@article{ZimniakKirschnerHilpertetal.2021, author = {Zimniak, Melissa and Kirschner, Luisa and Hilpert, Helen and Geiger, Nina and Danov, Olga and Oberwinkler, Heike and Steinke, Maria and Sewald, Katherina and Seibel, J{\"u}rgen and Bodem, Jochen}, title = {The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2 in human lung tissue}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, doi = {10.1038/s41598-021-85049-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259820}, pages = {5890}, year = {2021}, abstract = {To circumvent time-consuming clinical trials, testing whether existing drugs are effective inhibitors of SARS-CoV-2, has led to the discovery of Remdesivir. We decided to follow this path and screened approved medications "off-label" against SARS-CoV-2. Fluoxetine inhibited SARS-CoV-2 at a concentration of 0.8 mu g/ml significantly in these screenings, and the EC50 was determined with 387 ng/ml. Furthermore, Fluoxetine reduced viral infectivity in precision-cut human lung slices showing its activity in relevant human tissue targeted in severe infections. Fluoxetine treatment resulted in a decrease in viral protein expression. Fluoxetine is a racemate consisting of both stereoisomers, while the S-form is the dominant serotonin reuptake inhibitor. We found that both isomers show similar activity on the virus, indicating that the R-form might specifically be used for SARS-CoV-2 treatment. Fluoxetine inhibited neither Rabies virus, human respiratory syncytial virus replication nor the Human Herpesvirus 8 or Herpes simplex virus type 1 gene expression, indicating that it acts virus-specific. Moreover, since it is known that Fluoxetine inhibits cytokine release, we see the role of Fluoxetine in the treatment of SARS-CoV-2 infected patients of risk groups.}, language = {en} } @article{ZahranAlbohyKhaliletal.2020, author = {Zahran, Eman Maher and Albohy, Amgad and Khalil, Amira and Ibrahim, Alyaa Hatem and Ahmed, Heba Ali and El-Hossary, Ebaa M. and Bringmann, Gerhard and Abdelmohsen, Usama Ramadan}, title = {Bioactivity Potential of Marine Natural Products from Scleractinia-Associated Microbes and In Silico Anti-SARS-COV-2 Evaluation}, series = {Marine Drugs}, volume = {18}, journal = {Marine Drugs}, number = {12}, issn = {1660-3397}, doi = {10.3390/md18120645}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220041}, year = {2020}, abstract = {Marine organisms and their associated microbes are rich in diverse chemical leads. With the development of marine biotechnology, a considerable number of research activities are focused on marine bacteria and fungi-derived bioactive compounds. Marine bacteria and fungi are ranked on the top of the hierarchy of all organisms, as they are responsible for producing a wide range of bioactive secondary metabolites with possible pharmaceutical applications. Thus, they have the potential to provide future drugs against challenging diseases, such as cancer, a range of viral diseases, malaria, and inflammation. This review aims at describing the literature on secondary metabolites that have been obtained from Scleractinian-associated organisms including bacteria, fungi, and zooxanthellae, with full coverage of the period from 1982 to 2020, as well as illustrating their biological activities and structure activity relationship (SAR). Moreover, all these compounds were filtered based on ADME analysis to determine their physicochemical properties, and 15 compounds were selected. The selected compounds were virtually investigated for potential inhibition for SARS-CoV-2 targets using molecular docking studies. Promising potential results against SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and methyltransferase (nsp16) are presented.}, language = {en} } @article{WurmbScholtesKolibayetal.2020, author = {Wurmb, Thomas and Scholtes, Katja and Kolibay, Felix and Schorscher, Nora and Ertl, Georg and Ernestus, Ralf-Ingo and Vogel, Ulrich and Franke, Axel and Kowalzik, Barbara}, title = {Hospital preparedness for mass critical care during SARS-CoV-2 pandemic}, series = {Critical Care}, volume = {24}, journal = {Critical Care}, doi = {10.1186/s13054-020-03104-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230201}, year = {2020}, abstract = {Mass critical care caused by the severe acute respiratory syndrome corona virus 2 pandemic poses an extreme challenge to hospitals. The primary goal of hospital disaster preparedness and response is to maintain conventional or contingency care for as long as possible. Crisis care must be delayed as long as possible by appropriate measures. Increasing the intensive care unit (ICU) capacities is essential. In order to adjust surge capacity, the reduction of planned, elective patient care is an adequate response. However, this involves numerous problems that must be solved with a sense of proportion. This paper summarises preparedness and response measures recommended to acute care hospitals.}, language = {en} } @article{TischerStuppJansonetal.2021, author = {Tischer, Christina and Stupp, Carolin and Janson, Patrick and Willeke, Kristina and Hung, Chu-Wei and Fl{\"o}ter, Jessica and Kirchner, Anna and Zink, Katharina and Eder, Lisa and Hackl, Christina and M{\"u}hle, Ursula and Weidmann, Manfred and Nennstiel, Uta and Kuhn, Joseph and Weidner, Christian and Liebl, Bernhard and Wildner, Manfred and Keil, Thomas}, title = {Evaluation of screening tests in Bavarian healthcare facilities during the second wave of the SARS-CoV-2 pandemic}, series = {International Journal of Environmental Research and Public Health}, volume = {18}, journal = {International Journal of Environmental Research and Public Health}, number = {14}, issn = {1660-4601}, doi = {10.3390/ijerph18147371}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242637}, year = {2021}, abstract = {Due to the lack of data on asymptomatic SARS-CoV-2-positive persons in healthcare institutions, they represent an inestimable risk. Therefore, the aim of the current study was to evaluate the first 1,000,000 reported screening tests of asymptomatic staff, patients, residents, and visitors in hospitals and long-term care (LTC) facilities in the State of Bavaria over a period of seven months. Data were used from the online database BayCoRei (Bavarian Corona Screening Tests), established in July 2020. Descriptive analyses were performed, describing the temporal pattern of persons that tested positive for SARS-CoV-2 by real-time polymerase chain reaction (RT-PCR) or antigen tests, stratified by facility. Until 15 March 2021, this database had collected 1,038,146 test results of asymptomatic subjects in healthcare facilities (382,240 by RT-PCR, and 655,906 by antigen tests). Of the RT-PCR tests, 2.2\% (n = 8380) were positive: 3.0\% in LTC facilities, 2.2\% in hospitals, and 1.2\% in rehabilitation institutions. Of the antigen tests, 0.4\% (n = 2327) were positive: 0.5\% in LTC facilities, and 0.3\% in both hospitals and rehabilitation institutions, respectively. In LTC facilities and hospitals, infection surveillance using RT-PCR tests, or the less expensive but less sensitive, faster antigen tests, could facilitate the long-term management of the healthcare workforce, patients, and residents.}, language = {en} } @phdthesis{Stiller2023, author = {Stiller, Carina}, title = {Synthesis and applications of modified nucleosides and RNA nucleotides}, doi = {10.25972/OPUS-31135}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311350}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {As central components of life, DNA and RNA encode the genetic information. However, RNA performs several functions that exceed the competences stated in the 'central dogma of life'. RNAs undergo extensive post-transcriptional processing like chemical modifications. Among all classes of RNA, tRNAs are the most extensively modified. Their modifications are chemically diverse and vary from simple methylations (e.g. m3C, m6A) to more complex residues, like isopentenyl group (e.g. i6A, hypermodifications: e.g. ms2i6A) or even amino acids (e.g. t6A). Depending on their location within the overall structure, modifications can have an impact on tRNA stability and structure, as well as affinity for the ribosome and translation efficiency and fidelity. Given the importance of tRNA modifications new tools are needed for their detection and to study their recognition by proteins and enzymatic transformations. The chemical synthesis of these naturally occurring tRNA modifications as phosphoramidite building blocks is a prerequisite to incorporate the desired modification via solid-phase synthesis into oligonucleotides. With the help of the m3C, (ms2)i6A, and t6A oligonucleotides, the importance and impact of tRNA modifications was investigated in this thesis. To this end, the role of METTL8 as the methyltransferase responsible for the installation of the methyl group at C32 for mt-tRNAThr and mt-tRNASer(UCN) was resolved. Thereby, the respective adenosine modification on position 37 is essential for the effectiveness of the enzyme. Besides, by means of NMR analysis, CD spectroscopy, thermal denaturation experiments, and native page separation, the impact of m3C32 on the structure of the tRNA ASLs was shown. The modification appeared to fine-tune the tRNA structure to optimize mitochondrial translation. To investigate the regulation of the dynamic modification pathway of m3C, demethylation assays were performed with the modified tRNA-ASLs and the (α-KG)- and Fe(II)-dependent dioxygenase ALKBH1 and ALKHB3. A demethylation activity of ALKBH3 on the mt-tRNAs was observed, even though it has so far only been described as a cytoplasmic enzyme. Whether this is physiologically relevant and ALKBH3 present a mitochondrial localization needs further validation. In addition, ALKBH1 was confirmed to not be able to demethylate m3C on mt-tRNAs, but indications for a deprenylation and exonuclease activity were found. Furthermore, the aforementioned naturally occurring modifications were utilized to find analytical tools that can determine the modification levels by DNAzymes, which cleave RNA in the presence of a specific modification. Selective DNA enzymes for i6A, as well as the three cytidine isomers m3C, m4C, and m5C have been identified and characterized. Besides the naturally occurring tRNA modifications, the investigation on artificially modified nucleosides is also part of this thesis. Nucleosides with specific properties for desired applications can be created by modifying the scaffold of native nucleosides. During the pandemic, the potential of antiviral nucleoside analogues was highlighted for the treatment of the SARS-CoV-2 infection. For examinations of the potential drug-candidate Molnupiravir, the N4-hydroxycytidine phosphoramidite building block was synthesized and incorporated into several RNA oligonucleotides. A two-step model for the NHC-induced mutagenesis of SARS-CoV-2 was proposed based on RNA elongation, thermal denaturation, and cryo-EM experiments using the modified RNA strands with the recombinant SARS-CoV-2 RNA-dependent RNA polymerase. Two tautomeric forms of NHC enable base pairing with guanosine in the amino and with adenosine in the imino form, leading to error catastrophe after the incorporation into viral RNA. These findings were further corroborated by thermal melting curve analysis and NMR spectroscopy of the NHC-containing Dickerson Drew sequence. In conclusion, the anti-amino form in the NHC-G base pair was assigned by NMR analysis using a 15N-labeld NHC building block incorporated into the Dickerson Drew sequence. This thesis also addressed the synthesis of a 7-deazaguanosine crosslinker with a masked aldehyde as a diol linker for investigations of DNA-protein interactions. The diol functional group can be unmasked to release the reactive aldehyde, which can specifically form a covalent bond with amino acids Lys or Arg within the protein complex condensin. The incorporation of the synthesized phosphoramidite and triphosphate building blocks were shown and the functionality of the PCR product containing the crosslinker was demonstrated by oxidation and the formation of a covalent bond with a fluorescein label. The development of assays that detect changes in this methylation pattern of m6A could provide new insights into important biological processes. In the last project of this thesis, the influence of RNA methylation states on the structural properties of RNA was analyzed and a fluorescent nucleoside analog (8-vinyladenosine) as molecular tools for such assays was developed. Initial experiments with the fluorescent nucleoside analog N6-methyl-8-vinyladenosine (m6v8A) were performed and revealed a strong fluorescence enhancement of the free m6v8A nucleoside by the installation of the vinyl moiety at position 8. Overall, this thesis contributes to various research topics regarding the application of naturally occurring and artificial nucleoside analogues. Starting with the chemical synthesis of RNA and DNA modifications, this thesis has unveiled several open questions regarding the dynamic (de-)methylation pathway of m3C and the mechanism of action of molnupiravir through in-depth analysis and provided the basis for further investigations of the protein complex condensin, and a new fluorescent nucleoside analog m6v8A.}, subject = {Nucleins{\"a}uren}, language = {en} } @article{SolimandoBittrichShahinietal.2023, author = {Solimando, Antonio G. and Bittrich, Max and Shahini, Endrit and Albanese, Federica and Fritz, Georg and Krebs, Markus}, title = {Determinants of COVID-19 disease severity - lessons from primary and secondary immune disorders including cancer}, series = {International Journal of Molecular Sciences}, volume = {24}, journal = {International Journal of Molecular Sciences}, number = {10}, issn = {1422-0067}, doi = {10.3390/ijms24108746}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319412}, year = {2023}, abstract = {At the beginning of the COVID-19 pandemic, patients with primary and secondary immune disorders — including patients suffering from cancer — were generally regarded as a high-risk population in terms of COVID-19 disease severity and mortality. By now, scientific evidence indicates that there is substantial heterogeneity regarding the vulnerability towards COVID-19 in patients with immune disorders. In this review, we aimed to summarize the current knowledge about the effect of coexistent immune disorders on COVID-19 disease severity and vaccination response. In this context, we also regarded cancer as a secondary immune disorder. While patients with hematological malignancies displayed lower seroconversion rates after vaccination in some studies, a majority of cancer patients' risk factors for severe COVID-19 disease were either inherent (such as metastatic or progressive disease) or comparable to the general population (age, male gender and comorbidities such as kidney or liver disease). A deeper understanding is needed to better define patient subgroups at a higher risk for severe COVID-19 disease courses. At the same time, immune disorders as functional disease models offer further insights into the role of specific immune cells and cytokines when orchestrating the immune response towards SARS-CoV-2 infection. Longitudinal serological studies are urgently needed to determine the extent and the duration of SARS-CoV-2 immunity in the general population, as well as immune-compromised and oncological patients.}, language = {en} } @article{SitterPecksRuedigeretal.2022, author = {Sitter, Magdalena and Pecks, Ulrich and R{\"u}diger, Mario and Friedrich, Sabine and Fill Malfertheiner, Sara and Hein, Alexander and K{\"o}nigbauer, Josefine T. and Becke-Jakob, Karin and Z{\"o}llkau, Janine and Ramsauer, Babett and Rathberger, Katharina and Pontones, Constanza A. and Kraft, Katrina and Meybohm, Patrick and H{\"a}rtel, Christoph and Kranke, Peter}, title = {Pregnant and postpartum women requiring intensive care treatment for COVID-19 — first data from the CRONOS-registry}, series = {Journal of Clinical Medicine}, volume = {11}, journal = {Journal of Clinical Medicine}, number = {3}, issn = {2077-0383}, doi = {10.3390/jcm11030701}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-255257}, year = {2022}, abstract = {(1) Background: Data on coronavirus 2 infection during pregnancy vary. We aimed to describe maternal characteristics and clinical presentation of SARS-CoV-2 positive women requiring intensive care treatment for COVID-19 during pregnancy and postpartum period based on data of a comprehensive German surveillance system in obstetric patients. (2) Methods: Data from COVID-19 Related Obstetric and Neonatal Outcome Study (CRONOS), a prospective multicenter registry for SARS-CoV-2 positive pregnant women, was analyzed with respect to ICU treatment. All women requiring intensive care treatment for COVID-19 were included and compared regarding maternal characteristics, course of disease, as well as maternal and neonatal outcomes. (3) Results: Of 2650 cases in CRONOS, 101 women (4\%) had a documented ICU stay. Median maternal age was 33 (IQR, 30-36) years. COVID-19 was diagnosed at a median gestational age of 33 (IQR, 28-35) weeks. As the most invasive form of COVID-19 treatment interventions, patients received either continuous monitoring of vital signs without further treatment requirement (n = 6), insufflation of oxygen (n = 30), non-invasive ventilation (n = 22), invasive ventilation (n = 28), or escalation to extracorporeal membrane oxygenation (n = 15). No significant clinical differences were identified between patients receiving different forms of ventilatory support for COVID-19. Prevalence of preterm delivery was significantly higher in women receiving invasive respiratory treatments. Four women died of COVID-19 and six fetuses were stillborn. (4) Conclusions: Our cohort shows that progression of COVID-19 is rare in pregnant and postpartum women treated in the ICU. Preterm birth rate is high and COVID-19 requiring respiratory support increases the risk of poor maternal and neonatal outcome.}, language = {en} } @phdthesis{Seitz2023, author = {Seitz, Florian}, title = {Synthesis, enzymatic recognition and antiviral properties of modified purine nucleosides}, doi = {10.25972/OPUS-31323}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313238}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Beyond the four canonical nucleosides as primary building blocks of RNA, posttranscriptional modifications give rise to the epitranscriptome as a second layer of genetic information. In eukaryotic mRNA, the most abundant posttranscriptional modification is N6-methyladenosine (m6A), which is involved in the regulation of cellular processes. Throughout this thesis, the concept of atomic mutagenesis was employed to gain novel mechanistic insights into the substrate recognition by human m6A reader proteins as well as in the oxidative m6A demethylation by human demethylase enzymes. Non-natural m6A atomic mutants featuring distinct steric and electronic properties were synthesized and incorporated into RNA oligonucleotides. Fluorescence anisotropy measurements using these modified oligonucleotides revealed the impact of the atomic mutagenesis on the molecular recognition by the human m6A readers YTHDF2, YTHDC1 and YTHDC2 and allowed to draw conclusions about structural prerequisites for substrate recognition. Furthermore, substrate recognition and demethylation mechanism of the human m6A demethylase enzymes FTO and ALKBH5 were analyzed by HPLC-MS and PAGE-based assays using the modified oligonucleotides synthesized in this work. Modified nucleosides not only expand the genetic alphabet, but are also extensively researched as drug candidates. In this thesis, the antiviral mechanism of the anti-SARS-CoV-2 drug remdesivir was investigated, which causes delayed stalling of the viral RNA-dependent RNA polymerase (RdRp). Novel remdesivir phosphoramidite building blocks were synthesized and used to construct defined RNA-RdRp complexes for subsequent studies by cryogenic electron microscopy (cryo-EM). It was found that the 1'-cyano substituent causes Rem to act as a steric barrier of RdRp translocation. Since this translocation barrier can eventually be overcome by the polymerase, novel derivatives of Rem with potentially improved antiviral properties were designed.}, subject = {Nucleins{\"a}uren}, language = {en} } @article{SchoenBerkingBiedermannetal.2020, author = {Sch{\"o}n, Michael P. and Berking, Carola and Biedermann, Tilo and Buhl, Timo and Erpenbeck, Luise and Eyerich, Kilian and Eyerich, Stefanie and Ghoreschi, Kamran and Goebeler, Matthias and Ludwig, Ralf J. and Sch{\"a}kel, Knut and Schilling, Bastian and Schlapbach, Christoph and Stary, Georg and von Stebut, Esther and Steinbrink, Kerstin}, title = {COVID-19 and immunological regulations - from basic and translational aspects to clinical implications}, series = {JDDG: Journal der Deutschen Dermatologischen Gesellschaft}, volume = {18}, journal = {JDDG: Journal der Deutschen Dermatologischen Gesellschaft}, number = {8}, doi = {10.1111/ddg.14169}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218205}, pages = {795 -- 807}, year = {2020}, abstract = {The COVID-19 pandemic caused by SARS-CoV-2 has far-reaching direct and indirect medical consequences. These include both the course and treatment of diseases. It is becoming increasingly clear that infections with SARS-CoV-2 can cause considerable immunological alterations, which particularly also affect pathogenetically and/or therapeutically relevant factors. Against this background we summarize here the current state of knowledge on the interaction of SARS-CoV-2/COVID-19 with mediators of the acute phase of inflammation (TNF, IL-1, IL-6), type 1 and type 17 immune responses (IL-12, IL-23, IL-17, IL-36), type 2 immune reactions (IL-4, IL-13, IL-5, IL-31, IgE), B-cell immunity, checkpoint regulators (PD-1, PD-L1, CTLA4), and orally druggable signaling pathways (JAK, PDE4, calcineurin). In addition, we discuss in this context non-specific immune modulation by glucocorticosteroids, methotrexate, antimalarial drugs, azathioprine, dapsone, mycophenolate mofetil and fumaric acid esters, as well as neutrophil granulocyte-mediated innate immune mechanisms. From these recent findings we derive possible implications for the therapeutic modulation of said immunological mechanisms in connection with SARS-CoV-2/COVID-19. Although, of course, the greatest care should be taken with patients with immunologically mediated diseases or immunomodulating therapies, it appears that many treatments can also be carried out during the COVID-19 pandemic; some even appear to alleviate COVID-19.}, language = {en} } @article{SchneiderSchauliesSchumacherWiggeretal.2021, author = {Schneider-Schaulies, Sibylle and Schumacher, Fabian and Wigger, Dominik and Sch{\"o}l, Marie and Waghmare, Trushnal and Schlegel, Jan and Seibel, J{\"u}rgen and Kleuser, Burkhard}, title = {Sphingolipids: effectors and Achilles heals in viral infections?}, series = {Cells}, volume = {10}, journal = {Cells}, number = {9}, issn = {2073-4409}, doi = {10.3390/cells10092175}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245151}, year = {2021}, abstract = {As viruses are obligatory intracellular parasites, any step during their life cycle strictly depends on successful interaction with their particular host cells. In particular, their interaction with cellular membranes is of crucial importance for most steps in the viral replication cycle. Such interactions are initiated by uptake of viral particles and subsequent trafficking to intracellular compartments to access their replication compartments which provide a spatially confined environment concentrating viral and cellular components, and subsequently, employ cellular membranes for assembly and exit of viral progeny. The ability of viruses to actively modulate lipid composition such as sphingolipids (SLs) is essential for successful completion of the viral life cycle. In addition to their structural and biophysical properties of cellular membranes, some sphingolipid (SL) species are bioactive and as such, take part in cellular signaling processes involved in regulating viral replication. It is especially due to the progress made in tools to study accumulation and dynamics of SLs, which visualize their compartmentalization and identify interaction partners at a cellular level, as well as the availability of genetic knockout systems, that the role of particular SL species in the viral replication process can be analyzed and, most importantly, be explored as targets for therapeutic intervention.}, language = {en} } @article{SchapovalovaGorlovadeMunteretal.2022, author = {Schapovalova, Olesia and Gorlova, Anna and de Munter, Johannes and Sheveleva, Elisaveta and Eropkin, Mikhail and Gorbunov, Nikita and Sicker, Michail and Umriukhin, Aleksei and Lyubchyk, Sergiy and Lesch, Klaus-Peter and Strekalova, Tatyana and Schroeter, Careen A.}, title = {Immunomodulatory effects of new phytotherapy on human macrophages and TLR4- and TLR7/8-mediated viral-like inflammation in mice}, series = {Frontiers in Medicine}, volume = {9}, journal = {Frontiers in Medicine}, issn = {2296-858X}, doi = {10.3389/fmed.2022.952977}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286301}, year = {2022}, abstract = {Background While all efforts have been undertaken to propagate the vaccination and develop remedies against SARS-CoV-2, no satisfactory management of this infection is available yet. Moreover, poor availability of any preventive and treatment measures of SARS-CoV-2 in economically disadvantageous communities aggravates the course of the pandemic. Here, we studied a new immunomodulatory phytotherapy (IP), an extract of blackberry, chamomile, garlic, cloves, and elderberry as a potential low-cost solution for these problems given the reported efficacy of herbal medicine during the previous SARS virus outbreak. Methods The key feature of SARS-CoV-2 infection, excessive inflammation, was studied in in vitro and in vivo assays under the application of the IP. First, changes in tumor-necrosis factor (TNF) and lnteurleukin-1 beta (IL-1β) concentrations were measured in a culture of human macrophages following the lipopolysaccharide (LPS) challenge and treatment with IP or prednisolone. Second, chronically IP-pre-treated CD-1 mice received an agonist of Toll-like receptors (TLR)-7/8 resiquimod and were examined for lung and spleen expression of pro-inflammatory cytokines and blood formula. Finally, chronically IP-pre-treated mice challenged with LPS injection were studied for "sickness" behavior. Additionally, the IP was analyzed using high-potency-liquid chromatography (HPLC)-high-resolution-mass-spectrometry (HRMS). Results LPS-induced in vitro release of TNF and IL-1β was reduced by both treatments. The IP-treated mice displayed blunted over-expression of SAA-2, ACE-2, CXCL1, and CXCL10 and decreased changes in blood formula in response to an injection with resiquimod. The IP-treated mice injected with LPS showed normalized locomotion, anxiety, and exploration behaviors but not abnormal forced swimming. Isoquercitrin, choline, leucine, chlorogenic acid, and other constituents were identified by HPLC-HRMS and likely underlie the IP immunomodulatory effects. Conclusions Herbal IP-therapy decreases inflammation and, partly, "sickness behavior," suggesting its potency to combat SARS-CoV-2 infection first of all via its preventive effects.}, language = {en} } @article{RiedererMonoranuStrobeletal.2021, author = {Riederer, P. and Monoranu, C. and Strobel, S. and Iordache, T. and Sian-H{\"u}lsmann, J.}, title = {Iron as the concert master in the pathogenic orchestra playing in sporadic Parkinson's disease}, series = {Journal of Neural Transmission}, volume = {128}, journal = {Journal of Neural Transmission}, number = {10}, issn = {1435-1463}, doi = {10.1007/s00702-021-02414-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268539}, pages = {1577-1598}, year = {2021}, abstract = {About 60 years ago, the discovery of a deficiency of dopamine in the nigro-striatal system led to a variety of symptomatic therapeutic strategies to supplement dopamine and to substantially improve the quality of life of patients with Parkinson's disease (PD). Since these seminal developments, neuropathological, neurochemical, molecular biological and genetic discoveries contributed to elucidate the pathology of PD. Oxidative stress, the consequences of reactive oxidative species, reduced antioxidative capacity including loss of glutathione, excitotoxicity, mitochondrial dysfunction, proteasomal dysfunction, apoptosis, lysosomal dysfunction, autophagy, suggested to be causal for ɑ-synuclein fibril formation and aggregation and contributing to neuroinflammation and neural cell death underlying this devastating disorder. However, there are no final conclusions about the triggered pathological mechanism(s) and the follow-up of pathological dysfunctions. Nevertheless, it is a fact, that iron, a major component of oxidative reactions, as well as neuromelanin, the major intraneuronal chelator of iron, undergo an age-dependent increase. And ageing is a major risk factor for PD. Iron is significantly increased in the substantia nigra pars compacta (SNpc) of PD. Reasons for this finding include disturbances in iron-related import and export mechanisms across the blood-brain barrier (BBB), localized opening of the BBB at the nigro-striatal tract including brain vessel pathology. Whether this pathology is of primary or secondary importance is not known. We assume that there is a better fit to the top-down hypotheses and pathogens entering the brain via the olfactory system, then to the bottom-up (gut-brain) hypothesis of PD pathology. Triggers for the bottom-up, the dual-hit and the top-down pathologies include chemicals, viruses and bacteria. If so, hepcidin, a regulator of iron absorption and its distribution into tissues, is suggested to play a major role in the pathogenesis of iron dyshomeostasis and risk for initiating and progressing ɑ-synuclein pathology. The role of glial components to the pathology of PD is still unknown. However, the dramatic loss of glutathione (GSH), which is mainly synthesized in glia, suggests dysfunction of this process, or GSH uptake into neurons. Loss of GSH and increase in SNpc iron concentration have been suggested to be early, may be even pre-symptomatic processes in the pathology of PD, despite the fact that they are progression factors. The role of glial ferritin isoforms has not been studied so far in detail in human post-mortem brain tissue and a close insight into their role in PD is called upon. In conclusion, "iron" is a major player in the pathology of PD. Selective chelation of excess iron at the site of the substantia nigra, where a dysfunction of the BBB is suggested, with peripherally acting iron chelators is suggested to contribute to the portfolio and therapeutic armamentarium of anti-Parkinson medications.}, language = {en} } @article{PradaMaagSiegmundetal.2022, author = {Prada, Juan Pablo and Maag, Luca Estelle and Siegmund, Laura and Bencurova, Elena and Liang, Chunguang and Koutsilieri, Eleni and Dandekar, Thomas and Scheller, Carsten}, title = {Estimation of R0 for the spread of SARS-CoV-2 in Germany from excess mortality}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-022-22101-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301415}, year = {2022}, abstract = {For SARS-CoV-2, R0 calculations in the range of 2-3 dominate the literature, but much higher estimates have also been published. Because capacity for RT-PCR testing increased greatly in the early phase of the Covid-19 pandemic, R0 determinations based on these incidence values are subject to strong bias. We propose to use Covid-19-induced excess mortality to determine R0 regardless of RT-PCR testing capacity. We used data from the Robert Koch Institute (RKI) on the incidence of Covid cases, Covid-related deaths, number of RT-PCR tests performed, and excess mortality calculated from data from the Federal Statistical Office in Germany. We determined R0 using exponential growth estimates with a serial interval of 4.7 days. We used only datasets that were not yet under the influence of policy measures (e.g., lockdowns or school closures). The uncorrected R0 value for the spread of SARS-CoV-2 based on RT-PCR incidence data was 2.56 (95\% CI 2.52-2.60) for Covid-19 cases and 2.03 (95\% CI 1.96-2.10) for Covid-19-related deaths. However, because the number of RT-PCR tests increased by a growth factor of 1.381 during the same period, these R0 values must be corrected accordingly (R0corrected = R0uncorrected/1.381), yielding 1.86 for Covid-19 cases and 1.47 for Covid-19 deaths. The R0 value based on excess deaths was calculated to be 1.34 (95\% CI 1.32-1.37). A sine-function-based adjustment for seasonal effects of 40\% corresponds to a maximum value of R0January = 1.68 and a minimum value of R0July = 1.01. Our calculations show an R0 that is much lower than previously thought. This relatively low range of R0 fits very well with the observed seasonal pattern of infection across Europe in 2020 and 2021, including the emergence of more contagious escape variants such as delta or omicron. In general, our study shows that excess mortality can be used as a reliable surrogate to determine the R0 in pandemic situations.}, language = {en} } @article{PilgramEberweinWilleetal.2021, author = {Pilgram, Lisa and Eberwein, Lukas and Wille, Kai and Koehler, Felix C. and Stecher, Melanie and Rieg, Siegbert and Kielstein, Jan T. and Jakob, Carolin E. M. and R{\"u}thrich, Maria and Burst, Volker and Prasser, Fabian and Borgmann, Stefan and M{\"u}ller, Roman-Ulrich and Lanznaster, Julia and Isberner, Nora and Tometten, Lukas and Dolff, Sebastian}, title = {Clinical course and predictive risk factors for fatal outcome of SARS-CoV-2 infection in patients with chronic kidney disease}, series = {Infection}, volume = {49}, journal = {Infection}, number = {4}, organization = {LEOSS Study group}, issn = {0300-8126}, doi = {10.1007/s15010-021-01597-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-308957}, pages = {725-737}, year = {2021}, abstract = {Purpose The ongoing pandemic caused by the novel severe acute respiratory coronavirus 2 (SARS-CoV-2) has stressed health systems worldwide. Patients with chronic kidney disease (CKD) seem to be more prone to a severe course of coronavirus disease (COVID-19) due to comorbidities and an altered immune system. The study's aim was to identify factors predicting mortality among SARS-CoV-2-infected patients with CKD. Methods We analyzed 2817 SARS-CoV-2-infected patients enrolled in the Lean European Open Survey on SARS-CoV-2-infected patients and identified 426 patients with pre-existing CKD. Group comparisons were performed via Chi-squared test. Using univariate and multivariable logistic regression, predictive factors for mortality were identified. Results Comparative analyses to patients without CKD revealed a higher mortality (140/426, 32.9\% versus 354/2391, 14.8\%). Higher age could be confirmed as a demographic predictor for mortality in CKD patients (> 85 years compared to 15-65 years, adjusted odds ratio (aOR) 6.49, 95\% CI 1.27-33.20, p = 0.025). We further identified markedly elevated lactate dehydrogenase (> 2 × upper limit of normal, aOR 23.21, 95\% CI 3.66-147.11, p < 0.001), thrombocytopenia (< 120,000/µl, aOR 11.66, 95\% CI 2.49-54.70, p = 0.002), anemia (Hb < 10 g/dl, aOR 3.21, 95\% CI 1.17-8.82, p = 0.024), and C-reactive protein (≥ 30 mg/l, aOR 3.44, 95\% CI 1.13-10.45, p = 0.029) as predictors, while renal replacement therapy was not related to mortality (aOR 1.15, 95\% CI 0.68-1.93, p = 0.611). Conclusion The identified predictors include routinely measured and universally available parameters. Their assessment might facilitate risk stratification in this highly vulnerable cohort as early as at initial medical evaluation for SARS-CoV-2.}, language = {en} } @article{OsmanogluGuptaAlmasietal.2023, author = {Osmanoglu, {\"O}zge and Gupta, Shishir K. and Almasi, Anna and Yagci, Seray and Srivastava, Mugdha and Araujo, Gabriel H. M. and Nagy, Zoltan and Balkenhol, Johannes and Dandekar, Thomas}, title = {Signaling network analysis reveals fostamatinib as a potential drug to control platelet hyperactivation during SARS-CoV-2 infection}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1285345}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354158}, year = {2023}, abstract = {Introduction Pro-thrombotic events are one of the prevalent causes of intensive care unit (ICU) admissions among COVID-19 patients, although the signaling events in the stimulated platelets are still unclear. Methods We conducted a comparative analysis of platelet transcriptome data from healthy donors, ICU, and non-ICU COVID-19 patients to elucidate these mechanisms. To surpass previous analyses, we constructed models of involved networks and control cascades by integrating a global human signaling network with transcriptome data. We investigated the control of platelet hyperactivation and the specific proteins involved. Results Our study revealed that control of the platelet network in ICU patients is significantly higher than in non-ICU patients. Non-ICU patients require control over fewer proteins for managing platelet hyperactivity compared to ICU patients. Identification of indispensable proteins highlighted key subnetworks, that are targetable for system control in COVID-19-related platelet hyperactivity. We scrutinized FDA-approved drugs targeting indispensable proteins and identified fostamatinib as a potent candidate for preventing thrombosis in COVID-19 patients. Discussion Our findings shed light on how SARS-CoV-2 efficiently affects host platelets by targeting indispensable and critical proteins involved in the control of platelet activity. We evaluated several drugs for specific control of platelet hyperactivity in ICU patients suffering from platelet hyperactivation. The focus of our approach is repurposing existing drugs for optimal control over the signaling network responsible for platelet hyperactivity in COVID-19 patients. Our study offers specific pharmacological recommendations, with drug prioritization tailored to the distinct network states observed in each patient condition. Interactive networks and detailed results can be accessed at https://fostamatinib.bioinfo-wuerz.eu/.}, language = {en} } @article{NyawaleMoremiMohamedetal.2022, author = {Nyawale, Helmut A. and Moremi, Nyambura and Mohamed, Mohamed and Njwalila, Johnson and Silago, Vitus and Krone, Manuel and Konje, Eveline T. and Mirambo, Mariam M. and Mshana, Stephen E.}, title = {High seroprevalence of SARS-CoV-2 in Mwanza, northwestern Tanzania: a population-based survey}, series = {International Journal of Environmental Research and Public Health}, volume = {19}, journal = {International Journal of Environmental Research and Public Health}, number = {18}, issn = {1660-4601}, doi = {10.3390/ijerph191811664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288134}, year = {2022}, abstract = {The transmission of the SARS-CoV-2 virus, which causes COVID-19, has been documented worldwide. However, the evidence of the extent to which transmission has occurred in different countries is still to be established. Understanding the magnitude and distribution of SARS-CoV-2 through seroprevalence studies is important in designing control and preventive strategies in communities. This study investigated the seropositivity of the SARS-CoV-2 virus antibodies in the communities of three different districts in the Mwanza region, Tanzania. A household cross-sectional survey was conducted in September 2021 using the modified African Centre for Disease and Prevention (ACDC) survey protocol. A blood sample was obtained from one member of each of the selected households who consented to take part in the survey. Immunochromatographic rapid test kits were used to detect IgM and IgG SARS-CoV-2 antibodies, followed by descriptive data analysis. Overall, 805 participants were enrolled in the study with a median age of 35 (interquartile range (IQR):27-47) years. The overall SARS-CoV-2 seropositivity was 50.4\% (95\%CI: 46.9-53.8\%). The IgG and IgM seropositivity of the SARS-CoV-2 antibodies was 49.3\% and 7.2\%, respectively, with 6.1\% being both IgG and IgM seropositive. A history of runny nose (aOR: 1.84, 95\%CI: 1.03-3.5, p = 0.036), loss of taste (aOR: 1.84, 95\%CI: 1.12-4.48, p = 0.023), and living in Ukerewe (aOR: 3.55, 95\%CI: 1.68-7.47, p = 0.001) and Magu (aOR: 2.89, 95\%CI: 1.34-6.25, p= 0.007) were all independently associated with SARS-CoV-2 IgM seropositivity. Out of the studied factors, living in the Ukerewe district was independently associated with IgG seropositivity (aOR 1.29, CI 1.08-1.54, p = 0.004). Twenty months after the first case of COVID-19 in Tanzania, about half of the studied population in Mwanza was seropositive for SARS-CoV-2.}, language = {en} } @article{MeintrupBorgmannSeidletal.2021, author = {Meintrup, David and Borgmann, Stefan and Seidl, Karlheinz and Stecher, Melanie and Jakob, Carolin E. M. and Pilgram, Lisa and Spinner, Christoph D. and Rieg, Siegbert and Isberner, Nora and Hower, Martin and Vehreschild, Maria and G{\"o}pel, Siri and Hanses, Frank and Nowak-Machen, Martina}, title = {Specific risk factors for fatal outcome in critically ill COVID-19 patients: results from a European multicenter study}, series = {Journal of Clinical Medicine}, volume = {10}, journal = {Journal of Clinical Medicine}, number = {17}, issn = {2077-0383}, doi = {10.3390/jcm10173855}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245191}, year = {2021}, abstract = {(1) Background: The aim of our study was to identify specific risk factors for fatal outcome in critically ill COVID-19 patients. (2) Methods: Our data set consisted of 840 patients enclosed in the LEOSS registry. Using lasso regression for variable selection, a multifactorial logistic regression model was fitted to the response variable survival. Specific risk factors and their odds ratios were derived. A nomogram was developed as a graphical representation of the model. (3) Results: 14 variables were identified as independent factors contributing to the risk of death for critically ill COVID-19 patients: age (OR 1.08, CI 1.06-1.10), cardiovascular disease (OR 1.64, CI 1.06-2.55), pulmonary disease (OR 1.87, CI 1.16-3.03), baseline Statin treatment (0.54, CI 0.33-0.87), oxygen saturation (unit = 1\%, OR 0.94, CI 0.92-0.96), leukocytes (unit 1000/μL, OR 1.04, CI 1.01-1.07), lymphocytes (unit 100/μL, OR 0.96, CI 0.94-0.99), platelets (unit 100,000/μL, OR 0.70, CI 0.62-0.80), procalcitonin (unit ng/mL, OR 1.11, CI 1.05-1.18), kidney failure (OR 1.68, CI 1.05-2.70), congestive heart failure (OR 2.62, CI 1.11-6.21), severe liver failure (OR 4.93, CI 1.94-12.52), and a quick SOFA score of 3 (OR 1.78, CI 1.14-2.78). The nomogram graphically displays the importance of these 14 factors for mortality. (4) Conclusions: There are risk factors that are specific to the subpopulation of critically ill COVID-19 patients.}, language = {en} } @article{LiuHanBlairetal.2021, author = {Liu, Fengming and Han, Kun and Blair, Robert and Kenst, Kornelia and Qin, Zhongnan and Upcin, Berin and W{\"o}rsd{\"o}rfer, Philipp and Midkiff, Cecily C. and Mudd, Joseph and Belyaeva, Elizaveta and Milligan, Nicholas S. and Rorison, Tyler D. and Wagner, Nicole and Bodem, Jochen and D{\"o}lken, Lars and Aktas, Bertal H. and Vander Heide, Richard S. and Yin, Xiao-Ming and Kolls, Jay K. and Roy, Chad J. and Rappaport, Jay and Erg{\"u}n, S{\"u}leyman and Qin, Xuebin}, title = {SARS-CoV-2 Infects Endothelial Cells In Vivo and In Vitro}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {11}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2021.701278}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241948}, year = {2021}, abstract = {SARS-CoV-2 infection can cause fatal inflammatory lung pathology, including thrombosis and increased pulmonary vascular permeability leading to edema and hemorrhage. In addition to the lung, cytokine storm-induced inflammatory cascade also affects other organs. SARS-CoV-2 infection-related vascular inflammation is characterized by endotheliopathy in the lung and other organs. Whether SARS-CoV-2 causes endotheliopathy by directly infecting endothelial cells is not known and is the focus of the present study. We observed 1) the co-localization of SARS-CoV-2 with the endothelial cell marker CD31 in the lungs of SARS-CoV-2-infected mice expressing hACE2 in the lung by intranasal delivery of adenovirus 5-hACE2 (Ad5-hACE2 mice) and non-human primates at both the protein and RNA levels, and 2) SARS-CoV-2 proteins in endothelial cells by immunogold labeling and electron microscopic analysis. We also detected the co-localization of SARS-CoV-2 with CD31 in autopsied lung tissue obtained from patients who died from severe COVID-19. Comparative analysis of RNA sequencing data of the lungs of infected Ad5-hACE2 and Ad5-empty (control) mice revealed upregulated KRAS signaling pathway, a well-known pathway for cellular activation and dysfunction. Further, we showed that SARS-CoV-2 directly infects mature mouse aortic endothelial cells (AoECs) that were activated by performing an aortic sprouting assay prior to exposure to SARS-CoV-2. This was demonstrated by co-localization of SARS-CoV-2 and CD34 by immunostaining and detection of viral particles in electron microscopic studies. Moreover, the activated AoECs became positive for ACE-2 but not quiescent AoECs. Together, our results indicate that in addition to pneumocytes, SARS-CoV-2 also directly infects mature vascular endothelial cells in vivo and ex vivo, which may contribute to cardiovascular complications in SARS-CoV-2 infection, including multipleorgan failure.}, language = {en} } @article{LiangBencurovaPsotaetal.2021, author = {Liang, Chunguang and Bencurova, Elena and Psota, Eric and Neurgaonkar, Priya and Prelog, Martina and Scheller, Carsten and Dandekar, Thomas}, title = {Population-predicted MHC class II epitope presentation of SARS-CoV-2 structural proteins correlates to the case fatality rates of COVID-19 in different countries}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {5}, issn = {1422-0067}, doi = {10.3390/ijms22052630}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258936}, year = {2021}, abstract = {We observed substantial differences in predicted Major Histocompatibility Complex II (MHCII) epitope presentation of SARS-CoV-2 proteins for different populations but only minor differences in predicted MHCI epitope presentation. A comparison of this predicted epitope MHC-coverage revealed for the early phase of infection spread (till day 15 after reaching 128 observed infection cases) highly significant negative correlations with the case fatality rate. Specifically, this was observed in different populations for MHC class II presentation of the viral spike protein (p-value: 0.0733 for linear regression), the envelope protein (p-value: 0.023), and the membrane protein (p-value: 0.00053), indicating that the high case fatality rates of COVID-19 observed in some countries seem to be related with poor MHC class II presentation and hence weak adaptive immune response against these viral envelope proteins. Our results highlight the general importance of the SARS-CoV-2 structural proteins in immunological control in early infection spread looking at a global census in various countries and taking case fatality rate into account. Other factors such as health system and control measures become more important after the early spread. Our study should encourage further studies on MHCII alleles as potential risk factors in COVID-19 including assessment of local populations and specific allele distributions.}, language = {en} } @article{LambertiniHartrampfHiguchietal.2022, author = {Lambertini, Alessandro and Hartrampf, Philipp E. and Higuchi, Takahiro and Serfling, Sebastian E. and Meybohm, Patrick and Schirbel, Andreas and Buck, Andreas K. and Werner, Rudolf A.}, title = {CXCR4-targeted molecular imaging after severe SARS-Cov-2 infection}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, volume = {50}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, number = {1}, doi = {10.1007/s00259-022-05932-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324619}, pages = {228-229}, year = {2022}, abstract = {No abstract available.}, language = {en} } @article{HasenpuschMatterneTischeretal.2022, author = {Hasenpusch, Claudia and Matterne, Uwe and Tischer, Christina and Hrudey, Ilona and Apfelbacher, Christian}, title = {Development and content validation of a comprehensive health literacy survey instrument for use in individuals with asthma during the COVID-19 pandemic}, series = {International Journal of Environmental Research and Public Health}, volume = {19}, journal = {International Journal of Environmental Research and Public Health}, number = {4}, issn = {1660-4601}, doi = {10.3390/ijerph19041923}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262146}, year = {2022}, abstract = {Individuals with chronic conditions have been faced with many additional challenges during the COVID-19 pandemic. Individual health literacy (HL) as the ability to access, understand, evaluate, and apply pandemic-related information has thus become ever more important in these populations. The purpose of this study was to develop and content-validate a comprehensive HL survey instrument for people with asthma based on an integrated framework, and on previous surveys and other instruments for use in the general population and vulnerable groups. Beside HL, assumed determinants, mediators, and health outcomes were embraced in the framework. A mixed-method design was used. A comprehensive examination of the available literature yielded an initial pool of 398 single items within 20 categories. Based on content validity indices (CVI) of expert ratings (n = 11) and the content analysis of cognitive interviews with participants (n = 9), the item pool was reduced, and individual items/scales refined or modified. The instrument showed appropriate comprehensibility (98.0\%), was judged relevant, and had an acceptable CVI at scale level (S-CVI/Ave = 0.91). The final version comprises 14 categories measured by 38 questions consisting of 116 single items. In terms of content, the instrument appears a valid representation of behavioural and psychosocial constructs pertaining to a broad HL understanding and relevant to individuals with asthma during the COVID-19 pandemic. Regular monitoring of these behavioural and psychosocial constructs during the course of the pandemic can help identify needs as well as changes during the course of the pandemic, which is particularly important in chronic disease populations.}, language = {en} } @article{GuptaSrivastavaMinochaetal.2021, author = {Gupta, Shishir K. and Srivastava, Mugdha and Minocha, Rashmi and Akash, Aman and Dangwal, Seema and Dandekar, Thomas}, title = {Alveolar regeneration in COVID-19 patients: a network perspective}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {20}, issn = {1422-0067}, doi = {10.3390/ijms222011279}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284307}, year = {2021}, abstract = {A viral infection involves entry and replication of viral nucleic acid in a host organism, subsequently leading to biochemical and structural alterations in the host cell. In the case of SARS-CoV-2 viral infection, over-activation of the host immune system may lead to lung damage. Albeit the regeneration and fibrotic repair processes being the two protective host responses, prolonged injury may lead to excessive fibrosis, a pathological state that can result in lung collapse. In this review, we discuss regeneration and fibrosis processes in response to SARS-CoV-2 and provide our viewpoint on the triggering of alveolar regeneration in coronavirus disease 2019 (COVID-19) patients.}, language = {en} } @article{GuptaMinochaThapaetal.2022, author = {Gupta, Shishir K. and Minocha, Rashmi and Thapa, Prithivi Jung and Srivastava, Mugdha and Dandekar, Thomas}, title = {Role of the pangolin in origin of SARS-CoV-2: an evolutionary perspective}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms23169115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285995}, year = {2022}, abstract = {After the recent emergence of SARS-CoV-2 infection, unanswered questions remain related to its evolutionary history, path of transmission or divergence and role of recombination. There is emerging evidence on amino acid substitutions occurring in key residues of the receptor-binding domain of the spike glycoprotein in coronavirus isolates from bat and pangolins. In this article, we summarize our current knowledge on the origin of SARS-CoV-2. We also analyze the host ACE2-interacting residues of the receptor-binding domain of spike glycoprotein in SARS-CoV-2 isolates from bats, and compare it to pangolin SARS-CoV-2 isolates collected from Guangdong province (GD Pangolin-CoV) and Guangxi autonomous regions (GX Pangolin-CoV) of South China. Based on our comparative analysis, we support the view that the Guangdong Pangolins are the intermediate hosts that adapted the SARS-CoV-2 and represented a significant evolutionary link in the path of transmission of SARS-CoV-2 virus. We also discuss the role of intermediate hosts in the origin of Omicron.}, language = {en} } @phdthesis{Graf2022, author = {Graf, Dominic}, title = {Surface and active site modification of proteins with organometallic markers and inhibitors}, doi = {10.25972/OPUS-28742}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287424}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {After implementing a reliable mass spectrometry based kinetic study the indole conjugation with different organometallic indoles led to questions about the electronical and sterical influences on reactivity. The substitution pattern of the ferrocene functionalized indoles at the six-membered ring determines the electron density on the C3 atom, which reacts with the formed Schiff base. Since the experimental results showed the exact opposite trend, covalent docking studies were performed elucidating the importance of surface interactions. These studies were in harmony with the experimental results and determined lysine 33 as most preferable conjugation site as well as substitution in 6-position as most favourable pattern. The amine motif in compounds 6, 7 and 8 proofed to be easily fragmented by the ESI method used. The amide linker in 10 remains intact but shows a lower conversion. Those two inherent characteristics are however preferable for well-defined and site-specific bioconjugation. The synthesis and evaluation of piano stool complex derivatives with manganese and rhenium metal centre 15, 16, 18 and 22 gave additional guidance by the interpretation of applicable structural motifs. The electron-withdrawing carbonyl groups lead to the hindrance of fulvene formation and thus to no fragmentation as seen with the ferrocene group. The total conversion is low compared to 8, only 22 shows a good enough conversion to mainly monoconjugate of 45\% and a possible radio-labelling application as 99mTc analogue. As consequence manganese complexes with a stable facial tricarbonyl unit and a tridentate chelator with 4-, 5- and 6-substituted aminomethylindole conjugated through an amide bond were synthesized and consecutively evaluated. The resulting organometallic indole derivatives 29, 30 and 31 all showed a total conversion around 40\% similar to 16, but at the same time a rate constant in the range of 10-4 s-1 like the organic indole. Besides the similar conversion, the rate constants followed the trend of the 6-substituted derivative as fastest and then 5- and 4- substituted derivative with decreasing reactivity. For underlining the usage as technetium label for the best out of the series 31, a rhenium analogue was prepared. The resulting compound 32 was especially interesting, because the conversion was even higher than the 70\% of 8 with a total of 88\%. Additionally, the rate constant was a tenfold higher as well. This rendered compound 32 as best possible 99mTc analogue for further application as radio-label. After the success of 32 and realizing the sterical benefits resulting from the flexible tridentate ligand-system, substitution at the five-membered ring was explored. The complexes 33, 34 and 35 are based on indole-2-carboxylic acid and with the difference of the length of the alkyl spacer between amide and complex to probe for the influence and sterical hindrance, but all three derivatives showed no conjugation which excludes functionalization in 2-position. As the C3 is used for the actual bioconjugation, the last possible derivatization was realized on the indole-N1 by using 1-(3-bromopropyl)indole as building block during the synthesis of the ligand-system. The corresponding manganese 36 and rhenium 37 complexes both showed similar properties of a moderate conversion like 22 and a rate constant in the range of 10-5 s-1. In conclusion the rhenium complex 32 with the 6-substitution pattern at the tridentate indole-bearing ligand remains the most promising structure. The here developed liquid chromatography coupled mass spectrometry-based assay for the determination of inhibitory activity of drug candidates against the 3CLpro of the sever acute respiratory syndrome coronavirus type 2 was successfully implemented and especially designed to give, due to the available absorption spectra and corresponding mass traces, further insight in the otherwise through fluorescence resonance energy transfer-based assays neglected influences on the inhibition results. Starting with a literature-known quinolone containing covalent inhibitor 42 an N1-methylated derivative 43 and their analogues 44 and 45 in which the benzoic acid was exchanged for ferrocene carboxylic acid were synthesized. The inhibition of 3CLpro was evaluated by the concentration of initial 15mer peptide left after incubation and for that purpose the for 280 nm defined molar attenuation coefficient of (26.41±0.59) L*mol-1*cm-1 determined and used. The results showed a reaction of DL dithiothreitol with the less stable benzoic acid esters leading to a moderate inhibitory effect. The methylation in N1-position showed an increase in stability. The methylated and with ferrocene carboxylic acid functionalized derivative showed a complete inhibition during the timeframe of the assay. In search of a fluorescent and therefore traceable inhibitor, 4 hydroxycoumarin was used to synthesize the analogue with benzoic acid 49 and ferrocene carboxylic acid 50. Both derivatives were less stable than their analogues but exhibited the same trend of a more stable ferrocene-derived compound, which exerted a higher inhibition as well. After preparing and testing the model thioester 53 and showing an inactivation of the established inhibitor ebselen, it was concluded that the reaction with DL dithiothreitol reduces the concentration of active intact inhibitor and therefore decreases the inhibition rate during the assay. The next step was proofing the reducing agent as non-essential for the fast assay conducted in a timeframe of 5 min to circumvent the negative influence of DL dithiothreitol. By excluding every inhibition-altering part, the resulting method is the perfect tool for precise statements in relation of inhibitory activity. Then the inhibition assay was repeated for ebselen and the best out of the here introduced organometallic inhibitors 45. Both give equivalent results of a complete inhibition during the measurement. The implemented liquid chromatography coupled mass spectrometry-based assay has many advantages over the fluorescence resonance energy transfer-based assays in which all the information and insight accumulated by the evaluation of uv/vis traces and mass spectra are not available leading to wrong or deviating results regarding the inhibitory capacity of inhibitor candidates.}, subject = {Inhibition}, language = {en} } @article{GeigerKoenigOberwinkleretal.2022, author = {Geiger, Nina and K{\"o}nig, Eva-Maria and Oberwinkler, Heike and Roll, Valeria and Diesendorf, Viktoria and F{\"a}hr, Sofie and Obernolte, Helena and Sewald, Katherina and Wronski, Sabine and Steinke, Maria and Bodem, Jochen}, title = {Acetylsalicylic acid and salicylic acid inhibit SARS-CoV-2 replication in precision-cut lung slices}, series = {Vaccines}, volume = {10}, journal = {Vaccines}, number = {10}, issn = {2076-393X}, doi = {10.3390/vaccines10101619}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289885}, year = {2022}, abstract = {Aspirin, with its active compound acetylsalicylic acid (ASA), shows antiviral activity against rhino- and influenza viruses at high concentrations. We sought to investigate whether ASA and its metabolite salicylic acid (SA) inhibit SARS-CoV-2 since it might use similar pathways to influenza viruses. The compound-treated cells were infected with SARS-CoV-2. Viral replication was analysed by RTqPCR. The compounds suppressed SARS-CoV-2 replication in cell culture cells and a patient-near replication system using human precision-cut lung slices by two orders of magnitude. While the compounds did not interfere with viral entry, it led to lower viral RNA expression after 24 h, indicating that post-entry pathways were inhibited by the compounds.}, language = {en} } @article{GeigerKerstingSchlegeletal.2022, author = {Geiger, Nina and Kersting, Louise and Schlegel, Jan and Stelz, Linda and F{\"a}hr, Sofie and Diesendorf, Viktoria and Roll, Valeria and Sostmann, Marie and K{\"o}nig, Eva-Maria and Reinhard, Sebastian and Brenner, Daniela and Schneider-Schaulies, Sibylle and Sauer, Markus and Seibel, J{\"u}rgen and Bodem, Jochen}, title = {The acid ceramidase is a SARS-CoV-2 host factor}, series = {Cells}, volume = {11}, journal = {Cells}, number = {16}, issn = {2073-4409}, doi = {10.3390/cells11162532}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286105}, year = {2022}, abstract = {SARS-CoV-2 variants such as the delta or omicron variants, with higher transmission rates, accelerated the global COVID-19 pandemic. Thus, novel therapeutic strategies need to be deployed. The inhibition of acid sphingomyelinase (ASM), interfering with viral entry by fluoxetine was reported. Here, we described the acid ceramidase as an additional target of fluoxetine. To discover these effects, we synthesized an ASM-independent fluoxetine derivative, AKS466. High-resolution SARS-CoV-2-RNA FISH and RTqPCR analyses demonstrate that AKS466 down-regulates viral gene expression. It is shown that SARS-CoV-2 deacidifies the lysosomal pH using the ORF3 protein. However, treatment with AKS488 or fluoxetine lowers the lysosomal pH. Our biochemical results show that AKS466 localizes to the endo-lysosomal replication compartments of infected cells, and demonstrate the enrichment of the viral genomic, minus-stranded RNA and mRNAs there. Both fluoxetine and AKS466 inhibit the acid ceramidase activity, cause endo-lysosomal ceramide elevation, and interfere with viral replication. Furthermore, Ceranib-2, a specific acid ceramidase inhibitor, reduces SARS-CoV-2 replication and, most importantly, the exogenous supplementation of C6-ceramide interferes with viral replication. These results support the hypotheses that the acid ceramidase is a SARS-CoV-2 host factor.}, language = {en} } @article{GeigerDiesendorfRolletal.2023, author = {Geiger, Nina and Diesendorf, Viktoria and Roll, Valeria and K{\"o}nig, Eva-Maria and Obernolte, Helena and Sewald, Katherina and Breidenbach, Julian and Pillaiyar, Thanigaimalai and G{\"u}tschow, Michael and M{\"u}ller, Christa E. and Bodem, Jochen}, title = {Cell type-specific anti-viral effects of novel SARS-CoV-2 main protease inhibitors}, series = {International Journal of Molecular Sciences}, volume = {24}, journal = {International Journal of Molecular Sciences}, number = {4}, issn = {1422-0067}, doi = {10.3390/ijms24043972}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304034}, year = {2023}, abstract = {Recently, we have described novel pyridyl indole esters and peptidomimetics as potent inhibitors of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) main protease. Here, we analysed the impact of these compounds on viral replication. It has been shown that some antivirals against SARS-CoV-2 act in a cell line-specific way. Thus, the compounds were tested in Vero, Huh-7, and Calu-3 cells. We showed that the protease inhibitors at 30 µM suppress viral replication by up to 5 orders of magnitude in Huh-7 cells, while in Calu-3 cells, suppression by 2 orders of magnitude was achieved. Three pyridin-3-yl indole-carboxylates inhibited viral replication in all cell lines, indicating that they might repress viral replication in human tissue as well. Thus, we investigated three compounds in human precision-cut lung slices and observed donor-dependent antiviral activity in this patient-near system. Our results provide evidence that even direct-acting antivirals may act in a cell line-specific manner.}, language = {en} } @phdthesis{Ganskih2023, author = {Ganskih, Sabina}, title = {Dissecting the functional interplay between SARS-CoV-2 viral RNAs and the host proteome}, doi = {10.25972/OPUS-34648}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346486}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The recent pandemic has reminded the public that basic research in virology is pivotal for human health. Understanding the mechanisms of successful viral replication and the role of host factors can help to combat viral infections and prevent future pandemics. Our lab has published the first SARS-CoV-2 RNA-protein interaction atlas, laying the foundation to investigate the interplay between viral RNA and host RNA binding proteins (RBP). Based on this, my project created the largest collection of binding profiles of host and viral RBPs on SARS-CoV-2 RNA to date. This revealed the host protein SND1 as the first human RBP that specifically binds negative sense viral RNA at the 5´ end, a region associated with viral transcription initiation. The binding profile shares similarities with the viral RBP nsp9, which binds the 5´ ends of positive and negative sense SARS-CoV-2 RNA. Depletion of SND1 shows reduced levels of viral RNA revealing it as a proviral host factor. To decode the underlying molecular mechanism, I characterized the protein-protein interactions of SND1 in SARS-CoV-2 infected and uninfected cells. Infection remodels the protein interactors of SND1 from general RNA biology to membrane association and viral RNA synthesis. Upon infection, SND1 specifically interacts with nsp9, the RBP that shares the same binding region on the negative strand of SARS-CoV-2 RNA. Recent work demonstrates that nsp9 is NMPylated in vitro suggesting a functional role of nsp9 in priming of viral RNA synthesis. I was able to show that nsp9 is covalently linked to the 5´ ends of SARS-CoV-2 RNA during infection of human cells. Analysing the covalent bond of nsp9 with the viral RNA on nucleotide level shows close proximity to the initiation sites of viral RNA synthesis, suggesting that nsp9 acts as a protein-primer of SARS-CoV-2 RNA synthesis. SND1 modulates the distribution of nsp9 on the viral RNA, since depletion of SND1 results in imbalanced occupancy of nsp9 at the 5´ends of viral RNA. This study is the first to provide evidence for the priming mechanism of SARS-CoV-2 in authentic viral replication and further reveals how this mechanism is modulated by the host RBP SND1. Detailed knowledge about priming of viral RNA synthesis can help to find targeted antivirals that could be used to fight coronaviral infections.}, subject = {SARS-CoV-2}, language = {en} } @article{FlemmingHankirKusanetal.2021, author = {Flemming, Sven and Hankir, Mohammed K. and Kusan, Simon and Krone, Manuel and Anger, Friedrich and Germer, Christoph-Thomas and Wiegering, Armin}, title = {Safety of elective abdominal and vascular surgery during the COVID-19 pandemic: a retrospective single-center study}, series = {European Journal of Medical Research}, volume = {26}, journal = {European Journal of Medical Research}, doi = {10.1186/s40001-021-00583-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-264975}, year = {2021}, abstract = {Background Patients with coronavirus disease 2019 (COVID-19) who undergo surgery have impaired postoperative outcomes and increased mortality. Consequently, elective and semi-urgent operations on the increasing number of patients severely affected by COVID-19 have been indefinitely postponed.in many countries with unclear implications on disease progression and overall survival. The purpose of this study was to evaluate whether the establishment of a standardized screening program for acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is sufficient to ensure high-quality medical and surgical treatment of COVID-19 and non-COVID-19 patients while minimizing in-hospital SARS-CoV-2 transmission. Methods The screening program comprised polymerase chain reaction (PCR) testing of nasopharyngeal swabs and a standardized questionnaire about potential symptoms for SARS-CoV-2 infection. All elective and emergency patients admitted to the surgical department of a tertiary-care hospital center in Lower Franconia, Germany, between March and May 2020 were included and their characteristics were recorded. Results Out of the study population (n = 657), 509 patients (77.5\%) had at least one risk factor for a potentially severe course of COVID-19 and 164 patients (25\%) were active smokers. The average 7-day incidence in Lower Franconia was 24.0/100,000 during the observation period. Preoperative PCR testing revealed four asymptomatic positive patients out of the 657 tested patients. No postoperative SARS-CoV-2 infection or transmission could be detected. Conclusion The implementation of a standardized preoperative screening program to both COVID-19 and non-COVID-19 patients can ensure high-quality surgical care while minimizing infection risk for healthcare workers and potential in-hospital transmission.}, language = {en} } @article{FlemmingHankirErnestusetal.2020, author = {Flemming, S. and Hankir, M. and Ernestus, R.-I. and Seyfried, F. and Germer, C.-T. and Meybohm, P. and Wurmb, T. and Vogel, U. and Wiegering, A.}, title = {Surgery in times of COVID-19 — recommendations for hospital and patient management}, series = {Langenbeck's Archives of Surgery}, volume = {405}, journal = {Langenbeck's Archives of Surgery}, issn = {1435-2443}, doi = {10.1007/s00423-020-01888-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231766}, pages = {359-364}, year = {2020}, abstract = {Background The novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2), has escalated rapidly to a global pandemic stretching healthcare systems worldwide to their limits. Surgeonshave had to immediately react to this unprecedented clinical challenge by systematically repurposing surgical wards. Purpose To provide a detailed set of guidelines developed in a surgical ward at University Hospital Wuerzburg to safelyaccommodate the exponentially rising cases of SARS-CoV-2 infected patients without compromising the care of emergencysurgery and oncological patients or jeopardizing the well-being of hospital staff. Conclusions The dynamic prioritization of SARS-CoV-2 infected and surgical patient groups is key to preserving life whilemaintaining high surgical standards. Strictly segregating patient groups in emergency rooms, non-intensive care wards andoperating areas prevents viral spread while adequately training and carefully selecting hospital staff allow them to confidentlyand successfully undertake their respective clinical duties.}, language = {en} } @article{DoelkenStichSpinner2021, author = {D{\"o}lken, Lars and Stich, August and Spinner, Christoph D.}, title = {Remdesivir for Early COVID-19 Treatment of High-Risk Individuals Prior to or at Early Disease Onset — Lessons Learned}, series = {Viruses}, volume = {13}, journal = {Viruses}, number = {6}, issn = {1999-4915}, doi = {10.3390/v13060963}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239648}, year = {2021}, abstract = {After more than one year of the COVID-19 pandemic, antiviral treatment options against SARS-CoV-2 are still severely limited. High hopes that had initially been placed on antiviral drugs like remdesivir have so far not been fulfilled. While individual case reports provide striking evidence for the clinical efficacy of remdesivir in the right clinical settings, major trials failed to demonstrate this. Here, we highlight and discuss the key findings of these studies and underlying reasons for their failure. We elaborate on how such shortcomings should be prevented in future clinical trials and pandemics. We suggest in conclusion that any novel antiviral agent that enters human trials should first be tested in a post-exposure setting to provide rapid and solid evidence for its clinical efficacy before initiating further time-consuming and costly clinical trials for more advanced disease. In the COVID-19 pandemic this might have established remdesivir early on as an efficient antiviral agent at a more suitable disease stage which would have saved many lives, in particular in large outbreaks within residential care homes.}, language = {en} } @article{DiesendorfRollGeigeretal.2023, author = {Diesendorf, Viktoria and Roll, Valeria and Geiger, Nina and F{\"a}hr, Sofie and Obernolte, Helena and Sewald, Katherina and Bodem, Jochen}, title = {Drug-induced phospholipidosis is not correlated with the inhibition of SARS-CoV-2 - inhibition of SARS-CoV-2 is cell line-specific}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {13}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2023.1100028}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-326202}, year = {2023}, abstract = {Recently, Tummino et al. reported that 34 compounds, including Chloroquine and Fluoxetine, inhibit SARS-CoV-2 replication by inducing phospholipidosis, although Chloroquine failed to suppress viral replication in Calu-3 cells and patients. In contrast, Fluoxetine represses viral replication in human precision-cut lung slices (PCLS) and Calu-3 cells. Thus, it is unlikely that these compounds have similar mechanisms of action. Here, we analysed a subset of these compounds in the viral replication and phospholipidosis assays using the Calu-3 cells and PCLS as the patient-near system. Trimipramine and Chloroquine induced phospholipidosis but failed to inhibit SARS-CoV-2 replication in Calu-3 cells, which contradicts the reported findings and the proposed mechanism. Fluoxetine, only slightly induced phospholipidosis in Calu-3 cells but reduced viral replication by 2.7 orders of magnitude. Tilorone suppressed viral replication by 1.9 orders of magnitude in Calu-3 cells without causing phospholipidosis. Thus, induction of phospholipidosis is not correlated with the inhibition of SARS-CoV-2, and the compounds act via other mechanisms. However, we show that compounds, such as Amiodarone, Tamoxifen and Tilorone, with antiviral activity on Calu-3 cells, also inhibited viral replication in human PCLS. Our results indicate that antiviral assays against SARS-CoV-2 are cell-line specific. Data from Vero E6 can lead to non-transferable results, underlining the importance of an appropriate cell system for analysing antiviral compounds against SARS-CoV-2. We observed a correlation between the active compounds in Calu-3 cells and PCLS.}, language = {en} } @article{BrennerGeigerSchlegeletal.2023, author = {Brenner, Daniela and Geiger, Nina and Schlegel, Jan and Diesendorf, Viktoria and Kersting, Louise and Fink, Julian and Stelz, Linda and Schneider-Schaulies, Sibylle and Sauer, Markus and Bodem, Jochen and Seibel, J{\"u}rgen}, title = {Azido-ceramides, a tool to analyse SARS-CoV-2 replication and inhibition — SARS-CoV-2 is inhibited by ceramides}, series = {International Journal of Molecular Sciences}, volume = {24}, journal = {International Journal of Molecular Sciences}, number = {8}, issn = {1422-0067}, doi = {10.3390/ijms24087281}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313581}, year = {2023}, abstract = {Recently, we have shown that C6-ceramides efficiently suppress viral replication by trapping the virus in lysosomes. Here, we use antiviral assays to evaluate a synthetic ceramide derivative α-NH2-ω-N3-C6-ceramide (AKS461) and to confirm the biological activity of C6-ceramides inhibiting SARS-CoV-2. Click-labeling with a fluorophore demonstrated that AKS461 accumulates in lysosomes. Previously, it has been shown that suppression of SARS-CoV-2 replication can be cell-type specific. Thus, AKS461 inhibited SARS-CoV-2 replication in Huh-7, Vero, and Calu-3 cells up to 2.5 orders of magnitude. The results were confirmed by CoronaFISH, indicating that AKS461 acts comparable to the unmodified C6-ceramide. Thus, AKS461 serves as a tool to study ceramide-associated cellular and viral pathways, such as SARS-CoV-2 infections, and it helped to identify lysosomes as the central organelle of C6-ceramides to inhibit viral replication.}, language = {en} } @article{BertramBartschSodmannetal.2022, author = {Bertram, Ralph and Bartsch, Vanessa and Sodmann, Johanna and Hennig, Luca and M{\"u}jde, Engin and Stock, Jonathan and Ruedig, Vivienne and Sodmann, Philipp and Todt, Daniel and Steinmann, Eike and Hitzl, Wolfgang and Steinmann, Joerg}, title = {Risk stratification of SARS-CoV-2 breakthrough infections based on an outbreak at a student festive event}, series = {Vaccines}, volume = {10}, journal = {Vaccines}, number = {3}, issn = {2076-393X}, doi = {10.3390/vaccines10030432}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267270}, year = {2022}, abstract = {In early 2022, the Coronavirus disease 2019 (COVID-19) remains a global challenge. COVID-19 is caused by an increasing number of variants of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we report an outbreak of SARS-CoV-2 breakthrough infections related to a student festive event with 100 mostly vaccinated guests, which took place in Northern Bavaria, Germany, in October 2021. The data were obtained by retrospective guest interviews. In total, 95 students participated in the study, with 94 being fully vaccinated and 24 reporting infection by the delta variant. Correlation analyses among 15 examined variables revealed that time spent at the event, conversation with the supposed index person, and a homologous viral vector vaccination regime were significant risk factors for infection. Non-significant observations related to higher rates of infection included time since last vaccination, shared use of drinking vessels, and number of individual person-to-person contacts at the event. Our data suggest that a high rate of breakthrough infections with the delta variant occurs if no preventive measures are practiced. To limit infection risk, high-quality testing of participants should be considered a mandatory measure at gatherings, irrespective of the participants' vaccination status.}, language = {en} }