@article{ZaitsevaHoffmannLoestetal.2023, author = {Zaitseva, Olena and Hoffmann, Annett and L{\"o}st, Margaretha and Anany, Mohamed A. and Zhang, Tengyu and Kucka, Kirstin and Wiegering, Armin and Otto, Christoph and Wajant, Harald}, title = {Antibody-based soluble and membrane-bound TWEAK mimicking agonists with FcγR-independent activity}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1194610}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323116}, year = {2023}, abstract = {Fibroblast growth factor (FGF)-inducible 14 (Fn14) activates the classical and alternative NFκB (nuclear factor 'kappa-light-chain-enhancer' of activated B-cells) signaling pathway but also enhances tumor necrosis factor (TNF)-induced cell death. Fn14 expression is upregulated in non-hematopoietic cells during tissue injury and is also often highly expressed in solid cancers. In view of the latter, there were and are considerable preclinical efforts to target Fn14 for tumor therapy, either by exploiting Fn14 as a target for antibodies with cytotoxic activity (e.g. antibody-dependent cellular cytotoxicity (ADCC)-inducing IgG variants, antibody drug conjugates) or by blocking antibodies with the aim to interfere with protumoral Fn14 activities. Noteworthy, there are yet no attempts to target Fn14 with agonistic Fc effector function silenced antibodies to unleash the proinflammatory and cell death-enhancing activities of this receptor for tumor therapy. This is certainly not at least due to the fact that anti-Fn14 antibodies only act as effective agonists when they are presented bound to Fcγ receptors (FcγR). Thus, there are so far no antibodies that robustly and selectively engage Fn14 signaling without triggering unwanted FcγR-mediated activities. In this study, we investigated a panel of variants of the anti-Fn14 antibody 18D1 of different valencies and domain architectures with respect to their inherent FcγR-independent ability to trigger Fn14-associated signaling pathways. In contrast to conventional 18D1, the majority of 18D1 antibody variants with four or more Fn14 binding sites displayed a strong ability to trigger the alternative NFκB pathway and to enhance TNF-induced cell death and therefore resemble in their activity soluble (TNF)-like weak inducer of apoptosis (TWEAK), one form of the natural occurring ligand of Fn14. Noteworthy, activation of the classical NFκB pathway, which naturally is predominately triggered by membrane-bound TWEAK but not soluble TWEAK, was preferentially observed with a subset of constructs containing Fn14 binding sites at opposing sites of the IgG scaffold, e.g. IgG1-scFv fusion proteins. A superior ability of IgG1-scFv fusion proteins to trigger classical NFκB signaling was also observed with the anti-Fn14 antibody PDL192 suggesting that we identified generic structures for Fn14 antibody variants mimicking soluble and membrane-bound TWEAK.}, language = {en} } @article{ZaitsevaAnanyWajantetal.2023, author = {Zaitseva, Olena and Anany, Mohamed and Wajant, Harald and Lang, Isabell}, title = {Basic characterization of antibodies targeting receptors of the tumor necrosis factor receptor superfamily}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1115667}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311407}, year = {2023}, abstract = {Many new immunotherapeutic approaches aim on the stimulatory targeting of receptors of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF) using antibodies with intrinsic or conditional agonism. There is an initial need to characterize corresponding TNFRSF receptor (TNFR)-targeting antibodies with respect to affinity, ligand binding, receptor activation and the epitope recognized. Here, we report a collection of simple and matched protocols enabling the detailed investigation of these aspects by help of Gaussia princeps luciferase (GpL) fusion proteins and analysis of interleukin-8 (IL8) production as an easily measurable readout of TNFR activation. In a first step, the antibodies and antibody variants of interest are transiently expressed in human embryonal kidney 293 cells, either in non-modified form or as fusion proteins with GpL as a reporter domain. The supernatants containing the antibody-GpL fusion proteins can then be used without further purification in cell-free and/or cellular binding studies to determine affinity. Similarly, binding studies with mutated TNFR variants enable the characterization of the antibody binding site within the TNFR ectodomain. Furthermore, in cellular binding studies with GpL fusion proteins of soluble TNFL molecules, the ability of the non-modified antibody variants to interfere with TNFL-TNFR interaction can be analyzed. Last but not least, we describe a protocol to determine the intrinsic and the Fc gamma receptor (FcγR)-dependent agonism of anti-TNFR antibodies which exploits i) the capability of TNFRs to trigger IL8 production in tumor cell lines lacking expression of FcγRs and ii) vector- and FcγR-transfected cells, which produce no or only very low amounts of human IL8. The presented protocols only require standard molecular biological equipment, eukaryotic cell culture and plate readers for the quantification of luminescent and colorimetric signals.}, language = {en} } @article{Wajant2019, author = {Wajant, Harald}, title = {Molecular mode of action of TRAIL receptor agonists—common principles and their translational exploitation}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {7}, doi = {10.3390/cancers11070954}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202416}, pages = {954}, year = {2019}, abstract = {Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAILR1/death receptor 4 (DR4) and TRAILR2/DR5 trigger cell death in many cancer cells but rarely exert cytotoxic activity on non-transformed cells. Against this background, a variety of recombinant TRAIL variants and anti-TRAIL death receptor antibodies have been developed and tested in preclinical and clinical studies. Despite promising results from mice tumor models, TRAIL death receptor targeting has failed so far in clinical studies to show satisfying anti-tumor efficacy. These disappointing results can largely be explained by two issues: First, tumor cells can acquire TRAIL resistance by several mechanisms defining a need for combination therapies with appropriate sensitizing drugs. Second, there is now growing preclinical evidence that soluble TRAIL variants but also bivalent anti-TRAIL death receptor antibodies typically require oligomerization or plasma membrane anchoring to achieve maximum activity. This review discusses the need for oligomerization and plasma membrane attachment for the activity of TRAIL death receptor agonists in view of what is known about the molecular mechanisms of how TRAIL death receptors trigger intracellular cell death signaling. In particular, it will be highlighted which consequences this has for the development of next generation TRAIL death receptor agonists and their potential clinical application.}, language = {en} } @article{Wajant2019, author = {Wajant, Harald}, title = {Molecular mode of action of TRAIL receptor agonists—common principles and their translational exploitation}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {7}, doi = {10.3390/cancers11070954}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201833}, pages = {954}, year = {2019}, abstract = {Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAILR1/death receptor 4 (DR4) and TRAILR2/DR5 trigger cell death in many cancer cells but rarely exert cytotoxic activity on non-transformed cells. Against this background, a variety of recombinant TRAIL variants and anti-TRAIL death receptor antibodies have been developed and tested in preclinical and clinical studies. Despite promising results from mice tumor models, TRAIL death receptor targeting has failed so far in clinical studies to show satisfying anti-tumor efficacy. These disappointing results can largely be explained by two issues: First, tumor cells can acquire TRAIL resistance by several mechanisms defining a need for combination therapies with appropriate sensitizing drugs. Second, there is now growing preclinical evidence that soluble TRAIL variants but also bivalent anti-TRAIL death receptor antibodies typically require oligomerization or plasma membrane anchoring to achieve maximum activity. This review discusses the need for oligomerization and plasma membrane attachment for the activity of TRAIL death receptor agonists in view of what is known about the molecular mechanisms of how TRAIL death receptors trigger intracellular cell death signaling. In particular, it will be highlighted which consequences this has for the development of next generation TRAIL death receptor agonists and their potential clinical application.}, language = {en} }