@article{StoeberFranzekBeckmann1993, author = {St{\"o}ber, Gerald and Franzek, E. and Beckmann, H.}, title = {Schwangerschafts- und Geburtskomplikationen - ihr Stellenwert in der Entstehung schizophrener Psychosen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63343}, year = {1993}, abstract = {In a retrospective study of 80 chronic DSM 111-R schizophrenics and 80 controls, the occurrence of obstetric complications (OCs) into the development of chronic schizophrenias was investigated using Leonhard s distinction in systematic schizophrenia (no obvious familial loading) and unsystematic schizophrenia (mainly genetically determined according to Leonhard). The Lewis \& Murray and Fuchs scales were used for evaluation. In both scales, unsystematic schizophrenias did not differ from controls, but those with OCs were significantly (p < 0.01) earlier hospitalized (20.5 years) than those without OCs (25.6 years). Systematic schizophrenics had an increased frequency, severity and total score of OCs compared to controls in the Fuchs scale (p < 0.0 I). Likewise, in the Lewis \& Murray scale systematic schizophrenia showed an increased presence ofOCs compared to controls (p < 0.05) and to unsystematic schizophrenia (p < 0.1 ). Systematic schizophrenias were significantly allocated to matemal infectious diseases during mid-gestation. Patients with matemal infections showed moreadditional OCs than those without (p < 0.05; Lewis \& Murray scale). In systematic schizophrenia, a history of OC was not associated with an early onset of the disease. In the genetic determined schizophrenias prenatal and perinatal disturbanccs Iead to an early onset of the disease, however, in systematic schizophrenias they seem to be of causal importance for the development of the disease.}, subject = {Schwangerschaft}, language = {en} } @article{StrikDierksFranzeketal.1994, author = {Strik, Werner K. and Dierks, Thomas and Franzek, Ernst and St{\"o}ber, Gerald and Maurer, Konrad}, title = {P300 in Schizophrenia: Interactions between Amplitudes and Topography}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63351}, year = {1994}, abstract = {Low P300 amplitudes and topographical asymmetries have been reponed in schizophrenic patients, but reference-independent amplitude assessment failed to replicate reduced amplitudes. P300 amplitude is conventially assessed at midline electrodes (PZ), anti asymmetric topography as reported in schizophrenics, may conj'ound this measurement. We lnvestigated the possible Interaction between P300 ropography and assessments of amplitudes. ln 41 clinically stable schizophrenics and 31 normal controls, the generalfinding ofreduced amplitudes at the P'l electrode and topographical asymmetrles in the patient group were replicated. ln both groups, a.symmetries of the P300 field (lateralized peaks) reduced the standard amplitude assessment at the midline parletal electrode, but did not Qjfoct the reference-independent, global amplitude assessment. This shows thal asymmetry per se does not imply reduced field strength. in addition, in schizophreraics. but not in controls, there was a significcmt effect oftlae direction of asymmetry on both amplltude measures, amplitudes belng lower with increasing shift ofthe P300 peak to the right side. Considering also the slightly left-lateralized peaks in the normal controls. this suggests rhat only right lateralized P300 peaks upressfunctional deficits in schizophrenics, whereas left lateralized pealcs fall wlthin the physiological variability of the P3OO field. Tht refonnce-independent amplitude assessment is proposed for unambiguous amplitude assessment in order to better define the clinical, psychological and physiopathological mtaning of the P3OO alterations in schizophrenics.}, subject = {Schizophrenie}, language = {en} } @article{StrikDierksFranzeketal.1994, author = {Strik, Werner K. and Dierks, Thomas and Franzek, Ernst and St{\"o}ber, Gerald and Maurer, Konrad}, title = {P 300 asymmetries in schizophrenia revisited with reference-independent methods}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63372}, year = {1994}, abstract = {Evidence of hemispheric asymmetries in schizophrenia has been reported from different research areas. Asymmetries in evoked potential P300 topography are still controversial because of inconsistent findings. In the present study. previous results of abnormal lateralization of P300 were replicated in stabilized residual Schizophrenie patients. Auditory P300 was recorded during an odd ball task in which subjeets detected rare target stimuli. Schizophrenie patients had the P300 peak shifted to the right hemisphere and differed signifieantly from age- and sex-matched normal control subjects who had left-lateralized P300 peaks. A comparison of different methods of assessment and analysis of the topographical features of the P300 electric fields showed that the extraction of reference-independent descriptors of P300 topography is a reliable and sensitive method for statistical handling of the maps. The results suggest left hemispheric dysfunction during cognitive tasks in a subgroup of Schizophrenie patients. Inconsistencies between previous sturlies are likely to be due to heterogeneous patient groups, which may have included patients in an acute Schizophrenie episode or patients in clinical remission. lnvestigation of the clinical meaning of P300 alterations requires careful psychopathological definition of the patient groups.}, subject = {Schizophrenie}, language = {en} } @phdthesis{Schulz2010, author = {Schulz, Sandra}, title = {The Contribution of Common and Rare Variants to the Complex Genetics of Psychiatric Disorders}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-50677}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Attention deficit/hyperactivity disorder (ADHD), one of the most frequent childhood-onset, chronic and lifelong neurodevelopmental diseases, affects 5 - 10\% of school - aged children and adolescents, and 4\% of adults. The classified basic symptoms are - according to the diagnostic system DSM-VI - inattentiveness, impulsivity and hyperactivity. Also daily life of patients is impaired by learning problems, relationship crises, conflicts with authority and unemployment, but also comorbidities like sleep - and eating problems, mood - and anxiety disorders, depression and substance abuse disorders are frequently observed. Although several twin and family studies have suggested heritability of ADHD, the likely involvement of multiple genes and environmental factors has hampered the elucidation of its etiology and pathogenesis. Due to the successful medication of ADHD with dopaminergic drugs like methylphenidate, up to now, the search for candidate genes has mainly focused on the dopaminergic and - because of strong interactions - the serotonergic system, including the already analyzed candidate genes DAT1, DRD4 and 5, DBH or 5-HTTLPR. Recently, DNA copy number changes have been implicated in the development of a number of neurodevelopmental diseases and the analysis of chromosomal gains and losses by Array Comparative Genomic Hybridization (Array CGH) has turned out a successful strategy to identify disease associated genes. Here we present the first systematic screen for chromosomal imbalances in ADHD using sub-megabase resolution Array CGH. To detect micro-deletions and -duplications which may play a role in the pathogenesis of ADHD, we carried out a genome-wide screen for copy number variations (CNVs) in a cohort of 99 children and adolescents with severe ADHD. Using high-resolution aCGH, a total of 17 potentially syndrome-associated CNVs were identified. The aberrations comprise four deletions and 13 duplications with approximate sizes ranging from 110 kb to 3 Mb. Two CNVs occurred de novo and nine were inherited from a parent with ADHD, whereas five are transmitted by an unaffected parent. Candidates include genes expressing acetylcholine-metabolising butyrylcholinesterase (BCHE), contained in a de novo chromosome 3q26.1 deletion, and a brain-specific pleckstrin homology domain-containing protein (PLEKHB1), with an established function in primary sensory neurons, in two siblings carrying a 11q13.4 duplication inherited from their affected mother. Other genes potentially influencing ADHD-related psychopathology and involved in aberrations inherited from affected parents are the genes for the mitochondrial NADH dehydrogenase 1 alpha subcomplex assembly factor 2 (NDUFAF2), the brain-specific phosphodiesterase 4D isoform 6 (PDE4D6), and the neuronal glucose transporter 3 (SLC2A3). The gene encoding neuropeptide Y (NPY) was included in a ~3 Mb duplication on chromosome 7p15.2-15.3, and investigation of additional family members showed a nominally significant association of this 7p15 duplication with increased NPY plasma concentrations (empirical FBAT, p = 0.023). Lower activation of the left ventral striatum and left posterior insula during anticipation of large rewards or losses elicited by fMRI links gene dose-dependent increases in NPY to reward and emotion processing in duplication carriers. Additionally, further candidate genes were examined via Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). This method enables the analysis of SNPs directly from human genomic DNA without the need for initial target amplification by PCR. All these findings implicate CNVs of behavior-related genes in the pathogenesis of ADHD and are consistent with the notion that both frequent and rare variants influence the development of this common multifactorial syndrome. The second part of this work concentrates on MLC1, a gene associated with Megalencephalic leukoencephalopathy with subcortical cysts, located on chromosome 22q13.33. To get more insight in the disease itself, a targeting vector for a conditional knockout mouse was constructed using homologous recombination. Furthermore, MLC1 has been suggested as a risk gene for schizophrenia, especially the periodic catatonia subtype. An initially identified missense mutation was found to be extremely rare in other patient cohorts; however, a recent report again argued for an association of two intronic MLC1 SNPs with schizophrenia and bipolar disorder. A case-control study of these polymorphisms as well as SNPs in the transcriptional control region of MLC1 was conducted in 212 chronic schizophrenic patients, 56 of which suffered from periodic catatonia, 106 bipolar patients, and 284 controls. Both intronic and promoter polymorphisms were specifically and significantly associated with periodic catatonia but not schizophrenia or bipolar disorder in general. A haplotype constructed from all polymorphisms was also associated with periodic catatonia. The MLC1 variation is associated with periodic catatonia; whether it constitutes a susceptibility or a modifier gene has to be determined.}, subject = {Aufmerksamkeits-Defizit-Syndrom}, language = {en} } @article{RiveroReifSanjuanetal.2010, author = {Rivero, Olga and Reif, Andreas and Sanjuan, Julio and Molto, Maria D. and Kittel-Schneider, Sarah and Najera, Carmen and Toepner, Theresia and Lesch, Klaus-Peter}, title = {Impact of the AHI1 Gene on the Vulnerability to Schizophrenia: A Case-Control Association Study}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68501}, year = {2010}, abstract = {Background: The Abelson helper integration-1 (AHI1) gene is required for both cerebellar and cortical development in humans. While the accelerated evolution of AHI1 in the human lineage indicates a role in cognitive (dys)function, a linkage scan in large pedigrees identified AHI1 as a positional candidate for schizophrenia. To further investigate the contribution of AHI1 to the susceptibility of schizophrenia, we evaluated the effect of AHI1 variation on the vulnerability to psychosis in two samples from Spain and Germany. Methodology/Principal Findings: 29 single-nucleotide polymorphisms (SNPs) located in a genomic region including the AHI1 gene were genotyped in two samples from Spain (280 patients with psychotic disorders; 348 controls) and Germany (247 patients with schizophrenic disorders; 360 controls). Allelic, genotypic and haplotype frequencies were compared between cases and controls in both samples separately, as well as in the combined sample. The effect of genotype on several psychopathological measures (BPRS, KGV, PANSS) assessed in a Spanish subsample was also evaluated. We found several significant associations in the Spanish sample. Particularly, rs7750586 and rs911507, both located upstream of the AHI1 coding region, were found to be associated with schizophrenia in the analysis of genotypic (p = 0.0033, and 0.031,respectively) and allelic frequencies (p = 0.001 in both cases). Moreover, several other risk and protective haplotypes were detected (0.006,p,0.036). Joint analysis also supported the association of rs7750586 and rs911507 with the risk for schizophrenia. The analysis of clinical measures also revealed an effect on symptom severity (minimum P value = 0.0037). Conclusions/Significance: Our data support, in agreement with previous reports, an effect of AHI1 variation on the susceptibility to schizophrenia in central and southern European populations.}, subject = {Schizophrenie}, language = {en} } @article{LeschStoeberBallingetal.1994, author = {Lesch, K. P. and St{\"o}ber, Gerald and Balling, U. and Franzek, Ernst and Li, S. H. and Ross, C. A. and Newman, M. and Beckmann, H. and Riederer, P.}, title = {Triplet repeats in clinical subtypes of schizophrenia: variation at the DRPLA (B37 CAG repeat) locus is not associated with periodic catatonia}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63369}, year = {1994}, abstract = {Clinical evidence for a dominant mode of inheritance and anticipation in periodic catatonia, a distinct subtype of schizophrenia, indicates that genes with triplet repeat expansions or other unstable repetitive elements affecting gene expression may be involved in the etiology of this disorder. Because patients affected with dentatorubral-pallidoluysian atrophy (DRPLA) may present with "schizophrenic" symptoms, we have investigated the DRPLA (B 37 CAG repeat) locus on chromosome 12 in 41 patients with periodic catatonia. The B 37 CAG repeat locus was highly polymorphic but all alleles in both the patient and control group had repeat sizes within the normal range. We conclude that variation at the DRPLA locus is unlikely to be associated with periodic catatonia. The evidence for dominant inheritance and anticipation as well as the high prevalence of human brain genes containing trinucleotide repeats justifies further screening for triplet repeat expansions in periodic catatonia.}, subject = {Schizophrenie}, language = {en} } @article{GellaSeguraDuranyetal.2011, author = {Gella, Alejandro and Segura, Monica and Durany, Nuria and Pfuhlmann, Bruno and Stoeber, Gerald and Gawlik, Micha}, title = {Is Ankyrin a specific genetic risk factor for psychiatric phenotypes?}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68732}, year = {2011}, abstract = {Background: Genome wide association studies reported two single nucleotide polymorphisms in ANK3 (rs9804190 and rs10994336) as independent genetic risk factors for bipolar disorder. Another SNP in ANK3 (rs10761482) was associated with schizophrenia in a large European sample. Within the debate on common susceptibility genes for schizophrenia and bipolar disorder, we tried to investigate common findings by analyzing association of ANK3 with schizophrenia, bipolar disorder and unipolar depression. Methods: We genotyped three single nucleotide polymorphisms (SNPs) in ANK3 (rs9804190, rs10994336, and rs10761482) in a case-control sample of German descent including 920 patients with schizophrenia, 400 with bipolar affective disorder, 220 patients with unipolar depression according to ICD 10 and 480 healthy controls. Sample was further differentiated according to Leonhard's classification featuring disease entities with specific combination of bipolar and psychotic syndromes. Results: We found no association of rs9804190 and rs10994336 with bipolar disorder, unipolar depression or schizophrenia. In contrast to previous findings rs10761482 was associated with bipolar disorder (p = 0.015) but not with schizophrenia or unipolar depression. We observed no association with disease entities according to Leonhard's classification. Conclusion: Our results support a specific genetic contribution of ANK3 to bipolar disorder though we failed to replicate findings for schizophrenia. We cannot confirm ANK3 as a common risk factor for different diseases.}, subject = {Schizophrenie}, language = {en} } @phdthesis{Brosi2021, author = {Brosi, Cornelia}, title = {Functional characterization of the TTF complex and its role in neurodevelopmental disorders}, doi = {10.25972/OPUS-15778}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157783}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The eukaryotic gene expression requires extensive regulations to enable the homeostasis of the cell and to allow dynamic responses due to external stimuli. Although many regulatory mechanisms involve the transcription as the first step of the gene expression, intensive regulation occurs also in the post-transcriptional mRNA metabolism. Thereby, the particular composition of the mRNPs plays a central role as the components associated with the mRNA form a specific "mRNP code" which determines the fate of the mRNA. Many proteins which are involved in this regulation and the mRNA metabolism are affected in diseases and especially neurological disorders often result from an aberrant mRNP code which leads to changes in the regulation and expression of mRNPs. The focus of this work was on a trimeric protein complex which is termed TTF complex based on its subunits TDRD3, TOP3β and FMRP. Biochemical investigations revealed that the three components of the TTF complex are nucleo-cytosolic shuttle proteins which localize in the cytoplasm at the steady-state, associate with mRNPs and are presumably connected to the translation. Upon cellular stress conditions, the TTF components concentrate in stress granules. Thus, the TTF complex is part of the mRNP code, however its target RNAs and function are still completely unknown. Since the loss of functional FMRP results in the fragile X syndrome and TOP3β is associated with schizophrenia and intellectual disability, the TTF complex connects these phenotypically related neuro-psychiatric disorders with each other on a molecular level. Therefore, the aim of this work was to biochemically characterize the TTF complex and to define its function in the mRNA metabolism. In this work, evidence was provided that TDRD3 acts as the central unit of the TTF complex and directly binds to FMRP as well as to TOP3β. Thereby, the interaction of TDRD3 and TOP3β is very stable, whereas FMRP is a dynamic component. Interestingly, the TTF complex is not bound directly to mRNA, but is recruited via the exon junction complex (EJC) to mRNPs. This interaction is mediated by a specific binding motif of TDRD3, the EBM. Upon biochemical and biological investigations, it was possible to identify the interactome of the TTF complex and to define the role in the mRNA metabolism. The data revealed that the TTF complex is mainly associated with "early" mRNPs and is probably involved in the pioneer round of translation. Furthermore, TOP3β was found to bind directly to the ribosome and thus, establishes a connection between the EJC and the translation machinery. A reduction of the TTF components resulted in selective changes in the proteome in cultured cells, whereby individual protein subsets seem to be regulated rather than the global protein expression. Moreover, the enzymatic analysis of TOP3β indicated that TOP3β is a type IA topoisomerase which can catalytically attack not only DNA but also RNA. This aspect is particularly interesting with regard to the connection between early mRNPs and the translation which has been revealed in this work. The data obtained in this work suggest that the TTF complex plays a role in regulating the metabolism of an early mRNP subset possibly in the course of the pioneer round of translation. Until now, the link between an RNA topoisomerase and the mRNA metabolism is thereby unique and thus provides a completely new perspective on the steps in the post-transcriptional gene expression and its regulation.}, subject = {Messenger-RNP}, language = {en} }