@phdthesis{ZimmermannneePapp2024, author = {Zimmermann [n{\´e}e Papp], Lena}, title = {Platelets as modulators of blood-brain barrier disruption and inflammation in the pathophysiology of ischemic stroke}, doi = {10.25972/OPUS-30285}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302850}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Ischemia-reperfusion injury (I/R injury) is a common complication in ischemic stroke (IS) treatment, which is characterized by a paradoxical perpetuation of tissue damage despite the successful re-establishment of vascular perfusion. This phenomenon is known to be facilitated by the detrimental interplay of platelets and inflammatory cells at the vascular interface. However, the spatio-temporal and molecular mechanisms underlying these cellular interactions and their contribution to infarct progression are still incompletely understood. Therefore, this study intended to clarify the temporal mechanisms of infarct growth after cerebral vessel recanalization. The data presented here could show that infarct progression is driven by early blood-brain-barrier perturbation and is independent of secondary thrombus formation. Since previous studies unravelled the secretion of platelet granules as a molecular mechanism of how platelets contribute to I/R injury, special emphasis was placed on the role of platelet granule secretion in the process of barrier dysfunction. By combining an in vitro approach with a murine IS model, it could be shown that platelet α-granules exerted endothelial-damaging properties, whereas their absence (NBEAL2-deficiency) translated into improved microvascular integrity. Hence, targeting platelet α-granules might serve as a novel treatment option to reduce vascular integrity loss and diminish infarct growth despite recanalization. Recent evidence revealed that pathomechanisms underlying I/R injury are already instrumental during large vessel occlusion. This indicates that penumbral tissue loss under occlusion and I/R injury during reperfusion share an intertwined relationship. In accordance with this notion, human observational data disclosed the presence of a neutrophil dominated immune response and local platelet activation and secretion, by the detection of the main components of platelet α-granules, within the secluded vasculature of IS patients. These initial observations of immune cells and platelets could be further expanded within this thesis by flow cytometric analysis of local ischemic blood samples. Phenotyping of immune cells disclosed a yet unknown shift in the lymphocyte population towards CD4+ T cells and additionally corroborated the concept of an immediate intravascular immune response that is dominated by granulocytes. Furthermore, this thesis provides first-time evidence for the increased appearance of platelet-leukocyte-aggregates within the secluded human vasculature. Thus, interfering with immune cells and/or platelets already under occlusion might serve as a potential strategy to diminish infarct expansion and ameliorate clinical outcome after IS.}, subject = {Schlaganfall}, language = {en} } @phdthesis{Thielmann2014, author = {Thielmann, Ina}, title = {Function and regulation of phospholipase D in blood platelets: in vitro and in vivo studies in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-99179}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Summary Platelet activation and aggregation are crucial for primary hemostasis but can also result in occlusive thrombus formation. Agonist induced platelet activation involves different signaling pathways leading to the activation of phospholipases (PL) which produce second messengers. While the role of PLCs in platelet activation is well established, less is known about the relevance of PLDs. In the current study, the function and regulation of PLD in platelets was investigated using genetic and pharmacological approaches. In the first part of this thesis, adhesion, activation and aggregation of platelets from mice lacking PLD2 or both PLD1 and PLD2 were analyzed in vitro and in vivo. While the absence of PLD2 resulted in slightly reduced PLD activity in platelets, it had no detectable effect on the platelet function in vitro and in vivo. However, the combined deficiency of both PLD isoforms resulted in defective alpha-granule release and protection in a model of ferric chloride induced arteriolar thrombosis, effects that were not observed in mice lacking only one PLD isoform. These results revealed, for the first time, redundant roles of PLD1 and PLD2 in platelet alpha-granule secretion and indicate that this may be relevant for pathological thrombus formation. Thus, PLD might represent a promising target for antithrombotic therapy. Thus, this hypothesis was tested more directly in the second part of this thesis. The effects of pharmacological inhibition of PLD activity on hemostasis, thrombosis and thrombo-inflammatory brain infarction in mice were assessed. Treatment of platelets with the reversible, small molecule PLD inhibitor 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI) led to a specific blockade of PLD activity that was associated with reduced -granule release and integrin activation. Mice that received FIPI at a dose of 3 mg/kg displayed reduced occlusive thrombus formation upon chemical injury of carotid arteries or mesenterial arterioles. Similarly, FIPI-treated mice had smaller infarct sizes and significantly better motor and neurological function 24 hours after transient middle cerebral artery occlusion. This protective effect was not associated with major intracerebral hemorrhage or prolonged tail bleeding times. Thus, pharmacological PLD inhibition might represent a safe therapeutic strategy to prevent arterial thrombosis or ischemic stroke. After revealing a central role for PLD in thrombo-inflammation, the regulation of PLD activity in platelets was analyzed in the last part of the thesis. Up to date, most studies made use of inhibitors potentially exerting off-target effects and consequently PLD regulation is discussed controversially. Therefore, PLD activity in mice genetically lacking potential modulators of PLD activity was determined to address these controversies. These studies revealed that PLD is tightly regulated during initial platelet activation. While integrin outside-in signaling and Gi signaling was dispensable for PLD activation, it was found that PLC dependent pathways were relevant for the regulation of PLD enzyme activity.}, subject = {Phospholipase D}, language = {en} } @phdthesis{Sun2023, author = {Sun, Aili}, title = {Effect of Tjap1 knock-down on blood-brain barrier properties under normal and hypoxic conditions}, doi = {10.25972/OPUS-34645}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346450}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Stroke is one of the leading causes of mortality and disability worldwide. The blood-brain barrier (BBB) plays an important role in maintaining brain homeostasis by tightly regulating the exchange of substances between circulating blood and brain parenchyma. BBB disruption is a common pathologic feature of stroke and traumatic brain injury. Understanding the cellular and molecular events that affect the BBB after ischaemic brain injury is important to improve patient prognosis. We have previously shown that microRNA-212/132 is elevated in hypoxic brain microvascular endothelial cells and acts through suppressing the expression of direct microRNA-212/132 target genes with function at the BBB: claudin-1, junctional adhesion molecule 3 (Jam3) and tight-junction associated protein 1 (Tjap1). While the role of claudin-1 and Jam3 at the BBB is well known, the role of Tjap1 is still unclear. The aim of this work was therefore to characterize the role of Tjap1 in brain endothelial cells using a knock-down (KD) approach in established murine in vitro BBB models cEND and cerebEND. Tjap1 KD was established by stable transfection of a plasmid expressing shRNA against Tjap1. The successful downregulation of Tjap1 mRNA and protein was demonstrated by qPCR and Western blot. Tjap1 KD resulted in impaired barrier properties of endothelial cells as shown by lower TEER values and higher paracellular permeability. Interestingly, the Tjap1 KD cells showed lower cell viability and proliferation but migrated faster in a wound healing assay. In the tube formation assay, Tjap1 KD cell lines showed a lower angiogenic potential due to a significantly lower tube length and number as well as a lower amount of branching points in formed capillaries. Tjap1 KD cells showed changes in gene and protein expression. The TJ proteins claudin-5, Jam3 and ZO-1 were significantly increased in Tjap1 KD cell lines, while occludin was strongly decreased. In addition, efflux pump P-glycoprotein was downregulated in Tjap1 KD cells. Oxygen-glucose deprivation (OGD) is a method to mimic stroke in vitro. Brain endothelial cell lines treated with OGD showed lower barrier properties compared to cells cultured under normal condition. These effects were more severe in Tjap1 KD cells, indicating active Tjap1 involvement in the OGD response in brain microvascular endothelial cells. We thus have shown that Tjap1 contributes to a tight barrier of the BBB, regulates cell viability and proliferation of endothelial cells, suppresses their migration and promotes new vessel formation. This means that Tjap1 function is important for mature BBB structure in health and disease.}, subject = {Schlaganfall}, language = {en} } @phdthesis{Ruecker2021, author = {R{\"u}cker, Viktoria}, title = {Time trends and determinants of stroke mortality in Germany}, doi = {10.25972/OPUS-23311}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233116}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In several countries, a decline in mortality, case-fatality and recurrence rates of stroke was observed. However, studies investigating sex-specific and subtype-specific (pathological and etiological) time trends in stroke mortality, case-fatality and recurrence rates are scarce, especially in Germany. The decline in ischemic stroke mortality and case-fatality might be associated with the high quality of acute care of ischemic stroke, but the exact determinants of early outcome remains unknown for Germany. Therefore, as first step of this thesis, we investigated the time trends of subtype- and sex-specific age- standardized stroke mortality rates in Germany from 1998 to 2015, by applying joinpoint regression on official causes of death statistics, provided by the Federal Statistical Office. Furthermore, a regional comparison of the time trends in stroke mortality between East and West was conducted. In the second step, time trends in case-fatality and stroke recurrence rates were analyzed using data from a population- based stroke register in Germany between 1996 and 2015. The analysis was stratified by sex and etiological subtype of ischemic stroke. In the third step, quality of stroke care and the association between adherence to measures of quality of acute ischemic stroke care and in-hospital mortality was estimated based on data from nine regional hospital-based stroke registers in Germany from the years 2015 and 2016. We showed that in Germany, age-standardized stroke mortality declined by over 50\% from 1998 to 2015 both, in women and men. Stratified by the pathological subtypes of stroke, the decrease in mortality was larger in ischemic stroke compared to hemorrhagic stroke. Different patterns in the time trends of stroke were observed for stroke subtypes, regions in Germany (former Eastern part of Germany (EG), former Western part of Germany (WG)) and sex, but in all strata a decline was found. By applying joinpoint regression, the number of changes in time trend differed between the regions and up to three changes in the trend in ischemic stroke mortality were detected. Trends in hemorrhagic stroke were in parallel between the regions with up to one change (in women) in joinpoint regression. Comparing the regions, stroke mortality was higher in EG compared to WG throughout the whole observed time period, however the differences between the regions started to diminish from 2007 onwards. Further it was found that, based on the population-based Erlangen Stroke Project (ESPro), case-fatality and recurrence rates in ischemic stroke patients are still high in Germany. 46\% died and 20\% got a recurrent stroke within the first five years after stroke. Case-fatality rates declined statistically significant from 1996 to 2015 across all ischemic stroke patients and all etiological subtypes of ischemic stroke. Based on Cox regression no statistically significant decrease in stroke recurrence was observed. Based on the pooled data of nine regional hospital-based stroke registers from the years 2015 and 2016 covering about 80\% of all hospitalized stroke patients in Germany, a high quality of care of acute ischemic stroke patients, measured via 11 evidence-based quality indicators (QI) of process of care, was observed. Across all registers, most QI reached the predefined target values for good quality of stroke care. 9 out of 11 QI showed a significant association with 7-day in-hospital mortality. An inverse linear association between overall adherence to QI and 7-day in-hospital mortality was observed. In conclusion, stroke mortality and case-fatality showed a favorable development over time in Germany, which might partly be due to improvements in acute treatment. This is supported by the association between overall adherence to quality of care and in-hospital mortality. However, there might be room for improvements in long-term secondary prevention, as no clear reduction in recurrence rates was observed.}, subject = {Schlaganfall}, language = {en} } @phdthesis{Popp2018, author = {Popp, Michael}, title = {Mechanisms of platelet activation and receptor regulation in genetically modified mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135494}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {This work summarizes the results of studies on several major aspects of platelet activation and platelet receptor regulation. Therefore, this thesis is divided into four parts. Platelet activation and aggregation at sites of vascular injury is critical to prevent excessive blood loss, but may also lead to life-threatening ischemic disease states, such as myocardial infarction and stroke. Agonist-induced elevation in cytosolic Ca2+ concentrations is essential for platelet activation in hemostasis and thrombosis. The principal route of Ca2+ influx in platelets is store-operated calcium entry (SOCE). The calcium sensor molecule stromal interaction molecule 1 (STIM1) regulates SOCE by activating the membrane calcium channel protein Orai1, but the exact mechanisms of this interaction are not fully understood. Using affinity chromatography to screen for STIM1 interacting proteins in platelets, bridging integrator 2 (BIN2), an adapter protein belonging to the family of BAR proteins that is mainly expressed in the hematopoietic system, was identified. Newly generated BIN2 KO mice were viable and fertile but their platelets displayed markedly impaired SOCE in response to thapsigargin (TG) as well as agonists acting on immunoreceptor tyrosine-based activation motif (ITAM) or G protein-coupled receptors. This SOCE defect resulted in impaired (hem)ITAM induced platelet activation, aggregate formation under flow and procoagulant activity. As a consequence, mice lacking BIN2 in platelets were protected from occlusive arterial thrombus formation and thrombo-inflammatory cerebral infarct progression in a model of experimental stroke. These results identify BIN2 as a critical regulator of platelet SOCE in thrombosis and thrombo-inflammatory disease. Integrin αIIbβ3 plays a central role in the adhesion and aggregation of platelets. Integrin activation requires the transmission of a signal from the small cytoplasmic tails of the α or β subunit to the large extracellular domains resulting in conformational changes of the extracellular domains to enable ligand binding. It was hypothesized that Hic-5 is a novel regulator of integrin αIIbβ3 activation in mice. As demonstrated in the second part of this thesis, lack of Hic-5 had no detectable effect on platelet integrin activation and function in vitro and in vivo under all tested conditions. These results indicate that Hic-5 is dispensable for integrin αIIbβ3 activation and consequently for arterial thrombosis and hemostasis in mice. The Rho GTPase family members RhoA and Rac1 play major roles in platelet activation at sites of vascular injury. Little is known about possible redundant functions of these Rho GTPases in regulating platelet function. To investigate functional redundancies of RhoA and Rac1 in platelet production and function, mice with MK- and platelet-specific double- deficiencies in RhoA and Rac1 were generated. RhoA/Rac1 double-deficiency phenocopied the respective single knockouts without any additional effects in the double-knockout animals, demonstrating for the first time a functional non-redundancy of RhoA and Rac1 in platelet function. Antibodies against platelet glycoproteins (GP) trigger platelet destruction in immune thrombocytopenia (ITP) by binding to Fcγ receptors (FcγRs) on immune cells. However, antibodies against the platelet collagen receptor GPVI exert powerful anti-thrombotic action in vivo by inducing ectodomain shedding of the receptor associated with a transient thrombocytopenia. As shown in the final part of this thesis, blockade or deficiency of the inhibitory FcγRIIB abolished sequestration of anti-GPVI opsonized platelets in the hepatic vasculature and GPVI shedding. This process was mediated by liver sinusoidal endothelial cells (LSEC), the major FcγRIIB expressing cell type in the body. Furthermore, LSEC FcγRIIB mediated hepatic platelet sequestration and contributed to thrombocytopenia in mice treated with antibodies against αIIbβ3, the major target antigen in human ITP. These results reveal a novel and unexpected function of hepatic FcγRIIB in the processing of antibody-opsonized platelets.}, subject = {H{\"a}mostase}, language = {en} } @phdthesis{Pillai2011, author = {Pillai, Deepu}, title = {Differential effects of Pigment epithelium derived factor and epidermal growth factor on Ischemia-reperfusion injury in rats - a magnetic resonance imaging study at 3 tesla}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57341}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Stroke, after myocardial infarction and cancer is the third most common cause of death worldwide and 1/6th of all human beings will suffer at least one stroke in their lives. Furthermore, it is the leading cause for adult disability with approximately one third of patients who survive for the next 6 months are dependent on others. Because of its huge socioeconomic burden absorbing 6\% of all health care budgets and with the fact that life expectancy increases globally, one can assume that stroke is already, and will continue to be, the most challenging disease. Ischemic stroke accounts for approximately 80\% of all strokes and results from a thrombotic or embolic occlusion of a major cerebral artery (most often the middle cerebral artery, MCA) or its branches Following acute ischemic stroke, the most worrisome outcome is the rapidly increasing intra-cranial pressure due to the formation of space-occupying vasogenic oedema which can have lethal consequences. Permeability changes at the Blood-Brain Barrier (BBB) usually accompanies the oedematous development and their time course can provide invaluable insight into the nature of the insult, activation of compensatory mechanisms followed by long term repair. Rodent models of focal cerebral ischemia have been developed and optimized to mimic human stroke conditions and serve as indispensable tools in the field of stroke research. The presented work constituting of three separate but complete works by themselves are sequential, where, the first part was dedicated to the establishment of non-invasive small animal imaging strategies on a 3 tesla clinical magnetic resonance scanner. This facilitated the longitudinal monitoring of pathological outcomes following stroke where identical animals can serve as its own control. Tissue relaxometric estimations were carried out initially to derive the transverse (T2), longitudinal (T1) and the transverse relaxation time due to magnetic susceptibility effects (T2*) at the cortical and striatal regions of the rodent brain. Statistically significant differences in T2*-values could be found between the cortex and striatal regions of the rodent brain. The derived tissue relaxation values were considered to modify the existing imaging protocols to facilitate the study of the rodent model of ischemic stroke. The modified sequence protocols adequately characterized all the clinically relevant sequels following acute ischemic stroke, like, the altered perfusion and diffusion characteristics. Subsequent to this, serial magnetic resonance imaging was performed to investigate the temporal and spatial relationship between the biphasic nature of BBB opening and, in parallel, the oedema formation after I/R injury in rats. T2-relaxometry for oedema assessment was performed at 1 h after ischemia, immediately following reperfusion, and at 4, 24 and 48 hours post reperfusion. Post-contrast T1-weighted imaging was performed at the last three time points to assess BBB integrity. The biphasic course of BBB opening with significant reduction in BBB permeability at 24 hours after reperfusion was associated with a progressive expansion of leaky BBB volume, accompanied by a peak ipsilateral oedema formation. At 48 hours, the reduction in T2-value indicated oedema resorption accompanied by a second phase of BBB opening. In addition, at 4 hours after reperfusion, oedema formation could also be detected at the contralateral striatum which persisted to varying degrees throughout the study, indicative of widespread effects of I/R injury. The observations of this study may indicate a dynamic temporal shift in the mechanisms responsible for biphasic BBB permeability changes, with non-linear relations to oedema formation. Two growth factor peptides namely pigment epithelium derived factor (PEDF) and epidermal growth factor (EGF) with widely different trophic properties were considered for their beneficial effects, if any, in the established rodent model of I/R injury and studied up to one week employing magnetic resonance imaging. Both the selected, trophic factors demonstrated significant neuroprotection as demonstrated by a reduction in infarct volume, even though PEDF was found to be the most potent one. PEDF also demonstrated significant attenuation of oedema formation in comparison to both the control and EGF groups, even though EGF could also demonstrate oedema suppression. In the present work, we noticed that interventions with macromolecule protein/peptides by itself could mediate remote oedema at distant sites even though the significance of such an observation is not clear at present. Susceptibility (T2*) weighted tissue relaxometric estimations were considered at the infarct region to detect any metabolic changes arising out of any neuroprotection and/or cellular proliferation / neurogenesis. PEDF group demonstrated a striking reduction of the T2*-values, which is indicative of an increased metabolic activity. Moreover, all the groups (Control, EGF and PEDF) demonstrated significantly elevated T2*-values at the contralateral striatum, which is indicative of widespread metabolic suppression usually associated with a variety of traumatic brain conditions. Moreover, as expected from the properties of PEDF, it demonstrated an extended BBB permeability suppression throughout the duration of the study. This study underlines the merits of considering non-invasive imaging strategies without which it was not possible to study the required parameters in a longitudinal fashion. All the observations are adequately supported by reasonably well defined mechanisms and needs to be further verified and confirmed by an immunohistochemical study. These results also need to be complemented by a functional study to evaluate the behavioural outcome of animals following these treatments. These studies are progressing at our laboratory and the results will be duly published afterwards.}, subject = {Schlaganfall}, language = {en} } @phdthesis{Pfitzner2019, author = {Pfitzner, Christian}, title = {Visual Human Body Weight Estimation with Focus on Clinical Applications}, isbn = {978-3-945459-27-0 (online)}, doi = {10.25972/OPUS-17484}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174842}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {It is the aim of this thesis to present a visual body weight estimation, which is suitable for medical applications. A typical scenario where the estimation of the body weight is essential, is the emergency treatment of stroke patients: In case of an ischemic stroke, the patient has to receive a body weight adapted drug, to solve a blood clot in a vessel. The accuracy of the estimated weight influences the outcome of the therapy directly. However, the treatment has to start as early as possible after the arrival at a trauma room, to provide sufficient treatment. Weighing a patient takes time, and the patient has to be moved. Furthermore, patients are often not able to communicate a value for their body weight due to their stroke symptoms. Therefore, it is state of the art that physicians guess the body weight. A patient receiving a too low dose has an increased risk that the blood clot does not dissolve and brain tissue is permanently damaged. Today, about one-third gets an insufficient dosage. In contrast to that, an overdose can cause bleedings and further complications. Physicians are aware of this issue, but a reliable alternative is missing. The thesis presents state-of-the-art principles and devices for the measurement and estimation of body weight in the context of medical applications. While scales are common and available at a hospital, the process of weighing takes too long and can hardly be integrated into the process of stroke treatment. Sensor systems and algorithms are presented in the section for related work and provide an overview of different approaches. The here presented system -- called Libra3D -- consists of a computer installed in a real trauma room, as well as visual sensors integrated into the ceiling. For the estimation of the body weight, the patient is on a stretcher which is placed in the field of view of the sensors. The three sensors -- two RGB-D and a thermal camera -- are calibrated intrinsically and extrinsically. Also, algorithms for sensor fusion are presented to align the data from all sensors which is the base for a reliable segmentation of the patient. A combination of state-of-the-art image and point cloud algorithms is used to localize the patient on the stretcher. The challenges in the scenario with the patient on the bed is the dynamic environment, including other people or medical devices in the field of view. After the successful segmentation, a set of hand-crafted features is extracted from the patient's point cloud. These features rely on geometric and statistical values and provide a robust input to a subsequent machine learning approach. The final estimation is done with a previously trained artificial neural network. The experiment section offers different configurations of the previously extracted feature vector. Additionally, the here presented approach is compared to state-of-the-art methods; the patient's own assessment, the physician's guess, and an anthropometric estimation. Besides the patient's own estimation, Libra3D outperforms all state-of-the-art estimation methods: 95 percent of all patients are estimated with a relative error of less than 10 percent to ground truth body weight. It takes only a minimal amount of time for the measurement, and the approach can easily be integrated into the treatment of stroke patients, while physicians are not hindered. Furthermore, the section for experiments demonstrates two additional applications: The extracted features can also be used to estimate the body weight of people standing, or even walking in front of a 3D camera. Also, it is possible to determine or classify the BMI of a subject on a stretcher. A potential application for this approach is the reduction of the radiation dose of patients being exposed to X-rays during a CT examination. During the time of this thesis, several data sets were recorded. These data sets contain the ground truth body weight, as well as the data from the sensors. They are available for the collaboration in the field of body weight estimation for medical applications.}, subject = {Punktwolke}, language = {en} } @article{NeuhausBurekDjuzenovaetal.2012, author = {Neuhaus, Winfried and Burek, Malgorzata and Djuzenova, Cholpon C and Thal, Serge C and Koepsell, Hermann and Roewer, Norbert and F{\"o}rster, Carola Y}, title = {Addition of NMDA-receptor antagonist MK801 during oxygen/glucose deprivation moderately attenuates the up-regulation of glucose uptake after subsequent reoxygenation in brain endothelial cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67241}, year = {2012}, abstract = {During stroke the blood-brain barrier (BBB) is damaged which can result in vasogenic brain edema and inflammation. The reduced blood supply leads to decreased delivery of oxygen and glucose to affected areas of the brain. Oxygen and glucose deprivation (OGD) can cause upregulation of glucose uptake of brain endothelial cells. In this letter, we investigated the influence of MK801, a non-competitive inhibitor of the NMDA-receptor, on the regulation of the glucose uptake and of the main glucose transporters glut1 and sglt1 in murine BBB cell line cerebEND during OGD. mRNA expression of glut1 was upregulated 68.7- fold after 6 h OGD, which was significantly reduced by 10 μM MK801 to 28.9-fold. Sglt1 mRNA expression decreased during OGD which was further reduced by MK801. Glucose uptake was significantly increased up to 907\% after 6 h OGD and was still higher (210\%) after the 20 h reoxygenation phase compared to normoxia. Ten micromolar MK801 during OGD was able to reduce upregulated glucose uptake after OGD and reoxygenation significantly. Presence of several NMDAR subunits was proven on the mRNA level in cerebEND cells. Furthermore, it was shown that NMDAR subunit NR1 was upregulated during OGD and that this was inhibitable by MK801. In conclusion, the addition of MK801 during the OGD phase reduced significantly the glucose uptake after the subsequent reoxygenation phase in brain endothelial cells.}, subject = {Blut-Hirn-Schranke}, language = {en} } @article{KraftSchwarzPochetetal.2010, author = {Kraft, P. and Schwarz, T. and Pochet, L. and Stoll, G. and Kleinschnitz, Christoph}, title = {COU254, a specific 3-carboxamide-coumarin inhibitor of coagulation factor XII, does not protect mice from acute ischemic stroke}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68103}, year = {2010}, abstract = {Background: Anticoagulation is an important means to prevent from acute ischemic stroke but is associated with a significant risk of severe hemorrhages. Previous studies have shown that blood coagulation factor XII (FXII)- deficient mice are protected from pathological thrombus formation during cerebral ischemia without bearing an increased bleeding tendency. Hence, pharmacological blockade of FXII might be a promising and safe approach to prevent acute ischemic stroke and possibly other thromboembolic disorders but pharmacological inhibitors selective over FXII are still lacking. In the present study we investigated the efficacy of COU254, a novel nonpeptidic 3-carboxamide-coumarin that selectively blocks FXII activity, on stroke development and post stroke functional outcome in mice. Methods: C57Bl/6 mice were treated with COU254 (40 mg/kg i.p.) or vehicle and subjected to 60 min transient middle cerebral artery occlusion (tMCAO) using the intraluminal filament method. After 24 h infarct volumes were determined from 2,3,5-Triphenyltetrazoliumchloride(TTC)-stained brain sections and functional scores were assessed. Hematoxylin and eosin (H\&E) staining was used to estimate the extent of neuronal cell damage. Thrombus formation within the infarcted brain areas was analyzed by immunoblot. Results: Infarct volumes and functional outcomes on day 1 after tMCAO did not significantly differ between COU254 pre-treated mice or untreated controls (p > 0.05). Histology revealed extensive ischemic neuronal damage regularly including the cortex and the basal ganglia in both groups. COU254 treatment did not prevent intracerebral fibrin(ogen) formation. Conclusions: COU254 at the given concentration of 40 mg/kg failed to demonstrate efficacy in acute ischemic stroke in this preliminary study. Further preclinical evaluation of 3-carboxamide-coumarins is needed before the antithrombotic potential of this novel class of FXII inhibitors can be finally judged.}, subject = {Schlaganfall}, language = {en} } @article{KleinschnitzGrundWingleretal.2010, author = {Kleinschnitz, Christoph and Grund, Henrike and Wingler, Kirstin and Armitage, Melanie E. and Jones, Emma and Mittal, Manish and Barit, David and Schwarz, Tobias and Geis, Christian and Kraft, Peter and Barthel, Konstanze and Schuhmann, Michael K. and Herrmann, Alexander M. and Meuth, Sven G. and Stoll, Guido and Meurer, Sabine and Schrewe, Anja and Becker, Lore and Gailus-Durner, Valerie and Fuchs, Helmut and Klopstock, Thomas and de Angelis, Martin Hrabe and Jandeleit-Dahm, Karin and Shah, Ajay M. and Weissmann, Norbert and Schmidt, Harald H. H. W.}, title = {Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68416}, year = {2010}, abstract = {Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90\% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox42/2) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox42/2 mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.}, subject = {Schlaganfall}, language = {en} } @phdthesis{Heydenreich2013, author = {Heydenreich, Nadine}, title = {Studies on the contact-kinin system and macrophage activation in experimental focal cerebral ischemia}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-94534}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Traditionally, ischemic stroke has been regarded as the mere consequence of cessation of cerebral blood flow, e.g. due to the thromboembolic occlusion of a major brain supplying vessel. However, the simple restoration of blood flow via thrombolysis and/or mechanical recanalization alone often does not guarantee a good functional outcome. It appears that secondary detrimental processes are triggered by hypoxia and reoxygenation, which are referred to as ischemia/reperfusion (I/R) injury. During recent years it became evident that, beside thrombosis inflammation and edema formation are key players in the pathophysiology of cerebral ischemia. The contact-kinin system represents an interface between thrombotic, inflammatory and edematous circuits. It connects the intrinsic coagulation pathway with the plasma kallikrein-kinin system (KKS) via coagulation factor FXII. The serine protease inhibitor C1-inhibitor (C1-INH) has a wide spectrum of inhibitory activities and counteracts activation of the contact-kinin system at multiple levels. The first part of the thesis aimed to multimodally interfere with infarct development by C1-INH and to analyze modes of actions of human plasma derived C1-INH Berinert® P in a murine model of focal cerebral ischemia. It was shown that C57BL/6 mice following early application of 15.0 units (U) C1-INH, but not 7.5 U developed reduced brain infarctions by ~60\% and less neurological deficits in the model of transient occlusion of the middle cerebral artery (tMCAO). This protective effect was preserved at more advanced stages of infarction (day 7), without increasing the risk of intracerebral bleeding or affecting normal hemostasis. Less neurological deficits could also be observed with delayed C1-INH treatment, whereas no improvement was achieved in the model of permanent MCAO (pMCAO). Blood-brain-barrier (BBB) damage, inflammation and thrombosis were significantly improved following 15.0 U C1-INH application early after onset of ischemia. Based on its strong antiedematous, antiinflammatory and antithrombotic properties C1-INH constitutes a multifaceted therapeutic compound that protects from ischemic neurodegeneration in 'clinically meaningful' settings. The second part of the thesis addresses the still elusive functional role of macrophages in the early phase of stroke, especially the role of the macrophage-specific adhesion molecule sialoadhesin (Sn). For the first time, sialoadhesin null (Sn-/-) mice, homozygous deficient for Sn on macrophages were subjected to tMCAO to assess the clinical outcome. Neurological and motor function was significantly improved in Sn-/- mice on day 1 after ischemic stroke compared with wildtype (Sn+/+) animals. These clinical improvements were clearly detectable even on day 3 following tMCAO. Infarctions on day 1 were roughly the same size as in Sn+/+ mice and did not grow until day 3. No intracerebral bleeding could be detected at any time point of data acquisition. Twenty four hours after ischemia a strong induction of Sn was detectable in Sn+/+ mice, which was previously observed only on perivascular macrophages in the normal brain. Deletion of Sn on macrophages resulted in less disturbance of the BBB and a reduced number of CD11b+ (specific marker for macrophages/microglia) cells, which, however, was not associated with altered expression levels of inflammatory cytokines. To further analyze the function of macrophages following stroke this thesis took advantage of LysM-Cre+/-/IKK2-/- mice bearing a nuclear factor (NF)-ϰB activation defect in the myeloid lineage, including macrophages. Consequently, macrophages were not able to synthesize inflammatory cytokines under the control of NF-ϰB. Surprisingly, infarct sizes and neurological deficits upon tMCAO were roughly the same in conditional knockout mice and respective wildtype littermates. These findings provide evidence that macrophages do not contribute to tissue damage and neurological deficits, at least, not by release of inflammatory cytokines in the early phase of cerebral ischemia. In contrast, Sn which is initially expressed on perivascular macrophages and upregulated on macrophages/microglia within the parenchyma following stroke, influenced functional outcome.}, subject = {Blut-Hirn-Schranke}, language = {en} } @phdthesis{GoebneeKlaus2023, author = {G{\"o}b [n{\´e}e Klaus], Vanessa Aline Domenica}, title = {Pathomechanisms underlying ischemic stroke}, doi = {10.25972/OPUS-28672}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286727}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Every year, stroke affects over 100 million people worldwide and the number of cases continues to grow. Ischemic stroke is the most prevalent form of stroke and rapid restoration of blood flow is the primary therapeutic aim. However, recanalization might fail or reperfusion itself induces detrimental processes leading to infarct progression. Previous studies identified platelets and immune cells as drivers of this so-called ischemia/reperfusion (I/R) injury, establishing the concept of ischemic stroke as thrombo-inflammatory disease. Reduced cerebral blood flow despite recanalization promoted the hypothesis that thrombus formation within the cerebral microcirculation induces further tissue damage. The results presented in this thesis refute this: using complementary methodologies, it was shown that infarct growth precedes the occurrence of thrombi excluding them as I/R injury-underlying cause. Blood brain barrier disruption is one of the hallmarks of ischemic stroke pathology and was confirmed as early event during reperfusion injury in the second part of this study. Abolished platelet α-granule release protects mice from vascular leakage in the early reperfusion phase resulting in smaller infarcts. Using in vitro assays, platelet α-granule-derived PDGF-AB was identified as one factor contributing to blood-brain barrier disruption. In vivo visualization of platelet activation would provide important insights in the spatio-temporal context of platelet activation in stroke pathology. As platelet signaling results in elevated intracellular Ca2+ levels, this is an ideal readout. To overcome the limitations of chemical calcium indicators, a mouse line expressing an endogenous calcium reporter specifically in platelets and megakaryocytes was generated. Presence of the reporter did not interfere with platelet function, consequently these mice were characterized in in vivo and ex vivo models. Upon ischemic stroke, neutrophils are among the first cells that are recruited to the brain. Since for neutrophils both, beneficial and detrimental effects are described, their role was investigated within this thesis. Neither neutrophil depletion nor absence of NADPH-dependent ROS production (Ncf-/- mice) affected stroke outcome. In contrast, abolished NET-formation in Pad4-/- mice resulted in reduced infarct sizes, revealing detrimental effects of NETosis in the context of ischemic stroke, which might become a potential therapeutic target. Cerebral venous (sinus) thrombosis, CV(S)T is a rare type of stroke with mainly idiopathic onset. Whereas for arterial thrombosis a critical contribution of platelets is known and widely accepted, for venous thrombosis this is less clear but considered more and more. In the last part of this thesis, it was shown that fab-fragments of the anti-CLEC-2 antibody INU1 trigger pathological platelet activation in vivo, resulting in foudroyant CVT accompanied by heavy neurological symptoms. Using this novel animal model for CVT, cooperative signaling of the two platelet receptors CLEC-2 and GPIIb/IIIa was revealed as major trigger of CVT and potential target for treatment.}, subject = {Schlaganfall}, language = {en} } @phdthesis{Gorelashvili2019, author = {Gorelashvili, Maximilian Georg}, title = {Investigation of megakaryopoiesis and the acute phase of ischemic stroke by advanced fluorescence microscopy}, doi = {10.25972/OPUS-18600}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186002}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In mammals, anucleate platelets circulate in the blood flow and are primarily responsible for maintaining functional hemostasis. Platelets are generated in the bone marrow (BM) by megakaryocytes (MKs), which mainly reside directly next to the BM sinusoids to release proplatelets into the blood. MKs originate from hematopoietic stem cells and are thought to migrate from the endosteal to the vascular niche during their maturation, a process, which is, despite being intensively investigated, still not fully understood. Long-term intravital two photon microscopy (2PM) of MKs and vasculature in murine bone marrow was performed and mean squared displacement analysis of cell migration was performed. The MKs exhibited no migration, but wobbling-like movement on time scales of 3 h. Directed cell migration always results in non-random spatial distribution. Thus, a computational modelling algorithm simulating random MK distribution using real 3D light-sheet fluorescence microscopy data sets was developed. Direct comparison of real and simulated random MK distributions showed, that MKs exhibit a strong bias to vessel-contact. However, this bias is not caused by cell migration, as non-vessel-associated MKs were randomly distributed in the intervascular space. Furthermore, simulation studies revealed that MKs strongly impair migration of other cells in the bone marrow by acting as large-sized obstacles. MKs are thought to migrate from the regions close to the endosteum towards the vasculature during their maturation process. MK distribution as a function of their localization relative to the endosteal regions of the bones was investigated by light sheet fluorescence microscopy (LSFM). The results show no bone-region dependent distribution of MKs. Taken together, the newly established methods and obtained results refute the model of MK migration during their maturation. Ischemia reperfusion (I/R) injury is a frequent complication of cerebral ischemic stroke, where brain tissue damage occurs despite successful recanalization. Platelets, endothelial cells and immune cells have been demonstrated to affect the progression of I/R injury in experimental mouse models 24 h after recanalization. However, the underlying Pathomechanisms, especially in the first hours after recanalization, are poorly understood. Here, LSFM, 2PM and complemental advanced image analysis workflows were established for investigation of platelets, the vasculature and neutrophils in ischemic brains. Quantitative analysis of thrombus formation in the ipsilateral and contralateral hemispheres at different time points revealed that platelet aggregate formation is minimal during the first 8 h after recanalization and occurs in both hemispheres. Considering that maximal tissue damage already is present at this time point, it can be concluded that infarct progression and neurological damage do not result from platelet aggregated formation. Furthermore, LSFM allowed to confirm neutrophil infiltration into the infarcted hemisphere and, here, the levels of endothelial cell marker PECAM1 were strongly reduced. However, further investigations must be carried out to clearly identify the role of neutrophils and the endothelial cells in I/R injury.}, subject = {Fluoreszenzmikroskopie}, language = {en} } @phdthesis{Elhfnawy2019, author = {Elhfnawy, Ahmed}, title = {Relation between the length of the internal carotid stenotic segment and ischemic cerebrovascular events as well as white matter lesion load}, doi = {10.25972/OPUS-19161}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191616}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Background and Purpose: Internal carotid artery stenosis ≥70\% is a leading cause of ischemic cerebrovascular events. However, a considerable percentage of stroke survivors with symptomatic internal carotid artery stenosis have <70\% stenosis with a vulnerable plaque. Whether the length of internal carotid artery stenosis is associated with high risk of ischemic cerebrovascular events or with white matter lesions is poorly investigated. Our main aim was to investigate the relation between the length of internal carotid artery stenosis and the development of ischemic cerebrovascular events as well as ipsi-, contralateral as well as mean white matter lesion load. Methods: In a retrospective cross-sectional study, 168 patients with 208 internal carotid artery stenosis were identified. The degree and length of internal carotid artery stenosis as well as plaque morphology (hypoechoic, mixed or echogenic) were assessed on ultrasound scans. The white matter lesions were assessed in 4 areas separately, (periventricular and deep white matter lesions on each hemisphere), using the Fazekas scale. The mean white matter lesions load was calculated as the mean of these four values. Results: A statistically significant inverse correlation between the ultrasound-measured length and degree of internal carotid artery stenosis was detected for symptomatic internal carotid artery stenosis ≥70\% (Spearman correlation coefficient ρ = -0.57, p < 0.001, n = 51) but neither for symptomatic internal carotid artery stenosis <70\% (ρ = 0.15, p = 0.45, n = 27) nor for asymptomatic internal carotid artery stenosis (ρ = 0.07, p = 0.64, n = 54). The median (IQR) length for symptomatic internal carotid artery stenosis <70\% and ≥70\% was 17 (15-20) and 15 (12-19) mm (p = 0.06), respectively, while that for symptomatic internal carotid artery stenosis <90\% and symptomatic internal carotid artery stenosis 90\% was 18 (15-21) and 13 (10-16) mm, respectively (p < 0.001). Among patients with internal carotid artery stenosis <70\%, a cut-off length of ≥16 mm was found for symptomatic internal carotid artery stenosis rather than asymptomatic internal carotid artery stenosis with a sensitivity and specificity of 74.1\% and 51.1\%, respectively. Irrespective of the stenotic degree, plaques of the symptomatic internal carotid artery stenosis compared to asymptomatic internal carotid artery stenosis were significantly more often echolucent (43.2 vs. 24.6\%, p = 0.02). The length but not the degree of internal carotid artery stenosis showed a very slight trend toward association with ipsilateral white matter lesions and with mean white matter lesions load. Conclusion: We found a statistically insignificant tendency for the ultrasound-measured length of symptomatic internal carotid artery stenosis <70\% to be longer than that of symptomatic internal carotid artery stenosis ≥70\%. Moreover, the ultrasound-measured length of symptomatic internal carotid artery stenosis <90\% was significantly longer than that of symptomatic internal carotid artery stenosis 90\%. Among patients with symptomatic internal carotid artery stenosis ≥70\%, the degree and length of stenosis were inversely correlated. Furthermore, we have shown that a slight correlation exists between the length of stenosis and the presence of ipsilateral white matter lesions which might be due to microembolisation originating from the carotid plaque. Larger studies are needed before a clinical implication can be drawn from these results.}, subject = {Carotisstenose}, language = {en} } @phdthesis{Deppermann2017, author = {Deppermann, Carsten}, title = {The role of platelet granules in thrombosis, hemostasis, stroke and inflammation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121010}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Platelets are small anucleate cell fragments derived from bone marrow megakaryocytes (MKs) and are important players in hemostasis and thrombosis. Platelet granules store factors which are released upon activation. There are three major types of platelet granules: alpha-granules, dense granules and lysosomes. While dense granules contain non-proteinacious factors which support platelet aggregation and adhesion, platelet alpha-granules contain more than 300 different proteins involved in various functions such as inflammation, wound healing and the maintenanceof vascular integrity, however, their functional significance in vivo remains unknown. This thesis summarizes analyses using three mouse models generated to investigate the role of platelet granules in thrombosis, hemostasis, stroke and inflammation. Unc13d-/- mice displayed defective platelet dense granule secretion, which resulted in abrogated thrombosis and hemostasis. Remarkably, Munc13-4-deficient mice were profoundly protected from infarct progression following transient middle cerebral artery occlusion (tMCAO) and this was not associated with increased intracranial bleeding indicating an essential involvementof dense granule secretion in infarct progression but not intracranial hemostasis during acute stroke with obvious therapeutic implications. In the second part of this thesis, the role of platelet alpha-granules was investigated using the Nbeal2-/- mouse. Mutations in NBEAL2 have been linked to the gray platelet syndrome (GPS), a rare inherited bleeding disorder. Nbeal2-/- mice displayed the characteristics of human GPS, with defective alpha-granule biogenesis in MKs and their absence from platelets. Nbeal2-deficiency did not affect MK differentiation and proplatelet formation in vitro or platelet life span in vivo. Nbeal2-/- platelets displayed impaired adhesion, aggregation, and coagulant activity ex vivo that translated into defective arterial thrombus formation and protection from thrombo-inflammatory brain infarction in vivo. In a model of skin wound repair, Nbeal2-/- mice exhibited impaired development of functional granulation tissue due to severely reduced differentiation of myofibroblasts. In the third part, the effects of combined deficiency of alpha- and dense granule secretion were analyzed using Unc13d-/-/Nbeal2-/- mice. Platelets of these mice showed impaired aggregation and adhesion to collagen under flow ex vivo, which translated into infinite tail bleeding times and severely defective arterial thrombus formation in vivo. When subjected to in vivo models of skin or lung inflammation, the double mutant mice showed no signs of hemorrhage. In contrast, lack of platelet granule release resulted in impaired vascular integrity in the ischemic brain following tMCAO leading to increased mortality. This indicates that while defective dense granule secretion or the paucity of alpha-granules alone have no effect on vascular integrity after stroke, the combination of both impairs vascular integrity and causes an increase in mortality.}, subject = {Thrombozyten}, language = {en} }