome: A Glimpse into Molecular Evolution Events at the Transition from Water to Land}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {21571}, doi = {10.1038/srep21571}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167753}, year = {2016}, abstract = {Lungfish and coelacanths are the only living sarcopterygian fish. The phylogenetic relationship of lungfish to the last common ancestor of tetrapods and their close morphological similarity to their fossil ancestors make this species uniquely interesting. However their genome size, the largest among vertebrates, is hampering the generation of a whole genome sequence. To provide a partial solution to the problem, a high-coverage lungfish reference transcriptome was generated and assembled. The present findings indicate that lungfish, not coelacanths, are the closest relatives to land-adapted vertebrates. Whereas protein-coding genes evolve at a very slow rate, possibly reflecting a "living fossil" status, transposable elements appear to be active and show high diversity, suggesting a role for them in the remarkable expansion of the lungfish genome. Analyses of single genes and gene families documented changes connected to the water to land transition and demonstrated the value of the lungfish reference transcriptome for comparative studies of vertebrate evolution.}, language = {en} } @article{PfeifferKruegerMaierhoferetal.2016, author = {Pfeiffer, Susanne and Kr{\"u}ger, Jacqueline and Maierhofer, Anna and B{\"o}ttcher, Yvonne and Kl{\"o}ting, Nora and El Hajj, Nady and Schleinitz, Dorit and Sch{\"o}n, Michael R. and Dietrich, Arne and Fasshauer, Mathias and Lohmann, Tobias and Dreßler, Miriam and Stumvoll, Michael and Haaf, Thomas and Bl{\"u}her, Matthias and Kovacs, Peter}, title = {Hypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {27969}, doi = {10.1038/srep27969}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167662}, year = {2016}, abstract = {Recently, a genome-wide analysis identified DNA methylation of the HIF3A (hypoxia-inducible factor 3A) as strongest correlate of BMI. Here we tested the hypothesis that HIF3A mRNA expression and CpG-sites methylation in adipose tissue (AT) and genetic variants in HIF3A are related to parameters of AT distribution and function. In paired samples of subcutaneous AT (SAT) and visceral AT (VAT) from 603 individuals, we measured HIF3A mRNA expression and analyzed its correlation with obesity and related traits. In subgroups of individuals, we investigated the effects on HIF3A genetic variants on its AT expression (N = 603) and methylation of CpG-sites (N = 87). HIF3A expression was significantly higher in SAT compared to VAT and correlated with obesity and parameters of AT dysfunction (including CRP and leucocytes count). HIF3A methylation at cg22891070 was significantly higher in VAT compared to SAT and correlated with BMI, abdominal SAT and VAT area. Rs8102595 showed a nominal significant association with AT HIF3A methylation levels as well as with obesity and fat distribution. HIF3A expression and methylation in AT are fat depot specific, related to obesity and AT dysfunction. Our data support the hypothesis that HIF pathways may play an important role in the development of AT dysfunction in obesity.}, language = {en} } @article{JahnMarkertRyuetal.2016, author = {Jahn, Martin T. and Markert, Sebastian M. and Ryu, Taewoo and Ravasi, Timothy and Stigloher, Christian and Hentschel, Ute and Moitinho-Silva, Lucas}, title = {Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {35860}, doi = {10.1038/srep35860}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167513}, year = {2016}, abstract = {Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.}, language = {en} } @article{WeisschuhMayerStrometal.2016, author = {Weisschuh, Nicole and Mayer, Anja K. and Strom, Tim M. and Kohl, Susanne and Gl{\"o}ckle, Nicola and Schubach, Max and Andreasson, Sten and Bernd, Antje and Birch, David G. and Hamel, Christian P. and Heckenlively, John R. and Jacobson, Samuel G. and Kamme, Christina and Kellner, Ulrich and Kunstmann, Erdmute and Maffei, Pietro and Reiff, Charlotte M. and Rohrschneider, Klaus and Rosenberg, Thomas and Rudolph, G{\"u}nther and V{\´a}mos, Rita and Vars{\´a}nyi, Bal{\´a}zs and Weleber, Richard G. and Wissinger, Bernd}, title = {Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0145951}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167398}, pages = {e0145951}, year = {2016}, abstract = {Retinal dystrophies (RD) constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different nonsyndromic and syndromic forms of RD can be attributed to mutations in more than 200 genes. Consequently, next generation sequencing (NGS) technologies are among the most promising approaches to identify mutations in RD. We screened a large cohort of patients comprising 89 independent cases and families with various subforms of RD applying different NGS platforms. While mutation screening in 50 cases was performed using a RD gene capture panel, 47 cases were analyzed using whole exome sequencing. One family was analyzed using whole genome sequencing. A detection rate of 61\% was achieved including mutations in 34 known and two novel RD genes. A total of 69 distinct mutations were identified, including 39 novel mutations. Notably, genetic findings in several families were not consistent with the initial clinical diagnosis. Clinical reassessment resulted in refinement of the clinical diagnosis in some of these families and confirmed the broad clinical spectrum associated with mutations in RD genes.}, language = {en} } @article{ThormannAhrensArmijosetal.2016, author = {Thormann, Birthe and Ahrens, Dirk and Armijos, Diego Mar{\´i}n and Peters, Marcell K. and Wagner, Thomas and W{\"a}gele, Johann W.}, title = {Exploring the Leaf Beetle Fauna (Coleoptera: Chrysomelidae) of an Ecuadorian Mountain Forest Using DNA Barcoding}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0148268}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167253}, pages = {e0148268}, year = {2016}, abstract = {Background Tropical mountain forests are hotspots of biodiversity hosting a huge but little known diversity of insects that is endangered by habitat destruction and climate change. Therefore, rapid assessment approaches of insect diversity are urgently needed to complement slower traditional taxonomic approaches. We empirically compare different DNA-based species delimitation approaches for a rapid biodiversity assessment of hyperdiverse leaf beetle assemblages along an elevational gradient in southern Ecuador and explore their effect on species richness estimates. Methodology/Principal Findings Based on a COI barcode data set of 674 leaf beetle specimens (Coleoptera: Chrysomelidae) of 266 morphospecies from three sample sites in the Podocarpus National Park, we employed statistical parsimony analysis, distance-based clustering, GMYC- and PTP-modelling to delimit species-like units and compared them to morphology-based (parataxonomic) species identifications. The four different approaches for DNA-based species delimitation revealed highly similar numbers of molecular operational taxonomic units (MOTUs) (n = 284-289). Estimated total species richness was considerably higher than the sampled amount, 414 for morphospecies (Chao2) and 469-481 for the different MOTU types. Assemblages at different elevational levels (1000 vs. 2000 m) had similar species numbers but a very distinct species composition for all delimitation methods. Most species were found only at one elevation while this turnover pattern was even more pronounced for DNA-based delimitation. Conclusions/Significance Given the high congruence of DNA-based delimitation results, probably due to the sampling structure, our study suggests that when applied to species communities on a regionally limited level with high amount of rare species (i.e. ~50\% singletons), the choice of species delimitation method can be of minor relevance for assessing species numbers and turnover in tropical insect communities. Therefore, DNA-based species delimitation is confirmed as a valuable tool for evaluating biodiversity of hyperdiverse insect communities, especially when exact taxonomic identifications are missing.}, language = {en} } @article{Hoelldobler2016, author = {H{\"o}lldobler, Bert}, title = {Queen Specific Exocrine Glands in Legionary Ants and Their Possible Function in Sexual Selection}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0151604}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167057}, pages = {e0151604}, year = {2016}, abstract = {The colonies of army ants and some other legionary ant species have single, permanently wingless queens with massive post petioles and large gasters. Such highly modified queens are called dichthadiigynes. This paper presents the unusually rich exocrine gland endowment of dichthadiigynes, which is not found in queens of other ant species. It has been suggested these kinds of glands produce secretions that attract and maintain worker retinues around queens, especially during migration. However, large worker retinues also occur in non-legionary species whose queens do not have such an exuberance of exocrine glands. We argue and present evidence in support of our previously proposed hypothesis that the enormous outfit of exocrine glands found in dichthadiigynes is due to sexual selection mediated by workers as the main selecting agents}, language = {en} } @article{VogtmannHuaZelleretal.2016, author = {Vogtmann, Emily and Hua, Xing and Zeller, Georg and Sunagawa, Shinichi and Voigt, Anita Y. and Hercog, Rajna and Goedert, James J. and Shi, Jianxin and Bork, Peer and Sinha, Rashmi}, title = {Colorectal Cancer and the Human Gut Microbiome: Reproducibility with Whole-Genome Shotgun Sequencing}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0155362}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166904}, pages = {e0155362}, year = {2016}, abstract = {Accumulating evidence indicates that the gut microbiota affects colorectal cancer development, but previous studies have varied in population, technical methods, and associations with cancer. Understanding these variations is needed for comparisons and for potential pooling across studies. Therefore, we performed whole-genome shotgun sequencing on fecal samples from 52 pre-treatment colorectal cancer cases and 52 matched controls from Washington, DC. We compared findings from a previously published 16S rRNA study to the metagenomics-derived taxonomy within the same population. In addition, metagenome-predicted genes, modules, and pathways in the Washington, DC cases and controls were compared to cases and controls recruited in France whose specimens were processed using the same platform. Associations between the presence of fecal Fusobacteria, Fusobacterium, and Porphyromonas with colorectal cancer detected by 16S rRNA were reproduced by metagenomics, whereas higher relative abundance of Clostridia in cancer cases based on 16S rRNA was merely borderline based on metagenomics. This demonstrated that within the same sample set, most, but not all taxonomic associations were seen with both methods. Considering significant cancer associations with the relative abundance of genes, modules, and pathways in a recently published French metagenomics dataset, statistically significant associations in the Washington, DC population were detected for four out of 10 genes, three out of nine modules, and seven out of 17 pathways. In total, colorectal cancer status in the Washington, DC study was associated with 39\% of the metagenome-predicted genes, modules, and pathways identified in the French study. More within and between population comparisons are needed to identify sources of variation and disease associations that can be reproduced despite these variations. Future studies should have larger sample sizes or pool data across studies to have sufficient power to detect associations that are reproducible and significant after correction for multiple testing.}, language = {en} } @article{HeurichZeisKuechenhoffetal.2016, author = {Heurich, Marco and Zeis, Klara and K{\"u}chenhoff, Helmut and M{\"u}ller, J{\"o}rg and Belotti, Elisa and Bufka, Luděk and Woelfing, Benno}, title = {Selective Predation of a Stalking Predator on Ungulate Prey}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0158449}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166827}, pages = {e0158449}, year = {2016}, abstract = {Prey selection is a key factor shaping animal populations and evolutionary dynamics. An optimal forager should target prey that offers the highest benefits in terms of energy content at the lowest costs. Predators are therefore expected to select for prey of optimal size. Stalking predators do not pursue their prey long, which may lead to a more random choice of prey individuals. Due to difficulties in assessing the composition of available prey populations, data on prey selection of stalking carnivores are still scarce. We show how the stalking predator Eurasian lynx (Lynx lynx) selects prey individuals based on species identity, age, sex and individual behaviour. To address the difficulties in assessing prey population structure, we confirm inferred selection patterns by using two independent data sets: (1) data of 387 documented kills of radio-collared lynx were compared to the prey population structure retrieved from systematic camera trapping using Manly's standardized selection ratio alpha and (2) data on 120 radio-collared roe deer were analysed using a Cox proportional hazards model. Among the larger red deer prey, lynx selected against adult males—the largest and potentially most dangerous prey individuals. In roe deer lynx preyed selectively on males and did not select for a specific age class. Activity during high risk periods reduced the risk of falling victim to a lynx attack. Our results suggest that the stalking predator lynx actively selects for size, while prey behaviour induces selection by encounter and stalking success rates.}, language = {en} } @article{DreschersSauppHornefetal.2016, author = {Dreschers, Stephan and Saupp, Peter and Hornef, Mathias and Prehn, Andrea and Platen, Christopher and Morschh{\"a}user, Joachim and Orlikowsky, Thorsten W.}, title = {Reduced PICD in Monocytes Mounts Altered Neonate Immune Response to Candida albicans}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {11}, doi = {10.1371/journal.pone.0166648}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166778}, pages = {e0166648}, year = {2016}, abstract = {Background Invasive fungal infections with Candida albicans (C. albicans) occur frequently in extremely low birthweight (ELBW) infants and are associated with poor outcome. Phagocytosis of C.albicans initializes apoptosis in monocytes (phagocytosis induced cell death, PICD). PICD is reduced in neonatal cord blood monocytes (CBMO). Hypothesis Phagocytosis of C. albicans causes PICD which differs between neonatal monocytes (CBMO) and adult peripheral blood monocytes (PBMO) due to lower stimulation of TLR-mediated immune responses. Methods The ability to phagocytose C. albicans, expression of TLRs, the induction of apoptosis (assessment of sub-G1 and nick-strand breaks) were analyzed by FACS. TLR signalling was induced by agonists such as lipopolysaccharide (LPS), Pam3Cys, FSL-1 and Zymosan and blocked (neutralizing TLR2 antibodies and MYD88 inhibitor). Results Phagocytic indices of PBMO and CBMO were similar. Following stimulation with agonists and C. albicans induced up-regulation of TLR2 and consecutive phosphorylation of MAP kinase P38 and expression of TNF-α, which were stronger on PBMO compared to CBMO (p < 0.005). Downstream, TLR2 signalling initiated caspase-3-dependent PICD which was found reduced in CBMO (p < 0.05 vs PBMO). Conclusion Our data suggest direct involvement of TLR2-signalling in C. albicans-induced PICD in monocytes and an alteration of this pathway in CBMO.}, language = {en} } @article{XuHeKaiseretal.2016, author = {Xu, Li and He, Jianzheng and Kaiser, Andrea and Gr{\"a}ber, Nikolas and Schl{\"a}ger, Laura and Ritze, Yvonne and Scholz, Henrike}, title = {A Single Pair of Serotonergic Neurons Counteracts Serotonergic Inhibition of Ethanol Attraction in Drosophila}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {12}, doi = {10.1371/journal.pone.0167518}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166762}, pages = {e0167518}, year = {2016}, abstract = {Attraction to ethanol is common in both flies and humans, but the neuromodulatory mechanisms underlying this innate attraction are not well understood. Here, we dissect the function of the key regulator of serotonin signaling—the serotonin transporter-in innate olfactory attraction to ethanol in Drosophila melanogaster. We generated a mutated version of the serotonin transporter that prolongs serotonin signaling in the synaptic cleft and is targeted via the Gal4 system to different sets of serotonergic neurons. We identified four serotonergic neurons that inhibit the olfactory attraction to ethanol and two additional neurons that counteract this inhibition by strengthening olfactory information. Our results reveal that compensation can occur on the circuit level and that serotonin has a bidirectional function in modulating the innate attraction to ethanol. Given the evolutionarily conserved nature of the serotonin transporter and serotonin, the bidirectional serotonergic mechanisms delineate a basic principle for how random behavior is switched into targeted approach behavior.}, language = {en} } @article{KuenstnerHoffmannFraseretal.2016, author = {K{\"u}nstner, Axel and Hoffmann, Margarete and Fraser, Bonnie A. and Kottler, Verena A. and Sharma, Eshita and Weigel, Detlef and Dreyer, Christine}, title = {The Genome of the Trinidadian Guppy, Poecilia reticulata, and Variation in the Guanapo Population}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {12}, doi = {10.1371/journal.pone.0169087}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166755}, pages = {e0169087}, year = {2016}, abstract = {For over a century, the live bearing guppy, Poecilia reticulata, has been used to study sexual selection as well as local adaptation. Natural guppy populations differ in many traits that are of intuitively adaptive significance such as ornamentation, age at maturity, brood size and body shape. Water depth, light supply, food resources and predation regime shape these traits, and barrier waterfalls often separate contrasting environments in the same river. We have assembled and annotated the genome of an inbred single female from a high-predation site in the Guanapo drainage. The final assembly comprises 731.6 Mb with a scaffold N50 of 5.3 MB. Scaffolds were mapped to linkage groups, placing 95\% of the genome assembly on the 22 autosomes and the X-chromosome. To investigate genetic variation in the population used for the genome assembly, we sequenced 10 wild caught male individuals. The identified 5 million SNPs correspond to an average nucleotide diversity (π) of 0.0025. The genome assembly and SNP map provide a rich resource for investigating adaptation to different predation regimes. In addition, comparisons with the genomes of other Poeciliid species, which differ greatly in mechanisms of sex determination and maternal resource allocation, as well as comparisons to other teleost genera can begin to reveal how live bearing evolved in teleost fish.}, language = {en} } @article{VendelovadeLimaLorenzattoetal.2016, author = {Vendelova, Emilia and de Lima, Jeferson Camargo and Lorenzatto, Karina Rodrigues and Monteiro, Karina Mariante and Mueller, Thomas and Veepaschit, Jyotishman and Grimm, Clemens and Brehm, Klaus and Hrčkov{\´a}, Gabriela and Lutz, Manfred B. and Ferreira, Henrique B. and Nono, Justin Komguep}, title = {Proteomic Analysis of Excretory-Secretory Products of Mesocestoides corti Metacestodes Reveals Potential Suppressors of Dendritic Cell Functions}, series = {PLoS Neglected Tropical Diseases}, volume = {10}, journal = {PLoS Neglected Tropical Diseases}, number = {10}, doi = {10.1371/journal.pntd.0005061}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166742}, pages = {e0005061}, year = {2016}, abstract = {Accumulating evidences have assigned a central role to parasite-derived proteins in immunomodulation. Here, we report on the proteomic identification and characterization of immunomodulatory excretory-secretory (ES) products from the metacestode larva (tetrathyridium) of the tapeworm Mesocestoides corti (syn. M. vogae). We demonstrate that ES products but not larval homogenates inhibit the stimuli-driven release of the pro-inflammatory, Th1-inducing cytokine IL-12p70 by murine bone marrow-derived dendritic cells (BMDCs). Within the ES fraction, we biochemically narrowed down the immunosuppressive activity to glycoproteins since active components were lipid-free, but sensitive to heat- and carbohydrate-treatment. Finally, using bioassay-guided chromatographic analyses assisted by comparative proteomics of active and inactive fractions of the ES products, we defined a comprehensive list of candidate proteins released by M. corti tetrathyridia as potential suppressors of DC functions. Our study provides a comprehensive library of somatic and ES products and highlight some candidate parasite factors that might drive the subversion of DC functions to facilitate the persistence of M. corti tetrathyridia in their hosts.}, language = {en} } @article{WidmannArtingerBiesingeretal.2016, author = {Widmann, Annekathrin and Artinger, Marc and Biesinger, Lukas and Boepple, Kathrin and Peters, Christina and Schlechter, Jana and Selcho, Mareike and Thum, Andreas S.}, title = {Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae}, series = {PLoS Genetics}, volume = {12}, journal = {PLoS Genetics}, number = {10}, doi = {10.1371/journal.pgen.1006378}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166672}, pages = {e1006378}, year = {2016}, abstract = {Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes—besides other forms—a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3'5'-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution.}, language = {en} } @article{SchwarzTamuriKultysetal.2016, author = {Schwarz, Roland F. and Tamuri, Asif U. and Kultys, Marek and King, James and Godwin, James and Florescu, Ana M. and Schultz, J{\"o}rg and Goldman, Nick}, title = {ALVIS: interactive non-aggregative visualization and explorative analysis of multiple sequence alignments}, series = {Nucleic Acids Research}, volume = {44}, journal = {Nucleic Acids Research}, number = {8}, doi = {10.1093/nar/gkw022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166374}, pages = {e77}, year = {2016}, abstract = {Sequence Logos and its variants are the most commonly used method for visualization of multiple sequence alignments (MSAs) and sequence motifs. They provide consensus-based summaries of the sequences in the alignment. Consequently, individual sequences cannot be identified in the visualization and covariant sites are not easily discernible. We recently proposed Sequence Bundles, a motif visualization technique that maintains a one-to-one relationship between sequences and their graphical representation and visualizes covariant sites. We here present Alvis, an open-source platform for the joint explorative analysis of MSAs and phylogenetic trees, employing Sequence Bundles as its main visualization method. Alvis combines the power of the visualization method with an interactive toolkit allowing detection of covariant sites, annotation of trees with synapomorphies and homoplasies, and motif detection. It also offers numerical analysis functionality, such as dimension reduction and classification. Alvis is user-friendly, highly customizable and can export results in publication-quality figures. It is available as a full-featured standalone version (http://www.bitbucket.org/rfs/alvis) and its Sequence Bundles visualization module is further available as a web application (http://science-practice.com/projects/sequence-bundles).}, language = {en} }