@article{OkadaRotenbergKevanetal.2013, author = {Okada, Michio and Rotenberg, Eli and Kevan, S. D. and Sch{\"a}fer, J. and Ujfalussy, Balazs and Stocks, G. Malcolm and Genatempo, B. and Bruno, E. and Plummer, E. W.}, title = {Evolution of the electronic structure in \(Mo_{1-x}Re_x\) alloys}, series = {New Journal of Physics}, volume = {15}, journal = {New Journal of Physics}, number = {093010}, issn = {1367-2630}, doi = {10.1088/1367-2630/15/9/093010}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122993}, year = {2013}, abstract = {We report a detailed experimental and theoretical study of the electronic structure of \(Mo_{1-x}Re_x\) random alloys. We have measured electronic band dispersions for clean and hydrogen-covered \(Mo_{1-x}Re_x\) ( 110) with x = 0-0.25 using angle-resolved photoemission spectroscopy. Our results suggest that the bulk and most surface electronic bands shift relative to the Fermi level systematically and approximately rigidly with Re concentration. We distinguish and quantify two contributions to these shifts: a raise of the Fermi energy and an increase of the overall bandwidth. Alloy bands calculated using the first-principles Korringa-Kohn-Rostoker coherent-potential-approximation method accurately predict both of these effects. As derived from the rigid band model, the Fermi energy shift is inversely related to the bulk density of states in this energy region. Using our results, we also characterize an electronic topological transition of the bulk Fermi surface and relate this to bulk transport properties. Finally, we distinguish effects beyond the rigid band approximation: a highly surface-localized state and a composition-dependent impact of the spin-orbit interaction.}, language = {en} } @article{DuerrnagelBeyerThomaleetal.2022, author = {D{\"u}rrnagel, Matteo and Beyer, Jacob and Thomale, Ronny and Schwemmer, Tilman}, title = {Unconventional superconductivity from weak coupling}, series = {The European Physical Journal B}, volume = {95}, journal = {The European Physical Journal B}, number = {7}, issn = {1434-6028}, doi = {10.1140/epjb/s10051-022-00371-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325153}, year = {2022}, abstract = {We develop a joint formalism and numerical framework for analyzing the superconducting instability of metals from a weak coupling perspective. This encompasses the Kohn-Luttinger formulation of weak coupling renormalization group for superconductivity as well as the random phase approximation imposed on the diagrammatic expansion of the two-particle Green's function. The central quantity to resolve is the effective interaction in the Cooper channel, for which we develop an optimized numerical framework. Our code is capable of treating generic multi-orbital models in two as well as three spatial dimensions and, in particular, arbitrary avenues of spin-orbit coupling.}, language = {en} }