@article{DresenLeeHilletal.2023, author = {Dresen, Ellen and Lee, Zheng-Yii and Hill, Aileen and Notz, Quirin and Patel, Jayshil J. and Stoppe, Christian}, title = {History of scurvy and use of vitamin C in critical illness: A narrative review}, series = {Nutrition in Clinical Practice}, volume = {38}, journal = {Nutrition in Clinical Practice}, number = {1}, doi = {10.1002/ncp.10914}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318176}, pages = {46 -- 54}, year = {2023}, abstract = {In 1747, an important milestone in the history of clinical research was set, as the Scottish surgeon James Lind conducted the first randomized controlled trial. Lind was interested in scurvy, a severe vitamin C deficiency which caused the death of thousands of British seamen. He found that a dietary intervention with oranges and lemons, which are rich in vitamin C by nature, was effective to recover from scurvy. Because of its antioxidative properties and involvement in many biochemical processes, the essential micronutrient vitamin C plays a key role in the human biology. Moreover, the use of vitamin C in critical illness—a condition also resulting in death of thousands in the 21st century—has gained increasing interest, as it may restore vascular responsiveness to vasoactive agents, ameliorate microcirculatory blood flow, preserve endothelial barriers, augment bacterial defense, and prevent apoptosis. Because of its redox potential and powerful antioxidant capacity, vitamin C represents an inexpensive and safe antioxidant, with the potential to modify the inflammatory cascade and improve clinical outcomes of critically ill patients. This narrative review aims to update and provide an overview on the role of vitamin C in the human biology and in critically ill patients, and to summarize current evidence on the use of vitamin C in diverse populations of critically ill patients, in specific focusing on patients with sepsis and coronavirus disease 2019.}, language = {en} } @article{AbdelmohsenSzesnyOthmanetal.2012, author = {Abdelmohsen, Usama Ramadan and Szesny, Matthias and Othman, Eman Maher and Schirmeister, Tanja and Grond, Stepanie and Stopper, Helga and Hentschel, Ute}, title = {Antioxidant and Anti-Protease Activities of Diazepinomicin from the Sponge-Associated Micromonospora Strain RV115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76279}, year = {2012}, abstract = {Diazepinomicin is a dibenzodiazepine alkaloid with an unusual structure among the known microbial metabolites discovered so far. Diazepinomicin was isolated from the marine sponge-associated strain Micromonospora sp. RV115 and was identified by spectroscopic analysis and by comparison to literature data. In addition to its interesting preclinical broad-spectrum antitumor potential, we report here new antioxidant and anti-protease activities for this compound. Using the ferric reducing antioxidant power (FRAP) assay, a strong antioxidant potential of diazepinomicin was demonstrated. Moreover, diazepinomicin showed a significant antioxidant and protective capacity from genomic damage induced by the reactive oxygen species hydrogen peroxide in human kidney (HK-2) and human promyelocytic (HL-60) cell lines. Additionally, diazepinomicin inhibited the proteases rhodesain and cathepsin L at an IC50 of 70-90 μM. It also showed antiparasitic activity against trypomastigote forms of Trypanosoma brucei with an IC50 of 13.5 μM. These results showed unprecedented antioxidant and anti-protease activities of diazepinomicin, thus further highlighting its potential as a future drug candidate.}, subject = {Biologie}, language = {en} }