@phdthesis{Reichenbach2020, author = {Reichenbach, Juliane Renate}, title = {Paternal age effects on sperm DNA methylation and its impact on the next generation}, doi = {10.25972/OPUS-19980}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199805}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The effect of late parenthood on the offspring´s physical and mental health status has recently become an increasingly important topic of discussion. Studies on neurodevelopmental disorders in children of older parents (Naserbakht et al., 2011) outline the negative consequences of aging fathers as unpredictable compared to the better-understood unfavorable maternal influences (Cedars et al. 2015). This may be due to the fact that lifelong production of male gametes becomes more susceptible to error, not only for somatic mutations. Non-genomic mechanisms such as epigenetic methylation also alter DNA dynamically throughout life (Jones et al., 2015) and influence the aging human sperm DNA (Jenkins et al., 2014). These methylation changes may be transmitted to the next generation via epigenetic inheritance mechanisms (Milekic et al., 2015), which may negatively impact the sensitive epigenetic regulation of cell differentiation in the embryonic period (Curley et al., 2011; Spiers et al., 2015). Accordingly, Nardone et al. (2014) reported several hypomethylated regions in autistic patients, illustrating potential epigenetic influences on the multifactorial pathogenesis of neuropsychiatric disorders. In the present study, the methylation status of five gene regions in the sperm DNA of males of different ages was analyzed by two techniques - pyrosequencing and deep bisulfite sequencing. Two gene regions, FOXK1 and DMPK, showed a highly significant age-related methylation loss and FOXK1 a reduced methylation variation at the level of single alleles. In addition, the examined gene region of FOXK1 showed significant methylation changes in the fetal cord blood DNA of the respective offspring of the sperm donor. This fact suggests a transfer of age-related methylation loss to the next generation. Interestingly, a methylation analysis at the level of single alleles showed that the methylation loss was inherited exclusively by the father. FOXK1 is a transcription factor that plays an important role in the epigenetic regulation of the cell cycle during embryonic neuronal development (Huang et al., 2004; Wijchers et al., 2006). For this reason, the methylation status of FOXK1 in the blood of autistic patients and an age- and sex-matched control group was investigated. While both groups showed age-associated FOXK1 methylation loss, a faster dynamics of methylation change was observed in the autistic group. Although further studies are needed to uncover inheritance mechanisms of epigenetic information, the present results show an evident influence of age-related methylation changes on offspring. When advising future fathers, it is important to consider how the paternal epigenome is altered by aging and can have a negative impact on the developing embryo.}, subject = {Epigenetik}, language = {en} } @phdthesis{Prell2024, author = {Prell, Andreas}, title = {The effects of paternal age on DNA methylation of developmentally important genes in human and bovine sperm}, doi = {10.25972/OPUS-34786}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-347866}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Western societies are steadily becoming older undergoing a clear trend of delayed parenthood. Children of older fathers have an undeniably higher risk for certain neurodevelopmental disorders and other medical conditions. Changes in the epigenetic landscape and especially in DNA methylation patterns are likely to account for a portion of this inherited disease susceptibility. DNA methylation changes during the ageing process are a well-known epigenetic feature. These so-called age-DMRs exist in developmentally important genes in the methylome of several mammalian species. However, there is only a minor overlap between the age-DMR datasets of different studies. We therefore replicated age-DMRs (which were obtained from a genome wide technique) by applying a different technical approach in a larger sample number. Here, this study confirmed 10 age-DMRs in the human and 4 in the bovine sperm epigenome from a preliminary candidate list based on RRBS. For this purpose, we used bisulphite Pyrosequencing in 94 human and 36 bovine sperm samples. These Pyrosequencing results confirm RRBS as an effective and reliable method to screen for age-DMRs in the vertebrate genome. To decipher whether paternal age effects are an evolutionary conserved feature of mammalian development, we compared methylation patterns between human and bovine sperm in orthologous regulatory regions. We discovered that the level of methylation and the age effect are both species-specific and speculate that these methylation marks reflect the lineage-specific development of each species to hit evolutionary requirements and adaptation processes. Different methylation levels between species in developmentally important genes also imply a differing mutational burden, representing a potential driver for point mutations and consequently deviations in the underlying DNA sequence of different species. Using the example of different haplotypes, this study showed the great effect of single base variations on the methylation of adjacent CpGs. Nonetheless, this study could not provide further evidence or a mechanism for the transfer of epigenetic marks to future generations. Therefore, further research in tissues from the progeny of old and young fathers is required to determine if the observed methylation changes are transmitted to the next generation and if they are associated with altered transcriptional activity of the respective genes. This could provide a direct link between the methylome of sperm from elderly fathers and the development potential of the next generation.}, subject = {Epigenetik}, language = {en} }