@article{WangStoecklLietal.2022, author = {Wang, Chenglong and St{\"o}ckl, Sabine and Li, Shushan and Herrmann, Marietta and Lukas, Christoph and Reinders, Yvonne and Sickmann, Albert and Gr{\"a}ssel, Susanne}, title = {Effects of extracellular vesicles from osteogenic differentiated human BMSCs on osteogenic and adipogenic differentiation capacity of na{\"i}ve human BMSCs}, series = {Cells}, volume = {11}, journal = {Cells}, number = {16}, issn = {2073-4409}, doi = {10.3390/cells11162491}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286112}, year = {2022}, abstract = {Osteoporosis, or steroid-induced osteonecrosis of the hip, is accompanied by increased bone marrow adipogenesis. Such a disorder of adipogenic/osteogenic differentiation, affecting bone-marrow-derived mesenchymal stem cells (BMSCs), contributes to bone loss during aging. Here, we investigated the effects of extracellular vesicles (EVs) isolated from human (h)BMSCs during different stages of osteogenic differentiation on the osteogenic and adipogenic differentiation capacity of na{\"i}ve (undifferentiated) hBMSCs. We observed that all EV groups increased viability and proliferation capacity and suppressed the apoptosis of na{\"i}ve hBMSCs. In particular, EVs derived from hBMSCs at late-stage osteogenic differentiation promoted the osteogenic potential of na{\"i}ve hBMSCs more effectively than EVs derived from na{\"i}ve hBMSCs (na{\"i}ve EVs), as indicated by the increased gene expression of COL1A1 and OPN. In contrast, the adipogenic differentiation capacity of na{\"i}ve hBMSCs was inhibited by treatment with EVs from osteogenic differentiated hBMSCs. Proteomic analysis revealed that osteogenic EVs and na{\"i}ve EVs contained distinct protein profiles, with pro-osteogenic and anti-adipogenic proteins encapsulated in osteogenic EVs. We speculate that osteogenic EVs could serve as an intercellular communication system between bone- and bone-marrow adipose tissue, for transporting osteogenic factors and thus favoring pro-osteogenic processes. Our data may support the theory of an endocrine circuit with the skeleton functioning as a ductless gland.}, language = {en} } @phdthesis{Schlegelmilch2012, author = {Schlegelmilch, Katrin}, title = {Molecular function of WISP1/CCN4 in the musculoskeletal system with special reference to apoptosis and cell survival}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73430}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Human adult cartilage is an aneural and avascular type of connective tissue, which consequently reflects reduced growth and repair rates. The main cell type of cartilage are chondrocytes, previously derived from human mesenchymal stem cells (hMSCs). They are responsible for the production and maintainance of the cartilaginous extracellular matrix (ECM), which consists mainly of collagen and proteoglycans. Signal transmission to or from chondrocytes, generally occurs via interaction with signalling factors connected to the cartilaginous ECM. In this context, proteins of the CCN family were identified as important matricellular and multifunctional regulators with high significance during skeletal development and fracture repair. In this thesis, main focus lies on WISP1/CCN4, which is known as a general survival factor in a variety of cell types and seems to be crucial during lineage progression of hMSCs into chondrocytes. We intend to counter the lack of knowledge about the general importance of WISP1-signalling within the musculoskeletal system and especially regarding cell death and survival by a variety of molecular and cell biology methods. First, we established a successful down-regulation of endogenous WISP1 transcripts within different cell types of the human musculoskeletal system through gene-silencing. Interestingly, WISP1 seems to be crucial to the survival of all examined cell lines and primary hMSCs, since a loss of WISP1 resulted in cell death. Bioinformatical analyses of subsequent performed microarrays (WISP1 down-regulated vs. control samples) confirmed this observation in primary hMSCs and the chondrocyte cell line Tc28a2. Distinct clusters of regulated genes, closely related to apoptosis induction, could be identified. In this context, TRAIL induced apoptosis as well as p53 mediated cell death seem to play a crucial role during the absence of WISP1 in hMSCs. By contrast, microarray analysis of WISP1 down-regulated chondrocytes indicated rather apoptosis induction via MAPK-signalling. Despite apoptosis relevant gene regulations, microarray analyses also identified clusters of differentially expressed genes of other important cellular activities, e.g. a huge cluster of interferon-inducible genes in hMSCs or gene regulations affecting cartilage homeostasis in chondrocytes. Results of this thesis emphasize the importance of regulatory mechanisms that influence cell survival of primary hMSCs and chondrocytes in the enforced absence of WISP1. Moreover, findings intensified the assumed importance for WISP1-signalling in cartilage homeostasis. Thus, this thesis generated an essential fundament for further examinations to investigate the role of WISP1-signalling in cartilage homeostasis and cell death.}, subject = {Knorpelzelle}, language = {en} } @article{ScherzadMeyerIckrathetal.2019, author = {Scherzad, Agmal and Meyer, Till and Ickrath, Pascal and Gehrke, Thomas Eckhart and Bregenzer, Maximillian and Hagen, Rudolf and Dembski, Sofia and Hackenberg, Stephan}, title = {Cultivation of hMSCs in human plasma prevents the cytotoxic and genotoxic potential of ZnO-NP in vitro}, series = {Applied Sciences}, volume = {9}, journal = {Applied Sciences}, number = {23}, issn = {2076-3417}, doi = {10.3390/app9234994}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193063}, year = {2019}, abstract = {Zinc oxide nanoparticles (ZnO-NPs) are commonly used for industrial applications. Consequently, there is increasing exposure of humans to them. The in vitro analysis of cytotoxicity and genotoxicity is commonly performed under standard cell culture conditions. Thus, the question arises of how the results of genotoxicity and cytotoxicity experiments would alter if human plasma was used instead of cell culture medium containing of fetal calf serum (FCS). Human mesenchymal stem cells (hMSCs) were cultured in human plasma and exposed to ZnO-NPs. A cultivation in expansion medium made of DMEM consisting 10\% FCS (DMEM-EM) served as control. Genotoxic and cytotoxic effects were evaluated with the comet and MTT assay, respectively. hMSC differentiation capacity and ZnO-NP disposition were evaluated by histology and transmission electron microscopy (TEM). The protein concentration and the amount of soluble Zn2+ were measured. The cultivation of hMSCs in plasma leads to an attenuation of genotoxic and cytotoxic effects of ZnO-NPs compared to control. The differentiation capacity of hMSCs was not altered. The TEM showed ZnO-NP persistence in cytoplasm in both groups. The concentrations of protein and Zn2+ were higher in plasma than in DMEM-EM. In conclusion, the cultivation of hMSCs in plasma compared to DMEM-EM leads to an attenuation of cytotoxicity and genotoxicity in vitro.}, language = {en} } @phdthesis{Schenk2007, author = {Schenk, Rita}, title = {Impact of the CCN-proteins CYR61/CCN1 and WISP3/CCN6 on mesenchymal stem cells and endothelial progenitor cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27766}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {CYR61 and WISP3 belong to the family of CCN-proteins. These proteins are characterised by 10\% cysteine residues whose positions are strictly conserved. The proteins are extracellular signalling molecules that can be associated with the extracellular matrix. CCN-proteins function in a cell- and tissue specific overlapping yet distinct manner. CCN-proteins are expressed and function in several cells and tissues of the musculoskeletal system. In this study the impact of the angiogenic inducer cysteine-rich protein 61 (CYR61/CCN1) on endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) as well as the wnt1 inducible signalling pathway protein 3 (WISP3/CCN6) on MSCs were elucidated. EPCs are promising cells to induce neovascularisation in ischemic regions as tissue engineered constructs. A major drawback is the small amount of cells that can be obtained from patients; therefore a stimulating factor to induce in vitro propagation of EPCs is urgently needed. In this study, mononuclear cells obtained from peripheral blood were treated with 0.5 µg/ml CYR61, resulting in an up to 7-fold increased cell number within one week compared to untreated control cells. To characterise if EPCs treated with CYR61 display altered or maintained EPC phenotype, the expression of the established markers CD34, CD133 and KDR as well as the uptake of acLDL and concurrent staining for ulex lectin was analysed. Both CYR61 treated and untreated control cells displayed EPCs characteristics, indicating that CYR61 treatment induces EPC number without altering their phenotype. Further studies revealed that the stimulating effect of CYR61 on EPCs is due to enhanced adhesion, rather than improved proliferation. Usage of mutated CYR61-proteins showed that the adhesive effect is mediated, at least partly, by the integrin \&\#945;6\&\#946;1, while the integrin \&\#945;\&\#965;\&\#946;3 has no influence. Endogenous expression of CYR61 was not detectable in EPCs, which indicated that control cells are not influenced by endogenous secretion of CYR61 and also could explain the dose-dependent effect of CYR61 that is measured at a low concentration of 0.05 µg/ml. MSCs were treated with 0.5 µg/ml CYR61, a combination of growth factors including VEGF, both together and compared to untreated control cells. Matrigel angiogenesis assay revealed an induction of angiogenesis, detected by induced sprouting of the cells, after CYR61 treatment of the MSC. Induced sprouting and vessel like structure formation after CYR61 treatment was similar to the results obtained after treatment with growth factors including the established angiogenesis inducer VEGF. This result clearly demonstrates the angiogenic potential of CYR61 on MSCs. Further studies revealed a migrative and proliferative effect of CYR61 on MSCs. Both properties are crucial for the induction of angiogenesis thus further strengthening the view of CYR61 as an angiogenic inducer. MSCs and EPCs are promising cells for tissue engineering applications in bone remodelling and reconstruction. MSCs due to their potential to differentiate into other lineages; EPCs induce neovascularisation within the construct. Both cell types respond to CYR61 treatment. Furthermore EPCs home to sides were CYR61 expression is detectable and both are induced by similar stimulators. Therefore CYR61 is a promising factor for tissue engineered bone reconstruction applications. WISP3 is expressed in cartilage in vivo and in chondrocytes in vitro. Loss of function mutations in the WISP3 gene are associated to the inherited human disease progressive pseudorheumatoid dysplasia (PPD), that is characterised by cartilage loss and bone and joint destruction. Since MSCs also express the protein, the aim of this study was to elucidate if recombinant protein targets MSCs. A migratory effect of WISP3 treatment on MSCs and osteogenic differentiated MSCs has been proven in this study. To elucidate if global gene expression patterns are influenced by WISP3, cells were treated with 0.5 µg/ml WISP3 and compared to untreated control MSCs. Gene expression study by using affymetrix technology revealed an induction of interferon inducible genes including CXCL chemokines and members of the TNFSF family. Reevaluation by RT-PCR on identical RNA and an additional time series confirmed the results. Although no established cartilage associated genes were detected as regulated genes within this 24h treatment, anti-angiogenic and immunosuppressive genes indicate a protective role of WISP3 for the cartilage, which is sensitive to inflammatory processes. Both CCN-proteins CYR61 and WISP3 are valuable for the musculoskeletal system. This and previous studies revealed the role of CYR61 for osteogenesis and angiogenesis of tissue engineered applications. WISP3 is responsible for development, protection and maintenance of cartilage. Therefore further studies with the proteins in the musculoskeletal system are of high relevance.}, subject = {Endothel}, language = {en} } @article{SchattonYangKleffeletal.2015, author = {Schatton, Tobias and Yang, Jun and Kleffel, Sonja and Uehara, Mayuko and Barthel, Steven R. and Schlapbach, Christoph and Zhan, Qian and Dudeney, Stephen and Mueller, Hansgeorg and Lee, Nayoung and de Vries, Juliane C. and Meier, Barbara and Beken, Seppe Vander and Kluth, Mark A. and Ganss, Christoph and Sharpe, Arlene H. and Waaga-Gasser, Ana Maria and Sayegh, Mohamed H. and Abdi, Reza and Scharffetter-Kochanek, Karin and Murphy, George F. and Kupper, Thomas S. and Frank, Natasha Y. and Frank, Markus H.}, title = {ABCB5 Identifies Immunoregulatory Dermal Cells}, series = {Cell Reports}, volume = {12}, journal = {Cell Reports}, doi = {10.1016/j.celrep.2015.08.010}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149989}, pages = {1564 -- 1574}, year = {2015}, abstract = {Cell-based strategies represent a new frontier in the treatment of immune-mediated disorders. However, the paucity of markers for isolation of molecularly defined immunomodulatory cell populations poses a barrier to this field. Here, we show that ATP-binding cassette member B5 (ABCB5) identifies dermal immunoregulatory cells (DIRCs) capable of exerting therapeutic immunoregulatory functions through engagement of programmed cell death 1 (PD-1). Purified Abcb5\(^+\) DIRCs suppressed T cell proliferation, evaded immune rejection, homed to recipient immune tissues, and induced Tregs in vivo. In fully major-histocompatibility-complex-mismatched cardiac allotransplantation models, allogeneic DIRCs significantly prolonged allograft survival. Blockade of DIRC-expressed PD-1 reversed the inhibitory effects of DIRCs on T cell activation, inhibited DIRC-dependent Treg induction, and attenuated DIRC-induced prolongation of cardiac allograft survival, indicating that DIRC immunoregulatory function is mediated, at least in part, through PD-1. Our results identify ABCB5\(^+\) DIRCs as a distinct immunoregulatory cell population and suggest promising roles of this expandable cell subset in cellular immunotherapy.}, language = {en} } @article{SamperAgreloSchiraHeinenBeyeretal.2020, author = {Samper Agrelo, Iria and Schira-Heinen, Jessica and Beyer, Felix and Groh, Janos and B{\"u}termann, Christine and Estrada, Veronica and Poschmann, Gereon and Bribian, Ana and Jadasz, Janusz J. and Lopez-Mascaraque, Laura and Kremer, David and Martini, Rudolf and M{\"u}ller, Hans Werner and Hartung, Hans Peter and Adjaye, James and St{\"u}hler, Kai and K{\"u}ry, Patrick}, title = {Secretome analysis of mesenchymal stem cell factors fostering oligodendroglial differentiation of neural stem cells in vivo}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {12}, issn = {1422-0067}, doi = {10.3390/ijms21124350}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285465}, year = {2020}, abstract = {Mesenchymal stem cell (MSC)-secreted factors have been shown to significantly promote oligodendrogenesis from cultured primary adult neural stem cells (aNSCs) and oligodendroglial precursor cells (OPCs). Revealing underlying mechanisms of how aNSCs can be fostered to differentiate into a specific cell lineage could provide important insights for the establishment of novel neuroregenerative treatment approaches aiming at myelin repair. However, the nature of MSC-derived differentiation and maturation factors acting on the oligodendroglial lineage has not been identified thus far. In addition to missing information on active ingredients, the degree to which MSC-dependent lineage instruction is functional in vivo also remains to be established. We here demonstrate that MSC-derived factors can indeed stimulate oligodendrogenesis and myelin sheath generation of aNSCs transplanted into different rodent central nervous system (CNS) regions, and furthermore, we provide insights into the underlying mechanism on the basis of a comparative mass spectrometry secretome analysis. We identified a number of secreted proteins known to act on oligodendroglia lineage differentiation. Among them, the tissue inhibitor of metalloproteinase type 1 (TIMP-1) was revealed to be an active component of the MSC-conditioned medium, thus validating our chosen secretome approach.}, language = {en} } @article{RamachandranSchirmerMuenstetal.2015, author = {Ramachandran, Sarada Devi and Schirmer, Katharina and M{\"u}nst, Bernhard and Heinz, Stefan and Ghafoory, Shahrouz and W{\"o}lfl, Stefan and Simon-Keller, Katja and Marx, Alexander and {\O}ie, Cristina Ionica and Ebert, Matthias P. and Walles, Heike and Braspenning, Joris and Breitkopf-Heinlein, Katja}, title = {In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {10}, doi = {10.1371/journal.pone.0139345}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139552}, pages = {e0139345}, year = {2015}, abstract = {In this study we used differentiated adult human upcyte (R) cells for the in vitro generation of liver organoids. Upcyte (R) cells are genetically engineered cell strains derived from primary human cells by lenti-viral transduction of genes or gene combinations inducing transient proliferation capacity (upcyte (R) process). Proliferating upcyte (R) cells undergo a finite number of cell divisions, i.e., 20 to 40 population doublings, but upon withdrawal of proliferation stimulating factors, they regain most of the cell specific characteristics of primary cells. When a defined mixture of differentiated human upcyte (R) cells (hepatocytes, liver sinusoidal endothelial cells (LSECs) and mesenchymal stem cells (MSCs)) was cultured in vitro on a thick layer of Matrigel\(^{TM}\), they self-organized to form liver organoid-like structures within 24 hours. When further cultured for 10 days in a bioreactor, these liver organoids show typical functional characteristics of liver parenchyma including activity of cytochromes P450, CYP3A4, CYP2B6 and CYP2C9 as well as mRNA expression of several marker genes and other enzymes. In summary, we hereby describe that 3D functional hepatic structures composed of primary human cell strains can be generated in vitro. They can be cultured for a prolonged period of time and are potentially useful ex vivo models to study liver functions.}, language = {en} } @article{NiedermairLukasLietal.2020, author = {Niedermair, Tanja and Lukas, Christoph and Li, Shushan and St{\"o}ckl, Sabine and Craiovan, Benjamin and Brochhausen, Christoph and Federlin, Marianne and Herrmann, Marietta and Gr{\"a}ssel, Susanne}, title = {Influence of Extracellular Vesicles Isolated From Osteoblasts of Patients With Cox-Arthrosis and/or Osteoporosis on Metabolism and Osteogenic Differentiation of BMSCs}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {8}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2020.615520}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219902}, year = {2020}, abstract = {Background: Studies with extracellular vesicles (EVs), including exosomes, isolated from mesenchymal stem cells (MSC) indicate benefits for the treatment of musculoskeletal pathologies as osteoarthritis (OA) and osteoporosis (OP). However, little is known about intercellular effects of EVs derived from pathologically altered cells that might influence the outcome by counteracting effects from "healthy" MSC derived EVs. We hypothesize, that EVs isolated from osteoblasts of patients with hip OA (coxarthrosis/CA), osteoporosis (OP), or a combination of both (CA/OP) might negatively affect metabolism and osteogenic differentiation of bone-marrow derived (B)MSCs. Methods: Osteoblasts, isolated from bone explants of CA, OP, and CA/OP patients, were compared regarding growth, viability, and osteogenic differentiation capacity. Structural features of bone explants were analyzed via μCT. EVs were isolated from supernatant of na{\"i}ve BMSCs and CA, OP, and CA/OP osteoblasts (osteogenic culture for 35 days). BMSC cultures were stimulated with EVs and subsequently, cell metabolism, osteogenic marker gene expression, and osteogenic differentiation were analyzed. Results: Trabecular bone structure was different between the three groups with lowest number and highest separation in the CA/OP group. Viability and Alizarin red staining increased over culture time in CA/OP osteoblasts whereas growth of osteoblasts was comparable. Alizarin red staining was by trend higher in CA compared to OP osteoblasts after 35 days and ALP activity was higher after 28 and 35 days. Stimulation of BMSC cultures with CA, OP, and CA/OP EVs did not affect proliferation but increased caspase 3/7-activity compared to unstimulated BMSCs. BMSC viability was reduced after stimulation with CA and CA/OP EVs compared to unstimulated BMSCs or stimulation with OP EVs. ALP gene expression and activity were reduced in BMSCs after stimulation with CA, OP, and CA/OP EVs. Stimulation of BMSCs with CA EVs reduced Alizarin Red staining by trend. Conclusion: Stimulation of BMSCs with EVs isolated from CA, OP, and CA/OP osteoblasts had mostly catabolic effects on cell metabolism and osteogenic differentiation irrespective of donor pathology and reflect the impact of tissue microenvironment on cell metabolism. These catabolic effects are important for understanding differences in effects of EVs on target tissues/cells when harnessing them as therapeutic drugs.}, language = {en} } @article{IUedaWoersdoerferetal.2020, author = {I, Takashi and Ueda, Yuichiro and W{\"o}rsd{\"o}rfer, Philipp and Sumita, Yoshinori and Asahina, Izumi and Erg{\"u}n, S{\"u}leyman}, title = {Resident CD34-positive cells contribute to peri-endothelial cells and vascular morphogenesis in salivary gland after irradiation}, series = {Journal of Neural Transmission}, volume = {127}, journal = {Journal of Neural Transmission}, issn = {0300-9564}, doi = {10.1007/s00702-020-02256-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235613}, pages = {1467-1479}, year = {2020}, abstract = {Salivary gland (SG) hypofunction is a common post-radiotherapy complication. Besides the parenchymal damage after irradiation (IR), there are also effects on mesenchymal stem cells (MSCs) which were shown to contribute to regeneration and repair of damaged tissues by differentiating into stromal cell types or releasing vesicles and soluble factors supporting the healing processes. However, there are no adequate reports about their roles during SG damage and regeneration so far. Using an irradiated SG mouse model, we performed certain immunostainings on tissue sections of submandibular glands at different time points after IR. Immunostaining for CD31 revealed that already one day after IR, vascular impairment was induced at the level of capillaries. In addition, the expression of CD44—a marker of acinar cells—diminished gradually after IR and, by 20 weeks, almost disappeared. In contrast, the number of CD34-positive cells significantly increased 4 weeks after IR and some of the CD34-positive cells were found to reside within the adventitia of arteries and veins. Laser confocal microscopic analyses revealed an accumulation of CD34-positive cells within the area of damaged capillaries where they were in close contact to the CD31-positive endothelial cells. At 4 weeks after IR, a fraction of the CD34-positive cells underwent differentiation into α-SMA-positive cells, which suggests that they may contribute to regeneration of smooth muscle cells and/or pericytes covering the small vessels from the outside. In conclusion, SG-resident CD34-positive cells represent a population of progenitors that could contribute to new vessel formation and/or remodeling of the pre-existing vessels after IR and thus, might be an important player during SG tissue healing.}, language = {en} } @phdthesis{Hoefner2020, author = {H{\"o}fner, Christiane}, title = {Human Adipose-derived Mesenchymal Stem Cells in a 3D Spheroid Culture System - Extracellular Matrix Development, Adipogenic Differentiation, and Secretory Properties}, doi = {10.25972/OPUS-20424}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204249}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The ability to differentiate into mesenchymal lineages, as well as immunomodulatory, anti-inflammatory, anti-apoptotic, and angiogenic properties give ASCs great therapeutic potential. Through their culture as multicellular, three-dimensional spheroids this potential can even be enhanced. Accordingly, 3D spheroids are not only promising candidates for the application in regenerative medicine and inflammatory disease therapy, but also for the use as building blocks in tissue engineering approaches. Due to the resemblance to physiological cell-cell and cell-matrix interactions, 3D spheroids gain higher similarity to real tissues, what makes them a valuable tool in the development of bioactive constructs equivalent to native tissues in terms of its cellular and extracellular structure. Especially, to overcome the still tremendous clinical need for adequate implants to repair soft tissue defects, 3D spheroids consisting of ASCs are a promising approach in adipose tissue engineering. Nevertheless, studies on the use of ASC-based spheroids as building blocks for fat tissue reconstruction have so far been very rare. In order to optimally exploit their therapeutic potential to further their use in regenerative medicine, including adipose tissue engineering approaches, a 3D spheroid model consisting of ASCs was characterized extensively in this work. This included not only the elucidation of the structural features, but also the differentiation capacity, gene expression, and secretory properties. In addition, the elucidation of underlying mechanisms contributing to the improved therapeutic efficiency was addressed.}, subject = {adipose}, language = {en} } @phdthesis{Hondke2014, author = {Hondke, Sylvia}, title = {Elucidation of WISP3 function in human mesenchymal stem cells and chondrocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-109641}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {WISP3 is a member of the CCN family which comprises six members found in the 1990's: Cysteine-rich,angiogenic inducer 61 (CYR61, CCN1), Connective tissue growth factor (CTGF, CCN2), Nephroblastoma overexpressed (NOV, CNN3) and the Wnt1 inducible signalling pathway protein 1-3 (WISP1-3, CCN4-6).They are involved in the adhesion, migration, mitogenesis, chemotaxis, proliferation, cell survival, angiogenesis, tumorigenesis, and wound healing by the interaction with different integrins and heparan sulfate proteoglycans. Until now the only member correlated to the musculoskeletal autosomal disease Progressive Pseudorheumatoid Dysplasia (PPD) is WISP3. PPD is characterised by normal embryonic development followed by cartilage degradation over time starting around the age of three to eight years. Animal studies in mice exhibited no differences between knock out or overexpression compared to wild type litter mates, thus were not able to reproduce the symptoms observed in PPD patients. Studies in vitro and in vivo revealed a role for WISP3 in antagonising BMP, IGF and Wnt signalling pathways. Since most of the knowledge of WISP3 was gained in epithelial cells, cancer cells or chondrocyte cell lines, we investigated the roll of WISP3 in primary human mesenchymal stem cells (hMSCs) as well as primary chondrocytes. WISP3 knock down was efficiently established with three short hairpin RNAs in both cell types, displaying a change of morphology followed by a reduction in cell number. Simultaneous treatment with recombinant WISP3 was not enough to rescue the observed phenotype nor increase the endogenous expression of WISP3. We concluded that WISP3 acts as an essential survival factor, where the loss resulted in the passing of cell cycle control points followed by apoptosis. Nevertheless, Annexin V-Cy3 staining and detection of active caspases by Western blot and immunofluorescence staining detected no clear evidence for apoptosis. Furthermore, the gene expression of the death receptors TRAILR1 and TRAILR2,important for the extrinsic activation of apoptosis, remained unchanged during WISP3 mRNA reduction. Autophagy as cause of cell death was also excluded, given that the autophagy marker LC3 A/B demonstrated to be uncleaved in WISP3-deficient hMSCs. To reveal correlated signalling pathways to WISP3 a whole genome expression analyses of WISP3-deficient hMSCs compared to a control (scramble) was performed. Microarray analyses exhibited differentially regulated genes involved in cell cycle control, adhesion, cytoskeleton and cell death. Cell death observed by WISP3 knock down in hMSCs and chondrocytes might be explained by the induction of necroptosis through the BMP/TAK1/RIPK1 signalling axis. Loss of WISP3 allows BMP to bind its receptor activating the Smad 2/3/4 complex which in turn can activate TAK1 as previously demonstrated in epithelial cells. TAK1 is able to block caspase-dependent apoptosis thereby triggering the assembly of the necrosome resulting in cell death by necroptosis. Together with its role in cell cycle control and extracellular matrix adhesion, as demonstrated in human mammary epithelial cells, the data supports the role of WISP3 as tumor suppressor and survival factor in cells of the musculoskeletal system as well as epithelial cells.}, subject = {Knorpelzelle}, language = {en} } @phdthesis{Heymer2008, author = {Heymer, Andrea}, title = {Chondrogenic differentiation of human mesenchymal stem cells and articular cartilage reconstruction}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29448}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Articular cartilage defects are still one of the major challenges in orthopedic and trauma surgery. Today, autologous chondrocyte transplantation (ACT), as a cell-based therapy, is an established procedure. However, one major limitation of this technique is the loss of the chondrogenic phenotype during expansion. Human mesenchymal stem cells (hMSCs) have an extensive proliferation potential and the capacity to differentiate into chondrocytes when maintained under specific conditions. They are therefore considered as candidate cells for tissue engineering approaches of functional cartilage tissue substitutes. First in this study, hMSCs were embedded in a collagen type I hydrogel to evaluate the cartilaginous construct in vitro. HMSC collagen hydrogels cultivated in different culture media showed always a marked contraction, most pronounced in chondrogenic differentiation medium supplemented with TGF-ß1. After stimulation with chondrogenic factors (dexamethasone and TGF-ß1) hMSCs were able to undergo chondrogenesis when embedded in the collagen type I hydrogel, as evaluated by the temporal induction of cartilage-specific gene expression. Furthermore, the cells showed a chondrocyte-like appearance and were homogeneously distributed within a proteoglycan- and collagen type II-rich extracellular matrix, except a small area in the center of the constructs. In this study, chondrogenic differentiation could not be realized with every hMSC preparation. With the improvement of the culture conditions, e.g. the use of a different FBS lot in the gel fabrication process, a higher amount of cartilage-specific matrix deposition could be achieved. Nevertheless, the large variations in the differentiation capacity display the high donor-to-donor variability influencing the development of a cartilaginous construct. Taken together, the results demonstrate that the collagen type I hydrogel is a suitable carrier matrix for hMSC-based cartilage regeneration therapies which present a promising future alternative to ACT. Second, to further improve the quality of tissue-engineered cartilaginous constructs, mechanical stimulation in specific bioreactor systems are often employed. In this study, the effects of mechanical loading on hMSC differentiation have been examined. HMSC collagen hydrogels were cultured in a defined chondrogenic differentiation medium without TGF-ß1 and subjected to a combined mechanical stimulation protocol, consisting of perfusion and cyclic uniaxial compression. Bioreactor cultivation neither affected overall cell viability nor the cell number in collagen hydrogels. Compared with non-loaded controls, mechanical loading promoted the gene expression of COMP and biglycan and induced an up-regulation of matrix metalloproteinase 3. These results circumstantiate that hMSCs are sensitive to mechanical forces, but their differentiation to chondrocytes could not be induced. Further studies are needed to identify the specific metabolic pathways which are altered by mechanical stimulation. Third, for the development of new cell-based therapies for articular cartilage repair, a reliable cell monitoring technique is required to track the cells in vivo non-invasively and repeatedly. This study aimed at analyzing systematically the performance and biological impact of a simple and efficient labeling protocol for hMSCs. Very small superparamagnetic iron oxide particles (VSOPs) were used as magnetic resonance (MR) contrast agent. Iron uptake was confirmed histologically with prussian blue staining and quantified by mass spectrometry. Compared with unlabeled cells, VSOP-labeling did neither influence significantly the viability nor the proliferation potential of hMSCs. Furthermore, iron incorporation did not affect the differentiation capacity of hMSCs. The efficiency of the labeling protocol was assessed with high resolution MR imaging at 11.7 Tesla. VSOP-labeled hMSCs were visualized in a collagen type I hydrogel indicated by distinct hypointense spots in the MR images, resulting from an iron specific loss of signal intensity. This was confirmed by prussian blue staining. In summary, this labeling technique has great potential to visualize hMSCs and track their migration after transplantation for articular cartilage repair with MR imaging.}, subject = {Gelenkknorpel}, language = {en} } @article{HennrichRomanovHornetal.2018, author = {Hennrich, Marco L. and Romanov, Natalie and Horn, Patrick and Jaeger, Samira and Eckstein, Volker and Steeples, Violetta and Ye, Fei and Ding, Ximing and Poisa-Beiro, Laura and Mang, Ching Lai and Lang, Benjamin and Boultwood, Jacqueline and Luft, Thomas and Zaugg, Judith B. and Pellagatti, Andrea and Bork, Peer and Aloy, Patrick and Gavin, Anne-Claude and Ho, Anthony D.}, title = {Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-06353-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319877}, year = {2018}, abstract = {Diminishing potential to replace damaged tissues is a hallmark for ageing of somatic stem cells, but the mechanisms remain elusive. Here, we present proteome-wide atlases of age-associated alterations in human haematopoietic stem and progenitor cells (HPCs) and five other cell populations that constitute the bone marrow niche. For each, the abundance of a large fraction of the ~12,000 proteins identified is assessed in 59 human subjects from different ages. As the HPCs become older, pathways in central carbon metabolism exhibit features reminiscent of the Warburg effect, where glycolytic intermediates are rerouted towards anabolism. Simultaneously, altered abundance of early regulators of HPC differentiation reveals a reduced functionality and a bias towards myeloid differentiation. Ageing causes alterations in the bone marrow niche too, and diminishes the functionality of the pathways involved in HPC homing. The data represent a valuable resource for further analyses, and for validation of knowledge gained from animal models.}, language = {en} } @phdthesis{Forster2023, author = {Forster, Leonard}, title = {Hyaluronic acid based Bioinks for Biofabrication of Mesenchymal Stem Cells}, doi = {10.25972/OPUS-29860}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298603}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {As a major component of the articular cartilage extracellular matrix, hyaluronic acid is a widely used biomaterial in regenerative medicine and tissue engineering. According to its well-known interaction with multiple chondrocyte surface receptors which positively affects many cellular pathways, some approaches by combining mesenchymal stem cells and hyaluronic acid-based hydrogels are already driven in the field of cartilage regeneration and fat tissue. Nevertheless, a still remaining major problem is the development of the ideal matrix for this purpose. To generate a hydrogel for the use as a matrix, hyaluronic acid must be chemically modified, either derivatized or crosslinked and the resulting hydrogel is mostly shaped by the mold it is casted in whereas the stem cells are embedded during or after the gelation procedure which does not allow for the generation of zonal hierarchies, cell density or material gradients. This thesis focuses on the synthesis of different hyaluronic acid derivatives and poly(ethylene glycol) crosslinkers and the development of different hydrogel and bioink compositions that allow for adjustment of the printability, integration of growth factors, but also for the material and biological hydrogel, respectively bioink properties.}, language = {en} } @article{EbertBenischKrugetal.2015, author = {Ebert, Regina and Benisch, Peggy and Krug, Melanie and Zeck, Sabine and Meißner-Weigl, Jutta and Steinert, Andre and Rauner, Martina and Hofbauer, Lorenz and Jakob, Franz}, title = {Acute phase serum amyloid A induces proinflammatory cytokines and mineralization via toll-like receptor 4 in mesenchymal stem cells}, series = {Stem Cell Research}, volume = {15}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2015.06.008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148491}, pages = {231-239}, year = {2015}, abstract = {The role of serum amyloid A (SAA) proteins, which are ligands for toll-like receptors, was analyzed in human bone marrow-derived mesenchymal stem cells (hMSCs) and their osteogenic offspring with a focus on senescence, differentiation andmineralization. In vitro aged hMSC developed a senescence-associated secretory phenotype (SASP), resulting in enhanced SAA1/2, TLR2/4 and proinflammatory cytokine (IL6, IL8, IL1\(\beta\), CXCL1, CXCL2) expression before entering replicative senescence. Recombinant human SAA1 (rhSAA1) induced SASP-related genes and proteins in MSC, which could be abolished by cotreatment with the TLR4-inhibitor CLI-095. The same pattern of SASP-resembling genes was stimulated upon induction of osteogenic differentiation, which is accompanied by autocrine SAA1/2 expression. In this context additional rhSAA1 enhanced the SASP-like phenotype, accelerated the proinflammatory phase of osteogenic differentiation and enhanced mineralization. Autocrine/paracrine and rhSAA1 via TLR4 stimulate a proinflammatory phenotype that is both part of the early phase of osteogenic differentiation and the development of senescence. This signaling cascade is tightly involved in bone formation and mineralization, but may also propagate pathological extraosseous calcification conditions such as calcifying inflammation and atherosclerosis.}, language = {en} }