@phdthesis{Boettcher2021, author = {B{\"o}ttcher, Jan Frederic}, title = {Fate of Topological States of Matter in the Presence of External Magnetic Fields}, doi = {10.25972/OPUS-22045}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220451}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The quantum Hall (QH) effect, which can be induced in a two-dimensional (2D) electron gas by an external magnetic field, paved the way for topological concepts in condensed matter physics. While the QH effect can for that reason not exist without Landau levels, there is a plethora of topological phases of matter that can exist even in the absence of a magnetic field. For instance, the quantum spin Hall (QSH), the quantum anomalous Hall (QAH), and the three-dimensional (3D) topological insulator (TI) phase are insulating phases of matter that owe their nontrivial topology to an inverted band structure. The latter results from a strong spin-orbit interaction or, generally, from strong relativistic corrections. The main objective of this thesis is to explore the fate of these preexisting topological states of matter, when they are subjected to an external magnetic field, and analyze their connection to quantum anomalies. In particular, the realization of the parity anomaly in solid state systems is discussed. Furthermore, band structure engineering, i.e., changing the quantum well thickness, the strain, and the material composition, is employed to manipulate and investigate various topological properties of the prototype TI HgTe. Like the QH phase, the QAH phase exhibits unidirectionally propagating metallic edge channels. But in contrast to the QH phase, it can exist without Landau levels. As such, the QAH phase is a condensed matter analog of the parity anomaly. We demonstrate that this connection facilitates a distinction between QH and QAH states in the presence of a magnetic field. We debunk therefore the widespread belief that these two topological phases of matter cannot be distinguished, since they are both described by a \$\mathbb{Z}\$ topological invariant. To be more precise, we demonstrate that the QAH topology remains encoded in a peculiar topological quantity, the spectral asymmetry, which quantifies the differences in the number of states between the conduction and valence band. Deriving the effective action of QAH insulators in magnetic fields, we show that the spectral asymmetry is thereby linked to a unique Chern-Simons term which contains the information about the QAH edge states. As a consequence, we reveal that counterpropagating QH and QAH edge states can emerge when a QAH insulator is subjected to an external magnetic field. These helical-like states exhibit exotic properties which make it possible to disentangle QH and QAH phases. Our findings are of particular importance for paramagnetic TIs in which an external magnetic field is required to induce the QAH phase. A byproduct of the band inversion is the formation of additional extrema in the valence band dispersion at large momenta (the `camelback'). We develop a numerical implementation of the \$8 \times 8\$ Kane model to investigate signatures of the camelback in (Hg,Mn)Te quantum wells. Varying the quantum well thickness, as well as the Mn-concentration, we show that the class of topologically nontrivial quantum wells can be subdivided into direct gap and indirect gap TIs. In direct gap TIs, we show that, in the bulk \$p\$-regime, pinning of the chemical potential to the camelback can cause an onset to QH plateaus at exceptionally low magnetic fields (tens of mT). In contrast, in indirect gap TIs, the camelback prevents the observation of QH plateaus in the bulk \$p\$-regime up to large magnetic fields (a few tesla). These findings allowed us to attribute recent experimental observations in (Hg,Mn)Te quantum wells to the camelback. Although our discussion focuses on (Hg,Mn)Te, our model should likewise apply to other topological materials which exhibit a camelback feature in their valence band dispersion. Furthermore, we employ the numerical implementation of the \$8\times 8\$ Kane model to explore the crossover from a 2D QSH to a 3D TI phase in strained HgTe quantum wells. The latter exhibit 2D topological surface states at their interfaces which, as we demonstrate, are very sensitive to the local symmetry of the crystal lattice and electrostatic gating. We determine the classical cyclotron frequency of surface electrons and compare our findings with experiments on strained HgTe.}, subject = {Topologie}, language = {en} } @phdthesis{Alboteanu2007, author = {Alboteanu, Ana Maria}, title = {The Noncommutative Standard Model : Construction Beyond Leading Order in Theta and Collider Phenomenology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-24334}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Trotz seiner pr{\"a}zisen {\"U}bereinstimmung mit dem Experiment ist die G{\"u}ltigkeit des Standardmodells (SM) der Elementarteilchenphysik bislang nur bis zu einer Energieskala von einigen hundert GeV gesichert. Abgesehen davon erweist sich schon das Einbinden der Gravitation in einer einheitlichen Beschreibung aller fundamentalen Wechselwirkungen als ein durch gew{\"o}hnliche Quantenfeldtheorie nicht zu l{\"o}sendes Problem. Das Interesse an Quantenfeldtheorien auf einer nichtkommutativen Raumzeit wurde durch deren Vorhersage als niederenergetischer Limes von Stringtheorien erweckt. Unabh{\"a}ngig davon, kann die Nichtlokalit{\"a}t einer solchen Theorie den Rahmen zur Einbeziehung der Gravitation in eine vereinheitlichende Theorie liefern. Die Hoffnung besteht, dass die Energieskala Lambda_NC, ab der solche Effekte sichtbar werden k{\"o}nnen und f{\"u}r die es einerlei theoretischen Vorhersagen gibt, schon bei der n{\"a}chsten Generation von Beschleunigern erreicht wird. Auf dieser Annahme beruht auch die vorliegende Arbeit, im Rahmen deren eine m{\"o}gliche Realisierung von Quantenfeldtheorien auf nichtkommutativer Raumzeit auf ihre ph{\"a}nomenologischen Konsequenzen hin untersucht wurde. Diese Arbeit ist durch fehlende LHC (Large Hadron Collider) Studien f{\"u}r nichkommutative Quantenfeldtheorien motiviert. Im ersten Teil des Vorhabens wurde der hadronische Prozess pp-> Z gamma -> l+l- gamma am LHC sowie die Elektron-Positron Paarvernichtung in ein Z-Boson und ein Photon am ILC (International Linear Collider) auf nichtkommutative Signale hin untersucht. Die ph{\"a}nomenlogischen Untersuchungen wurden im Rahmen dieses Modells in erster Ordnung des nichtkommutativen Parameters Theta durchgef{\"u}hrt. Eine nichtkommutative Raumzeit f{\"u}hrt zur Brechung der Rotationsinvarianz bez{\"u}glich der Strahlrichtung der einlaufenden Teilchen. Im differentiellen Wirkungsquerschnitt f{\"u}r Streuprozesse {\"a}ussert sich dieses als eine azimuthale Abh{\"a}ngigkeit, die weder im SM noch in anderen Modellen jenseits des SM auftritt. Diese klare, f\"ur nichtkommutative Theorien typische Signatur kann benutzt werden, um nichtkommutative Modelle von anderen Modellen, die neue Physik beschreiben, zu unterscheiden. Auch hat es sich erwiesen, dass die azimuthale Abh{\"a}ngigkeit des Wirkungsquerschnittes am besten daf\"ur geeignet ist, um die Sensitivit{\"a}t des LHC und des ILC auf der nichtkommutativen Skala \$\Lnc\$ zu bestimmen. Im ph{\"a}nomenologischen Teil der Arbeit wurde herausgefunden, dass Messungen am LHC f{\"u}r den Prozess pp-> Z gamma-> l+l- gamma nur in bestimmten F{\"a}llen auf nichtkommutative Effekte sensitiv sind. F{\"u}r diese F{\"a}lle wurde f{\"u}r die nichtkommutative Energieskala Lambda_NC eine Grenze von Lambda_NC > 1.2 TeV bestimmt. Diese ist um eine Gr{\"o}ßenordnung h{\"o}her als die Grenzen, die von bisherigen Beschleunigerexperimenten hergeleitet wurden. Bei einem zuk{\"u}nftigen Linearbeschleuniger, dem ILC, wird die Grenze auf Lambda_NC im Prozess e^+e^- -> Z gamma -> l^+ l^- gamma wesentlich erh{\"o}ht (bis zu 6 TeV). Abgesehen davon ist dem ILC gerade der f{\"u}r den LHC kaum zug{\"a}ngliche Parameterbereich der nichtkommutativen Theorie erschlossen, was die Komplementarit{\"a}t der beiden Beschleunigerexperimente hinsichtlich der nichtkommutativen Parameter zeigt. Der zweite Teil der Arbeit entwickelte sich aus der Notwendigkeit heraus, den G{\"u}ltigkeitsbereich der Theorie zu h{\"o}heren Energien hin zu erweitern. Daf{\"u}r haben wir den neutralen Sektor des nichtkommutativen SM um die n{\"a}chste Ordnung in Theta erg{\"a}nzt. Es stellte sich wider Erwarten heraus, dass die Theorie dabei um einige freie Parameter erweitert werden muss. Die zus{\"a}tzlichen Parameter sind durch die homogenen L{\"o}sungen der Eich{\"a}quivalenzbedingungen gegeben, welche Ambiguit\"aten der Seiberg-Witten Abbildungen darstellen. Die allgemeine Erwartung war, dass die Ambiguit{\"a}ten Feldredefinitionen entsprechen und daher in den Streumatrixelementen verschwinden m\"ussen. In dieser Arbeit wurde jedoch gezeigt, dass dies ab der zweiten Ordnung in Theta nicht der Fall ist und dass die Nichteindeutigkeit der Seiberg-Witten Abbildungen sich durchaus in Observablen niederschl{\"a}gt. Die Vermutung besteht, dass jede neue Ordnung in Theta neue Parameter in die Theorie einf{\"u}hrt. Wie weit und in welche Richtung die Theorie auf nichtkommutativer Raumzeit entwickelt werden muss, kann jedoch nur das Experiment entscheiden.}, subject = {Feldtheorie}, language = {en} }