@phdthesis{Surrey2020, author = {Surrey, Verena}, title = {Identification of affected cellular targets, mechanisms and signaling pathways in a mouse model for spinal muscular atrophy with respiratory distress type 1 (SMARD1)}, doi = {10.25972/OPUS-17638}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176386}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a fatal monogenic motoneuron disease in children with unknown etiology caused by mutations in the immunoglobulin μ-binding protein 2 (IGHMBP2) gene coding for DNA/RNA ATPase/helicase. Despite detailed knowledge of the underlying genetic changes, the cellular mechanisms leading to this disease are not well understood. In the Nmd2J ("neuromuscular disorder") mouse, the mouse model for the juvenile form of SMARD1 patients, in which similar pathological features as diaphragmatic paralysis and skeletal muscle atrophy are observed. Ex vivo studies in Nmd2J mice showed that loss of the motor axon precedes atrophy of the gastrocnemius muscle and does not correlate with neurotransmission defects in the motor endplate. The already described independent myogenic anomalies in the diaphragm and heart of the Nmd2J mouse raised the question whether spinal motoneuron degeneration develops cell autonomously. Ighmbp2 is predominantly localized in the cytoplasm and seems to bind to ribosomes and polysomes, suggesting a role in mRNA metabolism. In this Ph.D. thesis, morphological and functional analyses of isolated Ighmbp2-deficient (Ighmbp2-def.) motoneurons were performed to answer the question whether the SMARD1 phenotype results from dysregulation of protein biosynthesis. Ighmbp2-deficient motoneurons show only negligible morphological alterations with respect to a slight increase in axonal branches. This observation is consistent with only minor changes of transcriptome based on RNA sequencing data from Ighmbp2-deficient motoneurons. Only the mRNA of fibroblast growth factor receptor 1 (Fgfr1) showed significant up-regulation in Ighmbp2-deficient motoneurons. Furthermore, no global aberrations at the translational level could be detected using pulsed SILAC (Stable Isotope Labeling by Amino acids in cell culture), AHA (L-azidohomoalanine) labeling and SUnSET (SUrface SEnsing of Translation) methods. However, a reduced β-actin protein level was observed at the growth cones of Ighmbp2-deficient motoneurons, which was accompanied with a reduced level of Imp1 protein, a known β-actin mRNA interactor. Live-cell imaging studies using fluorescence recovery after photobleaching (FRAP) showed translational down-regulation of eGFPmyr-β-actin 3'UTR mRNA in the growth cones and the cell bodies, although the amount of β-actin mRNA and the total protein amount in Ighmbp2-deficient motoneurons showed no aberrations. This compartment-specific reduction of β-actin protein occurred independently of a non-existent direct IGHMBPF2 binding to β-actin mRNA. Fgfr1, which was upregulated on the RNA level, did not show an increased protein amount in Ighmbp2-deficient motoneurons, whereas a reduced amount could be detected. Interestingly, a correlation could be found between the reduced amount of the Imp1 protein and the increased Fgfr1 mRNA, since the IMP1 protein binds the FGFR1 mRNA and thus could influence the transport and translation of FGFR1 mRNA. In summary, all data suggest that Ighmbp2 deficiency leads to a local but modest disturbance of protein biosynthesis, which might contribute to the motoneuron defects of SMARD1.}, subject = {Spinale Muskelatrophie}, language = {en} } @phdthesis{Huber2023, author = {Huber, Hannes}, title = {Biochemical and functional characterization of DHX30, an RNA helicase linked to neurodevelopmental disorder}, doi = {10.25972/OPUS-28050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280505}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {RNA helicases are key players in the regulation of gene expression. They act by remodeling local RNA secondary structures as well as RNA-protein interactions to enable the dynamic association of RNA binding proteins to their targets. The putative RNA helicase DHX30 is a member of the family of DEAH-box helicases with a putative role in the ATP-dependent unwinding of RNA secondary structures. Mutations in the DHX30 gene causes the autosomal dominant neuronal disease "Neurodevelopmental Disorder with severe Motor Impairment and Absent Language" (NEDMIAL;OMIM\#617804). In this thesis, a strategy was established that enabled the large-scale purification of enzymatically active DHX30. Through enzymatic studies performed in vitro, DHX30 was shown to act as an ATP-dependent 3' → 5' RNA helicase that catalyzes the unwinding of RNA:RNA and RNA:DNA substrates. Using recombinant DHX30, it could be shown that disease-causing missense mutations in the conserved helicase core caused the disruption of its ATPase and helicase activity. The protein interactome of DHX30 however, was unchanged indicating that the pathogenic missense-mutations do not cause misfolding of DHX30, but rather specifically affect its catalytic activity. DHX30 localizes predominantly in the cytoplasm where it forms a complex with ribosomes and polysomes. Using a cross-linking mass spectrometry approach, a direct interaction of the N-terminal double strand RNA binding domain of DHX30 with sites next to the ribosome's mRNA entry channel and the subunit interface was uncovered. RNA sequencing of DHX30 knockout cells revealed a strong de-regulation of mRNAs involved in neurogenesis and nervous system development, which is in line with the NEDMIAL disease phenotype. The knockdown of DHX30 results in a decreased 80S peak in polysome gradients, indicating that DHX30 has an effect on the translation machinery. Sequencing of the pool of active translating mRNAs revealed that upon DHX30 knockout mainly 5'TOP mRNAs are downregulated. These mRNAs are coding for proteins of the translational machinery and translation initiation factors. This study identified DHX30 as a factor of the translation machinery that selectively impacts the expression of a subset of proteins and provides insight on the etiology of NEDMIAL.}, language = {en} }