@article{RiveroSeltenSichetal.2015, author = {Rivero, O and Selten, MM and Sich, S and Popp, S and Bacmeister, L and Amendola, E and Negwer, M and Schubert, D and Proft, F and Kiser, D and Schmitt, AG and Gross, C and Kolk, SM and Strekalova, T and van den Hove, D and Resink, TJ and Kasir, N Nadif and Lesch, KP}, title = {Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition}, series = {Translational Psychiatry}, volume = {5}, journal = {Translational Psychiatry}, number = {e655}, doi = {10.1038/tp.2015.152}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145218}, year = {2015}, abstract = {Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo) phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13\(^{-/-}\) mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13\(^{-/-}\) mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism.}, language = {en} } @phdthesis{Ku2022, author = {Ku, Hsing-Ping}, title = {Cadherin-13 Deficiency Impacts Murine Serotonergic Circuitries and Cognitive Functions}, doi = {10.25972/OPUS-25144}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251446}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Cadherin-13 (CDH13) is a member of the cadherin superfamily that lacks the typical transmembrane domain for classical cadherins and is instead attached to the cell membrane with a GPI-anchor. Over the years, numerous genome-wide association (GWA) studies have identified CDH13 as a risk factor for neurodevelopmental disorders, including attention- deficit/hyperactivity disorder (ADHD) and autism spectrum disorder. Further evidence using cultured cells and animal models has shown that CDH13 plays important roles in cell migration, neurite outgrowth and synaptic function of the central nervous system. Research in our laboratory demonstrated that the CDH13 deficiency resulted in increased cell density of serotonergic neurons of the dorsal raphe (DR) in developing and mature mouse brains as well as serotonergic hyperinnervation in the developing prefrontal cortex, one of the target areas of DR serotonergic neurons. In this study, the role of CDH13 was further explored using constitutive and serotonergic system-specific CDH13-deficient mouse models. Within the adult DR structure, the increased density of DR serotonergic neurons was found to be topographically restricted to the ventral and lateral-wing, but not dorsal, clusters of DR. Furthermore, serotonergic hyperinnervation was observed in the target region of DR serotonergic projection neurons in the lateral wings. Unexpectedly, these alterations were not observed in postnatal day 14 brains of CDH13-deficient mice. Additionally, behavioral assessments revealed cognitive deficits in terms of compromised learning and memory ability as well as impulsive-like behaviors in CDH13-deficient mice, indicating that the absence of CDH13 in the serotonergic system alone was sufficient to impact cognitive functions and behavioral competency. Lastly, in order to examine the organization of serotonergic circuitries systematically and to tackle limitations of conventional immunofluorescence, a pipeline of the whole-mount immunostaining in combination with the iDISCO+ based rapid tissue clearing techniques was established. This will facilitate future research of brain neurotransmitter systems at circuitry and/or whole-brain levels and provide an excellent alternative for visualizing detailed and comprehensive information about a biological system in its original space. In summary, this study provided new evidence of CDH13's contribution to proper brain development and cognitive function in mice, thereby offering insights into further advancement of therapeutic approaches for neurodevelopmental disorders.}, language = {en} }