@article{UllmannSchmittRothetal.2014, author = {Ullmann, Tobias and Schmitt, Andreas and Roth, Achim and Duffe, Jason and Dech, Stefan and Hubberten, Hans-Wolfgang and Baumhauer, Roland}, title = {Land Cover Characterization and Classification of Arctic Tundra Environments by Means of Polarized Synthetic Aperture X- and C-Band Radar (PolSAR) and Landsat 8 Multispectral Imagery — Richards Island, Canada}, doi = {10.3390/rs6098565}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113303}, year = {2014}, abstract = {In this work the potential of polarimetric Synthetic Aperture Radar (PolSAR) data of dual-polarized TerraSAR-X (HH/VV) and quad-polarized Radarsat-2 was examined in combination with multispectral Landsat 8 data for unsupervised and supervised classification of tundra land cover types of Richards Island, Canada. The classification accuracies as well as the backscatter and reflectance characteristics were analyzed using reference data collected during three field work campaigns and include in situ data and high resolution airborne photography. The optical data offered an acceptable initial accuracy for the land cover classification. The overall accuracy was increased by the combination of PolSAR and optical data and was up to 71\% for unsupervised (Landsat 8 and TerraSAR-X) and up to 87\% for supervised classification (Landsat 8 and Radarsat-2) for five tundra land cover types. The decomposition features of the dual and quad-polarized data showed a high sensitivity for the non-vegetated substrate (dominant surface scattering) and wetland vegetation (dominant double bounce and volume scattering). These classes had high potential to be automatically detected with unsupervised classification techniques.}, language = {en} } @article{UllmannBuedelBaumhaueretal.2016, author = {Ullmann, Tobias and B{\"u}del, Christian and Baumhauer, Roland and Padashi, Majid}, title = {Sentinel-1 SAR Data Revealing Fluvial Morphodynamics in Damghan (Iran): Amplitude and Coherence Change Detection}, series = {International Journal of Earth Science and Geophysics}, volume = {2}, journal = {International Journal of Earth Science and Geophysics}, number = {1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147863}, pages = {007}, year = {2016}, abstract = {The Sentinel-1 Satellite (S-1) of ESA's Copernicus Mission delivers freely available C-Band Synthetic Aperture Radar (SAR) data that are suited for interferometric applications (InSAR). The high geometric resolution of less than fifteen meter and the large coverage offered by the Interferometric Wide Swath mode (IW) point to new perspectives on the comprehension and understanding of surface changes, the quantification and monitoring of dynamic processes, especially in arid regions. The contribution shows the application of S-1 intensities and InSAR coherences in time series analysis for the delineation of changes related to fluvial morphodynamics in Damghan, Iran. The investigations were carried out for the period from April to October 2015 and exhibit the potential of the S-1 data for the identification of surface disturbances, mass movements and fluvial channel activity in the surroundings of the Damghan Playa. The Amplitude Change Detection highlighted extensive material movement and accumulation - up to sizes of more than 4,000 m in width - in the east of the Playa via changes in intensity. Further, the Coherence Change Detection technique was capable to indicate small-scale channel activity of the drainage system that was neither recognizable in the S-1 intensity nor the multispectral Landsat-8 data. The run off caused a decorrelation of the SAR signals and a drop in coherence. Seen from a morphodynamic point of view, the results indicated a highly dynamic system and complex tempo-spatial patterns were observed that will be subject of future analysis. Additionally, the study revealed the necessity to collect independent reference data on fluvial activity in order to train and adjust the change detector.}, language = {en} } @article{ReinermannGessnerAsametal.2022, author = {Reinermann, Sophie and Gessner, Ursula and Asam, Sarah and Ullmann, Tobias and Schucknecht, Anne and Kuenzer, Claudia}, title = {Detection of grassland mowing events for Germany by combining Sentinel-1 and Sentinel-2 time series}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs14071647}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267164}, year = {2022}, abstract = {Grasslands cover one-third of the agricultural area in Germany and play an important economic role by providing fodder for livestock. In addition, they fulfill important ecosystem services, such as carbon storage, water purification, and the provision of habitats. These ecosystem services usually depend on the grassland management. In central Europe, grasslands are grazed and/or mown, whereby the management type and intensity vary in space and time. Spatial information on the mowing timing and frequency on larger scales are usually not available but would be required in order to assess the ecosystem services, species composition, and grassland yields. Time series of high-resolution satellite remote sensing data can be used to analyze the temporal and spatial dynamics of grasslands. Within this study, we aim to overcome the drawbacks identified by previous studies, such as optical data availability and the lack of comprehensive reference data, by testing the time series of various Sentinel-2 (S2) and Sentinal-1 (S1) parameters and combinations of them in order to detect mowing events in Germany in 2019. We developed a threshold-based algorithm by using information from a comprehensive reference dataset of heterogeneously managed grassland parcels in Germany, obtained by RGB cameras. The developed approach using the enhanced vegetation index (EVI) derived from S2 led to a successful mowing event detection in Germany (60.3\% of mowing events detected, F1-Score = 0.64). However, events shortly before, during, or shortly after cloud gaps were missed and in regions with lower S2 orbit coverage fewer mowing events were detected. Therefore, S1-based backscatter, InSAR, and PolSAR features were investigated during S2 data gaps. From these, the PolSAR entropy detected mowing events most reliably. For a focus region, we tested an integrated approach by combining S2 and S1 parameters. This approach detected additional mowing events, but also led to many false positive events, resulting in a reduction in the F1-Score (from 0.65 of S2 to 0.61 of S2 + S1 for the focus region). According to our analysis, a majority of grasslands in Germany are only mown zero to two times (around 84\%) and are probably additionally used for grazing. A small proportion is mown more often than four times (3\%). Regions with a generally higher grassland mowing frequency are located in southern, south-eastern, and northern Germany.}, language = {en} } @article{ReinermannAsamKuenzer2020, author = {Reinermann, Sophie and Asam, Sarah and Kuenzer, Claudia}, title = {Remote Sensing of Grassland Production and Management - A Review}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {12}, issn = {2072-4292}, doi = {10.3390/rs12121949}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207799}, year = {2020}, abstract = {Grasslands cover one third of the earth's terrestrial surface and are mainly used for livestock production. The usage type, use intensity and condition of grasslands are often unclear. Remote sensing enables the analysis of grassland production and management on large spatial scales and with high temporal resolution. Despite growing numbers of studies in the field, remote sensing applications in grassland biomes are underrepresented in literature and less streamlined compared to other vegetation types. By reviewing articles within research on satellite-based remote sensing of grassland production traits and management, we describe and evaluate methods and results and reveal spatial and temporal patterns of existing work. In addition, we highlight research gaps and suggest research opportunities. The focus is on managed grasslands and pastures and special emphasize is given to the assessment of studies on grazing intensity and mowing detection based on earth observation data. Grazing and mowing highly influence the production and ecology of grassland and are major grassland management types. In total, 253 research articles were reviewed. The majority of these studies focused on grassland production traits and only 80 articles were about grassland management and use intensity. While the remote sensing-based analysis of grassland production heavily relied on empirical relationships between ground-truth and satellite data or radiation transfer models, the used methods to detect and investigate grassland management differed. In addition, this review identified that studies on grassland production traits with satellite data often lacked including spatial management information into the analyses. Studies focusing on grassland management and use intensity mostly investigated rather small study areas with homogeneous intensity levels among the grassland parcels. Combining grassland production estimations with management information, while accounting for the variability among grasslands, is recommended to facilitate the development of large-scale continuous monitoring and remote sensing grassland products, which have been rare thus far.}, language = {en} } @article{OttingerBachoferHuthetal.2021, author = {Ottinger, Marco and Bachofer, Felix and Huth, Juliane and Kuenzer, Claudia}, title = {Mapping aquaculture ponds for the coastal zone of Asia with Sentinel-1 and Sentinel-2 time series}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {1}, issn = {2072-4292}, doi = {10.3390/rs14010153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252207}, year = {2021}, abstract = {Asia dominates the world's aquaculture sector, generating almost 90 percent of its total annual global production. Fish, shrimp, and mollusks are mainly farmed in land-based pond aquaculture systems and serve as a primary protein source for millions of people. The total production and area occupied for pond aquaculture has expanded rapidly in coastal regions in Asia since the early 1990s. The growth of aquaculture was mainly boosted by an increasing demand for fish and seafood from a growing world population. The aquaculture sector generates income and employment, contributes to food security, and has become a billion-dollar industry with high socio-economic value, but has also led to severe environmental degradation. In this regard, geospatial information on aquaculture can support the management of this growing food sector for the sustainable development of coastal ecosystems, resources, and human health. With free and open access to the rapidly growing volume of data from the Copernicus Sentinel missions as well as machine learning algorithms and cloud computing services, we extracted coastal aquaculture at a continental scale. We present a multi-sensor approach that utilizes Earth observation time series data for the mapping of pond aquaculture within the entire Asian coastal zone, defined as the onshore area up to 200 km from the coastline. In this research, we developed an object-based framework to detect and extract aquaculture at a single-pond level based on temporal features derived from high-spatial-resolution SAR and optical satellite data acquired from the Sentinel-1 and Sentinel-2 satellites. In a second step, we performed spatial and statistical data analyses of the Earth-observation-derived aquaculture dataset to investigate spatial distribution and identify production hotspots at various administrative units at regional, national, and sub-national scale.}, language = {en} } @article{NguyenKerstenSenmaoetal.2015, author = {Nguyen, Duy Ba and Kersten, Clauss and Senmao, Cao and Vahid, Naeimi and Kuenzer, Claudia and Wagner, Wolfgang}, title = {Mapping Rice Seasonality in the Mekong Delta with Multi-Year Envisat ASAR WSM Data}, series = {Remote Sensing}, volume = {7}, journal = {Remote Sensing}, number = {12}, doi = {10.3390/rs71215808}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137554}, pages = {15868-15893}, year = {2015}, abstract = {Rice is the most important food crop in Asia, and the timely mapping and monitoring of paddy rice fields subsequently emerged as an important task in the context of food security and modelling of greenhouse gas emissions. Rice growth has a distinct influence on Synthetic Aperture Radar (SAR) backscatter images, and time-series analysis of C-band images has been successfully employed to map rice fields. The poor data availability on regional scales is a major drawback of this method. We devised an approach to classify paddy rice with the use of all available Envisat ASAR WSM (Advanced Synthetic Aperture Radar Wide Swath Mode) data for our study area, the Mekong Delta in Vietnam. We used regression-based incidence angle normalization and temporal averaging to combine acquisitions from multiple tracks and years. A crop phenology-based classifier has been applied to this time series to detect single-, double- and triple-cropped rice areas (one to three harvests per year), as well as dates and lengths of growing seasons. Our classification has an overall accuracy of 85.3\% and a kappa coefficient of 0.74 compared to a reference dataset and correlates highly with official rice area statistics at the provincial level (R-2 of 0.98). SAR-based time-series analysis allows accurate mapping and monitoring of rice areas even under adverse atmospheric conditions.}, language = {en} } @article{HuthGessnerKleinetal.2020, author = {Huth, Juliane and Gessner, Ursula and Klein, Igor and Yesou, Herv{\´e} and Lai, Xijun and Oppelt, Natascha and Kuenzer, Claudia}, title = {Analyzing water dynamics based on Sentinel-1 time series — a study for Dongting Lake wetlands in China}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {11}, issn = {2072-4292}, doi = {10.3390/rs12111761}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205977}, year = {2020}, abstract = {In China, freshwater is an increasingly scarce resource and wetlands are under great pressure. This study focuses on China's second largest freshwater lake in the middle reaches of the Yangtze River — the Dongting Lake — and its surrounding wetlands, which are declared a protected Ramsar site. The Dongting Lake area is also a research region of focus within the Sino-European Dragon Programme, aiming for the international collaboration of Earth Observation researchers. ESA's Copernicus Programme enables comprehensive monitoring with area-wide coverage, which is especially advantageous for large wetlands that are difficult to access during floods. The first year completely covered by Sentinel-1 SAR satellite data was 2016, which is used here to focus on Dongting Lake's wetland dynamics. The well-established, threshold-based approach and the high spatio-temporal resolution of Sentinel-1 imagery enabled the generation of monthly surface water maps and the analysis of the inundation frequency at a 10 m resolution. The maximum extent of the Dongting Lake derived from Sentinel-1 occurred in July 2016, at 2465 km\(^2\), indicating an extreme flood year. The minimum size of the lake was detected in October, at 1331 km\(^2\). Time series analysis reveals detailed inundation patterns and small-scale structures within the lake that were not known from previous studies. Sentinel-1 also proves to be capable of mapping the wetland management practices for Dongting Lake polders and dykes. For validation, the lake extent and inundation duration derived from the Sentinel-1 data were compared with excerpts from the Global WaterPack (frequently derived by the German Aerospace Center, DLR), high-resolution optical data, and in situ water level data, which showed very good agreement for the period studied. The mean monthly extent of the lake in 2016 from Sentinel-1 was 1798 km\(^2\), which is consistent with the Global WaterPack, deviating by only 4\%. In summary, the presented analysis of the complete annual time series of the Sentinel-1 data provides information on the monthly behavior of water expansion, which is of interest and relevance to local authorities involved in water resource management tasks in the region, as well as to wetland conservationists concerned with the Ramsar site wetlands of Dongting Lake and to local researchers.}, language = {en} } @phdthesis{Baumhoer2021, author = {Baumhoer, Celia Am{\´e}lie}, title = {Glacier Front Dynamics of Antarctica - Analysing Changes in Glacier and Ice Shelf Front Position based on SAR Time Series}, doi = {10.25972/OPUS-24581}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245814}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The Antarctic Ice Sheet stores ~91\% of the global ice volume which is equivalent to a sea-level rise of 58.3 meters. Recent disintegration events of ice shelves and retreating glaciers along the Antarctic Peninsula and West Antarctica indicate the current vulnerable state of the Antarctic Ice Sheet. Glacier tongues and ice shelves create a safety band around Antarctica with buttressing effects on ice discharge. Current decreases in glacier and ice shelf extent reduce the effective buttressing forces and increase ice discharge of grounded ice. The consequence is a higher contribution to sea-level rise from the Antarctic Ice Sheet. So far, it is unresolved which proportion of Antarctic glacier retreat can be attributed to climate change and which part to the natural cycle of growth and decay in the lifetime of a glacier. The quantitative assessment of the magnitude, spatial extent, distribution, and dynamics of circum-Antarctic glacier and ice shelf retreat is of utmost importance to monitor Antarctica's weakening safety band. In remote areas like Antarctica, earth observation provides optimal properties for large-scale mapping and monitoring of glaciers and ice shelves. Nowadays, the variety of available satellite sensors, technical advancements regarding spatial resolution and revisit times, as well as open satellite data archives create an ideal basis for monitoring calving front change. A systematic review conducted within this thesis revealed major gaps in the availability of glacier and ice shelf front position measurements despite the improved satellite data availability. The previously limited availability of satellite imagery and the time-consuming manual delineation of calving fronts did neither allow a circum-Antarctic assessment of glacier retreat nor the assessment of intra-annual changes in glacier front position. To advance the understanding of Antarctic glacier front change, this thesis presents a novel automated approach for calving front extraction and explores drivers of glacier retreat. A comprehensive review of existing methods for glacier front extraction ascertained the lack of a fully automatic approach for large-scale monitoring of Antarctic calving fronts using radar imagery. Similar backscatter characteristics of different ice types, seasonally changing backscatter values, multi-year sea ice, and m{\´e}lange made it challenging to implement an automated approach with traditional image processing techniques. Therefore, the present abundance of satellite data is best exploited by integrating recent developments in big data and artificial intelligence (AI) research to derive circum-Antarctic calving front dynamics. In the context of this thesis, the novel AI-based framework "AntarcticLINES" (Antarctic Glacier and Ice Shelf Front Time Series) was created which provides a fully automated processing chain for calving front extraction from Sentinel-1 imagery. Open access Sentinel-1 radar imagery is an ideal data source for monitoring current and future changes in the Antarctic coastline with revisit times of less than six days and all-weather imaging capabilities. The developed processing chain includes the pre-processing of dual-polarized Sentinel-1 imagery for machine learning applications. 38 Sentinel-1 scenes were used to train the deep learning architecture U-Net for image segmentation. The trained weights of the neural network can be used to segment Sentinel-1 scenes into land ice and ocean. Additional post-processing ensures even more accurate results by including morphological filtering before extracting the final coastline. A comprehensive accuracy assessment has proven the correct extraction of the coastline. On average, the automatically extracted coastline deviates by 2-3 pixels (93 m) from a manual delineation. This accuracy is in range with deviations between manually delineated coastlines from different experts. For the first time, the fully automated framework AntarcticLINES enabled the extraction of intra-annual glacier front fluctuations to assess seasonal variations in calving front change. Thereby, for example, an increased calving frequency of Pine Island Glacier and a beginning disintegration of Glenzer Glacier were revealed. Besides, the extraction of the entire Antarctic coastline for 2018 highlighted the large-scale applicability of the developed approach. Accurate results for entire Antarctica were derived except for the Western Antarctic Peninsula where training imagery was not sufficient and should be included in future studies. Furthermore, this dissertation presents an unprecedented record of circum-Antarctic calving front change over the last two decades. The newly extracted coastline for 2018 was compared to previous coastline products from 2009 and 1997. This revealed that the Antarctic Ice Sheet shrank 29,618±1193 km2 in extent between 1997-2008 and gained an area of 7,108±1029 km2 between 2009-2018. Glacier retreat concentrated along the Antarctic Peninsula and West Antarctica. The only East Antarctic coastal sector primarily experiencing calving front retreat was Wilkes Land in 2009-2018. Finally, potential drivers of circum-Antarctic glacier retreat were identified by combining data on glacier front change with changes in climate variables. It was found that strengthening westerlies, snowmelt, rising sea surface temperatures, and decreasing sea ice cover forced glacier retreat over the last two decades. Relative changes in mean air temperature could not be identified as a driver for glacier retreat and further investigations on extreme events in air temperature are necessary to assess the effect of atmospheric forcing on frontal retreat. The strengthening of all identified drivers was closely connected to positive phases of the Southern Annular Mode (SAM). With increasing greenhouse gases and ozone depletion, positive phases of SAM will occur more often and force glacier retreat even further in the future. Within this thesis, a comprehensive review on existing Antarctic glacier and ice shelf front studies was conducted revealing major gaps in Antarctic calving front records. Therefore, a fully automated processing chain for glacier and ice shelf front extraction was implemented to track circum-Antarctic calving front fluctuations on an intra-annual basis. The large-scale applicability was certified by presenting two decades of circum-Antarctic calving front change. In combination with climate variables, drivers of recent glacier retreat were identified. In the future, the presented framework AntarcticLINES will greatly contribute to the constant monitoring of the Antarctic coastline under the pressure of a changing climate.}, language = {en} }